add DPN implementation

This commit is contained in:
rmdyh 2020-12-24 16:35:15 +08:00
parent ef0b483eb4
commit d3bf1c3280
12 changed files with 1360 additions and 0 deletions

View File

@ -0,0 +1,370 @@
# Contents
- [Description](#description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Features](#features)
- [Mixed Precision](#mixed-precision)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Dataset Preparation](#dataset-preparation)
- [Running](#running)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Training](#training)
- [Running on Ascend](#running-on-ascend)
- [Distributed Training](#distributed-training)
- [Running on Ascend](#running-on-ascend-1)
- [Evaluation Process](#evaluation-process)
- [Running on Ascend](#running-on-ascend-2)
- [Model Description](#model-description)
- [Performance](#performance)
- [Accuracy](#accuracy)
- [DPN92 (Pretrain)](#dpn92-pretrain)
- [DPN98 (Pretrain)](#dpn98-pretrain)
- [DPN131 (Pretrain)](#dpn131-pretrain)
- [DPN92 (Fine tune)](#dpn92-fine-tune)
- [DPN92 (Training)](#dpn92-training)
- [Efficiency](#efficiency)
- [DPN92](#dpn92)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [Description](#contents)
Dual Path Network (DPN) is a convolution-based neural network for the task of image classification. It combines the advantage of both ResNeXt and DenseNet to get higher accuracy. More detail about this model can be found in:
Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng. "Dual Path Networks" (NIPS17).
This repository contains a Mindspore implementation of DPNs based upon cypw's original MXNet implementation (<https://github.com/cypw/DPNs>). The training and validating scripts are also included, and the validation results with cypws pretrained weights are shown in the Results section.
# [Model Architecture](#contents)
The overall network architecture of DPN is show below:
[Link](https://arxiv.org/pdf/1707.01629.pdf)
# [Dataset](#contents)
All the models in this repository are trained and validated on ImageNet-1K. The models can achieve the [results](#model-description) with the configurations of the dataset preprocessing as follow:
- For the training dataset:
- Range (min, max) of the respective size of the original size to be cropped is (0.08, 1.0)
- Range (min, max) of aspect ratio to be cropped is (0.75, 1.333)
- The size of input images is reshaped to (width = 224, height = 224)
- Probability of random horizontal flip is 50%
- In normalization, the mean is (255\*0.485, 255\*0.456, 255\*0.406) and the standard deviation is (255\*0.229, 255\*0.224, 255\*0.225)
- For the evaluation dataset:
- Input size of images is 224\*224 (Resize to 256\*256 then crops images at the center)
- In normalization, the mean is (255\*0.485, 255\*0.456, 255\*0.406) and the standard deviation is (255\*0.229, 255\*0.224, 255\*0.225)
# [Features](#contents)
## [Mixed Precision](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
# [Environment Requirements](#contents)
To run the python scripts in the repository, you need to prepare the environment as follow:
- Hardware
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to [ascend@huawei.com](mailto:ascend@huawei.com). Once approved, you can get the resources.
- Python and dependencies
- Python3.7
- Mindspore 1.0.0
- Easydict
- MXNet 1.6.0 if running the script `param_convert.py`
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
# [Quick Start](#contents)
## [Dataset Preparation](#contents)
The DPN models use ImageNet-1K dataset to train and validate in this repository. Download the dataset from [ImageNet.org](http://image-net.org/download). You can place them anywhere and tell the scripts where they are when running.
## [Running](#contents)
To train the DPNs, run the shell script `scripts/train_standalone.sh` with the format below:
```shell
sh scripts/train_standalone.sh [device_id] [dataset_dir] [ckpt_path_to_save] [eval_each_epoch] [pretrained_ckpt(optional)]
```
To validate the DPNs, run the shell script `scripts/eval.sh` with the format below:
```shell
sh scripts/eval.sh [device_id] [dataset_dir] [pretrained_ckpt]
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
The structure of the files in this repository is shown below.
```text
└─ mindspore-dpns
├─ scripts
│ ├─ eval.sh // launch ascend standalone evaluation
│ ├─ train_distributed.sh // launch ascend distributed training
│ └─ train_standalone.sh // launch ascend standalone training
├─ src
│ ├─ config.py // network and running config
│ ├─ crossentropy.py // loss function
│ ├─ dpn.py // dpns implementation
│ ├─ imagenet_dataset.py // dataset processor and provider
│ └─ lr_scheduler.py // dpn learning rate scheduler
├─ eval.py // evaluation script
├─ train.py // training script
└─ README.md // descriptions about this repository
```
## [Script Parameters](#contents)
Parameters for both training and evaluation can be set in `src/config.py`
- Configurations for DPN92 with ImageNet-1K dataset
```python
# model config
config.image_size = (224,224) # inpute image size
config.num_classes = 1000 # dataset class number
config.backbone = 'dpn92' # backbone network
config.is_save_on_master = True
# parallel config
config.num_parallel_workers = 4 # number of workers to read the data
config.rank = 0 # local rank of distributed
config.group_size = 1 # group size of distributed
# training config
config.batch_size = 32 # batch_size
config.global_step = 0 # start step of learning rate
config.epoch_size = 180 # epoch_size
config.loss_scale_num = 1024 # loss scale
# optimizer config
config.momentum = 0.9 # momentum (SGD)
config.weight_decay = 1e-4 # weight_decay (SGD)
# learning rate config
config.lr_schedule = 'warmup' # learning rate schedule
config.lr_init = 0.01 # init learning rate
config.lr_max = 0.1 # max learning rate
config.factor = 0.1 # factor of lr to drop
config.epoch_number_to_drop = [5,15] # learing rate will drop after these epochs
config.warmup_epochs = 5 # warmup epochs in learning rate schedule
# dataset config
config.dataset = "imagenet-1K" # dataset
config.label_smooth = False # label_smooth
config.label_smooth_factor = 0.0 # label_smooth_factor
# parameter save config
config.keep_checkpoint_max = 3 # only keep the last keep_checkpoint_max checkpoint
```
## [Training Process](#contents)
### [Training](#contents)
#### Running on Ascend
Run `scripts/train_standalone.sh` to train the model standalone. The usage of the script is:
```shell
sh scripts/train_standalone.sh [device_id] [dataset_dir] [ckpt_path_to_save] [eval_each_epoch] [pretrained_ckpt(optional)]
```
For example, you can run the shell command below to launch the training procedure.
```shell
sh scripts/train_standalone.sh 0 /data/dataset/imagenet/ scripts/pretrian/ 0
```
If eval_each_epoch is 1, it will evaluate after each epoch and save the parameters with the max accurracy. But in this case, the time of one epoch will be longer.
If eval_each_epoch is 0, it will save parameters every some epochs instead of evaluating in the training process.
The script will run training in the background, you can view the results through the file `train_log.txt` as follows (eval_each_epoch = 0):
```text
epoch: 1 step: 40036, loss is 3.6232593
Epoch time: 10048893.336, per step time: 250.996
...
```
or as follows (eval_each_epoch = 1):
```text
epoch: 1 step: 40036, loss is 3.6232593
Epoch time: 10048893.336, per step time: 250.996
Save the maximum accuracy checkpoint,the accuracy is 0.2629158669225848
...
```
The model checkpoint will be saved into `[ckpt_path_to_save]`.
### [Distributed Training](#contents)
#### Running on Ascend
Run `scripts/train_distributed.sh` to train the model distributed. The usage of the script is:
```text
sh scripts/train_distributed.sh [rank_table] [dataset_dir] [ckpt_path_to_save] [rank_size] [eval_each_epoch] [pretrained_ckpt(optional)]
```
For example, you can run the shell command below to launch the training procedure.
```shell
sh scripts/train_distributed.sh /home/rank_table.json /data/dataset/imagenet/ ../scripts 8 0 ../pretrain/dpn92.ckpt
```
The above shell script will run distribute training in the background. You can view the results through the file `train_parallel[X]/log.txt` as follows:
```text
train_parallel0/log:
epoch: 1 step 20018, loss is 5.74429988861084
Epoch time: 7908183.789, per step time: 395.054, avg loss: 5.744
train_parallel0/log:
epoch: 2 step 20018, loss is 4.53381872177124
Epoch time: 5036189.547, per step time: 251.583, avg loss: 4.534
...
train_parallel1/log:
poch: 1 step 20018, loss is 5.751555442810059
Epoch time: 7895946.079, per step time: 394.442, avg loss: 5.752
train_parallel1/log:
epoch: 2 step 20018, loss is 4.875896453857422
Epoch time: 5036190.008, per step time: 251.583, avg loss: 4.876
...
...
```
The model checkpoint will be saved into `[ckpt_path_to_save]`.
## [Evaluation Process](#contents)
### [Running on Ascend](#contents)
Run `scripts/eval.sh` to evaluate the model with one Ascend processor. The usage of the script is:
```text
sh scripts/eval.sh [device_id] [dataset_dir] [pretrained_ckpt]
```
For example, you can run the shell command below to launch the validation procedure.
```text
sh scripts/eval.sh 0 /data/dataset/imageNet/ pretrain/dpn92.ckpt
```
The above shell script will run evaluation in the background. You can view the results through the file `eval_log.txt`. The result will be achieved as follows:
```text
Evaluation result: {'top_5_accuracy': 0.9449223751600512, 'top_1_accuracy': 0.7911731754161332}.
DPN evaluate success!
```
# [Model Description](#contents)
## [Performance](#contents)
The evaluation of model performance is divided into two parts: accuracy and efficiency. The part of accuracy shows the accuracy of the model in classifying images on ImageNet-1K dataset, and it can be evaluated by top-k measure. The part of efficiency reveals the time cost by model training on ImageNet-1K.
All results are validated at image size of 224x224. The dataset preprocessing and training configurations are shown in [Dataset](#dataset) section.
### [Accuracy](#contents)
The `Pretrain` tag in the table above means that the model's weights are converted from MXNet directly without further training. Relatively, the `Fine tune` tag means that the model is fine tuned after converted from MXNet.
#### DPN92 (Pretrain)
| Parameters | Ascend |
| ----------------- | --------------------------- |
| Model Version | DPN92 (Pretrain) |
| Resource | Ascend 910 |
| Uploaded Date | 09/19/2020 (month/day/year) |
| MindSpore Version | 0.5.0 |
| Dataset | ImageNet-1K |
| outputs | probability |
| train performance | Top1:79.12%; Top5:94.49% |
#### DPN98 (Pretrain)
| Parameters | Ascend |
| ----------------- | --------------------------- |
| Model Version | DPN98 (Pretrain) |
| Resource | Ascend 910 |
| Uploaded Date | 09/19/2020 (month/day/year) |
| MindSpore Version | 0.5.0 |
| Dataset | ImageNet-1K |
| outputs | probability |
| train performance | Top1:79.90%; Top5:94.81% |
#### DPN131 (Pretrain)
| Parameters | Ascend |
| ----------------- | --------------------------- |
| Model Version | DPN131 (Pretrain) |
| Resource | Ascend 910 |
| Uploaded Date | 09/19/2020 (month/day/year) |
| MindSpore Version | 0.5.0 |
| Dataset | ImageNet-1K |
| outputs | probability |
| train performance | Top1:79.96%; Top5:94.81% |
#### DPN92 (Fine tune)
| Parameters | Ascend |
| ----------------- | --------------------------- |
| Model Version | DPN92 (Pretrain) |
| Resource | Ascend 910 |
| Uploaded Date | 09/19/2020 (month/day/year) |
| MindSpore Version | 0.5.0 |
| Dataset | ImageNet-1K |
| epochs | 30 |
| outputs | probability |
| train performance | Top1:79.30%; Top5:94.58% |
#### DPN92 (Training)
| Parameters | Ascend |
| ----------------- | --------------------------- |
| Model Version | DPN92 (Train) |
| Resource | Ascend 910 |
| Uploaded Date | 11/13/2020 (month/day/year) |
| MindSpore Version | 1.0.0 |
| Dataset | ImageNet-1K |
| epochs | 180 |
| outputs | probability |
| train performance | Top1:78.91%; Top5:94.53% |
### [Efficiency](#contents)
#### DPN92
| Parameters | Ascend |
| ----------------- | --------------------------------- |
| Model Version | DPN92 |
| Resource | Ascend 910 |
| Uploaded Date | 09/19/2020 (month/day/year) |
| MindSpore Version | 0.5.0 |
| Dataset | ImageNet-1K |
| batch_size | 32 |
| outputs | probability |
| speed | 1pc:127.90 img/s;8pc:1023.2 img/s |
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -0,0 +1,91 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""DPN model eval with MindSpore"""
import os
import argparse
from mindspore import context
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model
from mindspore.common import set_seed
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.dpn import dpns
from src.config import config
from src.imagenet_dataset import classification_dataset
set_seed(1)
# set context
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend", save_graphs=False, device_id=device_id)
def parse_args():
"""parameters"""
parser = argparse.ArgumentParser('dpn evaluating')
# dataset related
parser.add_argument('--data_dir', type=str, default='', help='eval data dir')
# network related
parser.add_argument('--pretrained', type=str, default='', help='ckpt path to load')
args, _ = parser.parse_known_args()
args.image_size = config.image_size
args.num_classes = config.num_classes
args.batch_size = config.batch_size
args.num_parallel_workers = config.num_parallel_workers
args.backbone = config.backbone
args.loss_scale_num = config.loss_scale_num
args.rank = config.rank
args.group_size = config.group_size
args.dataset = config.dataset
return args
def dpn_evaluate(args):
# create evaluate dataset
eval_path = os.path.join(args.data_dir, 'val')
eval_dataset = classification_dataset(eval_path,
image_size=args.image_size,
num_parallel_workers=args.num_parallel_workers,
per_batch_size=args.batch_size,
max_epoch=1,
rank=args.rank,
shuffle=False,
group_size=args.group_size,
mode='eval')
# create network
net = dpns[args.backbone](num_classes=args.num_classes)
# load checkpoint
if os.path.isfile(args.pretrained):
load_param_into_net(net, load_checkpoint(args.pretrained))
# loss
if args.dataset == "imagenet-1K":
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
else:
if not args.label_smooth:
args.label_smooth_factor = 0.0
loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
# create model
model = Model(net, amp_level="O2", keep_batchnorm_fp32=False, loss_fn=loss,
metrics={'top_1_accuracy', 'top_5_accuracy'})
# evaluate
output = model.eval(eval_dataset)
print(f'Evaluation result: {output}.')
if __name__ == '__main__':
dpn_evaluate(parse_args())
print('DPN evaluate success!')

View File

@ -0,0 +1,22 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
export DEVICE_ID=$1
DATA_DIR=$2
PATH_CHECKPOINT=$3
python eval.py \
--pretrained=$PATH_CHECKPOINT \
--data_dir=$DATA_DIR > eval_log.txt 2>&1 &

View File

@ -0,0 +1,69 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
#Usage: sh train_distributed.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [SAVE_CKPT_PATH] [RANK_SIZE] [EVAL_EACH_EPOCH] [PRETRAINED_CKPT_PATH](optional)
DATA_DIR=$2
export RANK_TABLE_FILE=$1
echo "RaNK_TABLE_FiLE=$RANK_TABLE_FILE"
export RANK_SIZE=$4
SAVE_PATH=$3
EVAL_EACH_EPOCH=$5
PATH_CHECKPOINT=""
if [ $# == 6 ]
then
PATH_CHECKPOINT=$6
fi
device=(0 1 2 3 4 5 6 7)
for((i=0;i<RANK_SIZE;i++))
do
export DEVICE_ID=${device[$i]}
export RANK_ID=$i
rm -rf ./train_parallel$i
mkdir ./train_parallel$i
cp -r ./src ./train_parallel$i
cp ./train.py ./train_parallel$i
echo "start training for rank $i, device $DEVICE_ID"
cd ./train_parallel$i ||exit
env > env.log
if [ $# == 5 ]
then
python train.py \
--is_distributed=1 \
--ckpt_path=$SAVE_PATH \
--eval_each_epoch=$EVAL_EACH_EPOCH\
--data_dir=$DATA_DIR > log.txt 2>&1 &
echo "python train.py \
--is_distributed=1 \
--ckpt_path=$SAVE_PATH \
--eval_each_epoch=$EVAL_EACH_EPOCH\
--data_dir=$DATA_DIR > log.txt 2>&1 &"
fi
if [ $# == 6 ]
then
python train.py \
--is_distributed=1 \
--eval_each_epoch=$EVAL_EACH_EPOCH\
--ckpt_path=$SAVE_PATH \
--pretrained=$PATH_CHECKPOINT \
--data_dir=$DATA_DIR > log.txt 2>&1 &
fi
cd ../
done

View File

@ -0,0 +1,48 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
#Usage: sh train_standalone.sh [DEVICE_ID] [DATA_DIR] [SAVE_CKPT_PATH] [EVAL_EACH_EPOCH] [PATH_CHECKPOINT]!
export DEVICE_ID=$1
DATA_DIR=$2
SAVE_CKPT_PATH=$3
EVAL_EACH_EPOCH=$4
if [ $# == 5 ]
then
PATH_CHECKPOINT=$5
fi
if [ $# == 4 ]
then
python train.py \
--is_distributed=0 \
--ckpt_path=$SAVE_CKPT_PATH\
--eval_each_epoch=$EVAL_EACH_EPOCH\
--data_dir=$DATA_DIR > train_log.txt 2>&1 &
echo " python train.py \
--is_distributed=0 \
--ckpt_path=$SAVE_CKPT_PATH\
--eval_each_epoch=$EVAL_EACH_EPOCH\
--data_dir=$DATA_DIR > train_log.txt 2>&1 &"
fi
if [ $# == 5 ]
then
python train.py \
--is_distributed=0 \
--ckpt_path=$SAVE_CKPT_PATH\
--pretrained=$PATH_CHECKPOINT \
--data_dir=$DATA_DIR\
--eval_each_epoch=$EVAL_EACH_EPOCH > train_log.txt 2>&1 &
fi

View File

@ -0,0 +1,43 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
from mindspore.train.callback import Callback
from mindspore.train.serialization import save_checkpoint
class SaveCallback(Callback):
"""
Evaluating on eval_dataset after each epoch.
And it will save the parameters if the accuracy is better.
"""
def __init__(self, model, eval_dataset, ckpt_path):
super(SaveCallback, self).__init__()
self.model = model
self.eval_dataset = eval_dataset
self.acc = 0.2
self.ckpt_path = ckpt_path
def step_end(self, run_context):
cb_params = run_context.original_args()
epoch_num = cb_params.cur_epoch_num
result = self.model.eval(self.eval_dataset)
print("epoch", epoch_num, " top_1_accuracy:", result['top_1_accuracy'])
if result['top_1_accuracy'] > self.acc:
self.acc = result['top_1_accuracy']
file_name = "max.ckpt"
file_name = os.path.join(self.ckpt_path, file_name)
save_checkpoint(save_obj=cb_params.train_network, ckpt_file_name=file_name)
print("Save the maximum accuracy checkpoint,the accuracy is", self.acc)

View File

@ -0,0 +1,56 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py and eval.py
"""
from easydict import EasyDict as edict
# config for dpn,imagenet-1K
config = edict()
# model config
config.image_size = (224, 224) # inpute image size
config.num_classes = 1000 # dataset class number
config.backbone = 'dpn92' # backbone network
config.is_save_on_master = True
# parallel config
config.num_parallel_workers = 4 # number of workers to read the data
config.rank = 0 # local rank of distributed
config.group_size = 1 # group size of distributed
# training config
config.batch_size = 32 # batch_size
config.global_step = 0 # start step of learning rate
config.epoch_size = 180 # epoch_size
config.loss_scale_num = 1024 # loss scale
# optimizer config
config.momentum = 0.9 # momentum (SGD)
config.weight_decay = 1e-4 # weight_decay (SGD)
# learning rate config
config.lr_schedule = 'warmup' # learning rate schedule
config.lr_init = 0.01 # init learning rate
config.lr_max = 0.1 # max learning rate
config.factor = 0.1 # factor of lr to drop
config.epoch_number_to_drop = [5, 15] # learing rate will drop after these epochs
config.warmup_epochs = 5 # warmup epochs in learning rate schedule
# dataset config
config.dataset = "imagenet-1K" # dataset
config.label_smooth = False # label_smooth
config.label_smooth_factor = 0.0 # label_smooth_factor
# parameter save config
config.keep_checkpoint_max = 3 # only keep the last keep_checkpoint_max checkpoint

View File

@ -0,0 +1,43 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
define loss function for network.
"""
from mindspore.nn.loss.loss import _Loss
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore import Tensor
from mindspore.common import dtype as mstype
import mindspore.nn as nn
class CrossEntropy(_Loss):
"""
the redefined loss function with SoftmaxCrossEntropyWithLogits.
"""
def __init__(self, smooth_factor=0., num_classes=1000):
super(CrossEntropy, self).__init__()
self.onehot = P.OneHot()
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
self.ce = nn.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean(False)
def construct(self, logit, label):
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
loss = self.ce(logit, one_hot_label)
loss = self.mean(loss, 0)
return loss

View File

@ -0,0 +1,206 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from collections import OrderedDict
import mindspore.nn as nn
import mindspore.ops.operations as F
__all__ = ['DPN', 'dpn92', 'dpn98', 'dpn131', 'dpn107', 'dpns']
def dpn92(num_classes=1000):
return DPN(num_init_features=64, k_R=96, G=32, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128),
num_classes=num_classes)
def dpn98(num_classes=1000):
return DPN(num_init_features=96, k_R=160, G=40, k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128),
num_classes=num_classes)
def dpn131(num_classes=1000):
return DPN(num_init_features=128, k_R=160, G=40, k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128),
num_classes=num_classes)
def dpn107(num_classes=1000):
return DPN(num_init_features=128, k_R=200, G=50, k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128),
num_classes=num_classes)
dpns = {
'dpn92': dpn92,
'dpn98': dpn98,
'dpn107': dpn107,
'dpn131': dpn131,
}
class BottleBlock(nn.Cell):
def __init__(self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, G, key_stride):
super(BottleBlock, self).__init__()
self.G = G
self.bn1 = nn.BatchNorm2d(in_chs, eps=1e-3, momentum=0.9)
self.conv1 = nn.Conv2d(in_chs, num_1x1_a, 1, stride=1)
self.bn2 = nn.BatchNorm2d(num_1x1_a, eps=1e-3, momentum=0.9)
self.conv2 = nn.CellList()
for _ in range(G):
self.conv2.append(nn.Conv2d(num_1x1_a // G, num_3x3_b // G, 3, key_stride, pad_mode='pad', padding=1))
self.bn3 = nn.BatchNorm2d(num_3x3_b, eps=1e-3, momentum=0.9)
self.conv3_r = nn.Conv2d(num_3x3_b, num_1x1_c, 1, stride=1)
self.conv3_d = nn.Conv2d(num_3x3_b, inc, 1, stride=1)
self.relu = nn.ReLU()
self.concat = F.Concat(axis=1)
self.split = F.Split(axis=1, output_num=G)
def construct(self, x):
x = self.bn1(x)
x = self.relu(x)
x = self.conv1(x)
x = self.bn2(x)
x = self.relu(x)
group_x = ()
input_x = self.split(x)
for i in range(self.G):
group_x = group_x + (self.conv2[i](input_x[i]),)
x = self.concat(group_x)
x = self.bn3(x)
x = self.relu(x)
return (self.conv3_r(x), self.conv3_d(x))
class DualPathBlock(nn.Cell):
def __init__(self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, G, _type='normal', cat_input=True):
super(DualPathBlock, self).__init__()
self.num_1x1_c = num_1x1_c
if _type == 'proj':
key_stride = 1
self.has_proj = True
if _type == 'down':
key_stride = 2
self.has_proj = True
if _type == 'normal':
key_stride = 1
self.has_proj = False
self.cat_input = cat_input
if self.has_proj:
self.c1x1_w_bn = nn.BatchNorm2d(in_chs, eps=1e-3, momentum=0.9)
self.c1x1_w_relu = nn.ReLU()
self.c1x1_w_r = self.Conv1x1(in_chs=in_chs, out_chs=num_1x1_c, stride=key_stride)
self.c1x1_w_d = self.Conv1x1(in_chs=in_chs, out_chs=2 * inc, stride=key_stride)
self.layers = BottleBlock(in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, G, key_stride)
self.concat = F.Concat(axis=1)
self.add = F.TensorAdd()
def Conv1x1(self, in_chs, out_chs, stride):
return nn.Conv2d(in_chs, out_chs, kernel_size=1, stride=stride, pad_mode='pad', padding=0)
def construct(self, x):
if self.cat_input:
data_in = self.concat(x)
else:
data_in = x
if self.has_proj:
data_o = self.c1x1_w_bn(data_in)
data_o = self.c1x1_w_relu(data_o)
data_o1 = self.c1x1_w_r(data_o)
data_o2 = self.c1x1_w_d(data_o)
else:
data_o1 = x[0]
data_o2 = x[1]
out = self.layers(data_in)
summ = self.add(data_o1, out[0])
dense = self.concat((data_o2, out[1]))
return (summ, dense)
class DPN(nn.Cell):
def __init__(self, num_init_features=64, k_R=96, G=32,
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), num_classes=1000):
super(DPN, self).__init__()
blocks = OrderedDict()
# conv1
blocks['conv1'] = nn.SequentialCell(OrderedDict([
('conv', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, pad_mode='pad', padding=3)),
('norm', nn.BatchNorm2d(num_init_features, eps=1e-3, momentum=0.9)),
('relu', nn.ReLU()),
('maxpool', nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')),
]))
# conv2
bw = 256
inc = inc_sec[0]
R = int((k_R * bw) / 256)
blocks['conv2_1'] = DualPathBlock(num_init_features, R, R, bw, inc, G, 'proj', False)
in_chs = bw + 3 * inc
for i in range(2, k_sec[0] + 1):
blocks['conv2_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal')
in_chs += inc
# conv3
bw = 512
inc = inc_sec[1]
R = int((k_R * bw) / 256)
blocks['conv3_1'] = DualPathBlock(in_chs, R, R, bw, inc, G, 'down')
in_chs = bw + 3 * inc
for i in range(2, k_sec[1] + 1):
blocks['conv3_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal')
in_chs += inc
# conv4
bw = 1024
inc = inc_sec[2]
R = int((k_R * bw) / 256)
blocks['conv4_1'] = DualPathBlock(in_chs, R, R, bw, inc, G, 'down')
in_chs = bw + 3 * inc
for i in range(2, k_sec[2] + 1):
blocks['conv4_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal')
in_chs += inc
# conv5
bw = 2048
inc = inc_sec[3]
R = int((k_R * bw) / 256)
blocks['conv5_1'] = DualPathBlock(in_chs, R, R, bw, inc, G, 'down')
in_chs = bw + 3 * inc
for i in range(2, k_sec[3] + 1):
blocks['conv5_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal')
in_chs += inc
self.features = nn.SequentialCell(blocks)
self.concat = F.Concat(axis=1)
self.conv5_x = nn.SequentialCell(OrderedDict([
('norm', nn.BatchNorm2d(in_chs, eps=1e-3, momentum=0.9)),
('relu', nn.ReLU()),
]))
self.avgpool = F.ReduceMean(False)
self.classifier = nn.Dense(in_chs, num_classes)
def construct(self, x):
x = self.features(x)
x = self.concat(x)
x = self.conv5_x(x)
x = self.avgpool(x, (2, 3))
x = self.classifier(x)
return x

View File

@ -0,0 +1,127 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
dataset processing.
"""
from PIL import ImageFile
from mindspore.common import dtype as mstype
import mindspore.dataset as de
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as V_C
ImageFile.LOAD_TRUNCATED_IMAGES = True
def classification_dataset(data_dir, image_size, per_batch_size, max_epoch, rank, group_size,
mode='train',
num_parallel_workers=None,
shuffle=None,
sampler=None,
class_indexing=None,
transform=None,
target_transform=None):
"""
A function that returns a dataset for classification. The mode of input dataset could be "folder" or "txt".
If it is "folder", all images within one folder have the same label. If it is "txt", all paths of images
are written into a textfile.
Args:
data_dir (str): Path to the root directory that contains the dataset for "input_mode="folder"".
Or path of the textfile that contains every image's path of the dataset.
image_size (str): Size of the input images.
per_batch_size (int): the batch size of evey step during training.
max_epoch (int): the number of epochs.
rank (int): The shard ID within num_shards (default=None).
group_size (int): Number of shards that the dataset should be divided
into (default=None).
mode (str): "train" or others. Default: " train".
input_mode (str): The form of the input dataset. "folder" or "txt". Default: "folder".
root (str): the images path for "input_mode="txt"". Default: " ".
num_parallel_workers (int): Number of workers to read the data. Default: None.
shuffle (bool): Whether or not to perform shuffle on the dataset
(default=None, performs shuffle).
sampler (Sampler): Object used to choose samples from the dataset. Default: None.
class_indexing (dict): A str-to-int mapping from folder name to index
(default=None, the folder names will be sorted
alphabetically and each class will be given a
unique index starting from 0).
Examples:
>>> from mindvision.common.datasets.classification import classification_dataset
>>> # path to imagefolder directory. This directory needs to contain sub-directories which contain the images
>>> dataset_dir = "/path/to/imagefolder_directory"
>>> de_dataset = classification_dataset(train_data_dir, image_size=[224, 244],
>>> per_batch_size=64, max_epoch=100,
>>> rank=0, group_size=4)
>>> # Path of the textfile that contains every image's path of the dataset.
>>> dataset_dir = "/path/to/dataset/images/train.txt"
>>> images_dir = "/path/to/dataset/images"
>>> de_dataset = classification_dataset(train_data_dir, image_size=[224, 244],
>>> per_batch_size=64, max_epoch=100,
>>> rank=0, group_size=4,
>>> input_mode="txt", root=images_dir)
"""
if mode == 'eval':
drop_remainder = False
else:
drop_remainder = True
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [255 * 0.229, 255 * 0.224, 255 * 0.225]
if transform is None:
if mode == 'train':
transform_img = [
V_C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
V_C.RandomHorizontalFlip(prob=0.5),
V_C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4),
V_C.Normalize(mean=mean, std=std),
V_C.HWC2CHW()
]
else:
transform_img = [
V_C.Decode(),
V_C.Resize((256, 256)),
V_C.CenterCrop(image_size),
V_C.Normalize(mean=mean, std=std),
V_C.HWC2CHW()
]
else:
transform_img = transform
if target_transform is None:
transform_label = [C.TypeCast(mstype.int32)]
else:
transform_label = target_transform
if group_size == 1 or mode == 'eval':
de_dataset = de.ImageFolderDataset(data_dir, num_parallel_workers=num_parallel_workers,
shuffle=shuffle, sampler=sampler, class_indexing=class_indexing)
else:
de_dataset = de.ImageFolderDataset(data_dir, num_parallel_workers=num_parallel_workers,
shuffle=shuffle, sampler=sampler, class_indexing=class_indexing,
num_shards=group_size, shard_id=rank)
de_dataset = de_dataset.map(operations=transform_img, input_columns="image", num_parallel_workers=8)
de_dataset = de_dataset.map(operations=transform_label, input_columns="label", num_parallel_workers=8)
columns_to_project = ["image", "label"]
de_dataset = de_dataset.project(columns=columns_to_project)
de_dataset = de_dataset.batch(per_batch_size, drop_remainder=drop_remainder)
de_dataset = de_dataset.repeat(max_epoch)
return de_dataset

View File

@ -0,0 +1,92 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
def get_lr_drop(global_step,
total_epochs,
steps_per_epoch,
lr_init=0.316,
factor=0.1,
epoch_number_to_drop=(5, 15)
):
"""
Generate learning rate array.
Args:
global_step (int): Initial step of training.
total_epochs (int): Total epoch of training.
steps_per_epoch (float): Steps of one epoch.
lr_init (float): Initial learning rate. Default: 0.316.
epoch_number_to_drop:Learing rate will drop after these epochs.
factor:Factor of lr to drop.
Returns:
np.array, learning rate array.
"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
step_number_to_drop = [steps_per_epoch * x for x in epoch_number_to_drop]
for i in range(int(total_steps)):
if i in step_number_to_drop:
lr_init = lr_init * factor
lr_each_step.append(lr_init)
current_step = global_step
lr_each_step = np.array(lr_each_step).astype(np.float32)
learning_rate = lr_each_step[current_step:]
return learning_rate
def get_lr_warmup(global_step,
total_epochs,
steps_per_epoch,
lr_init=0.01,
lr_max=0.1,
warmup_epochs=5):
"""
Generate learning rate array.
Args:
global_step (int): Initial step of training.
total_epochs (int): Total epoch of training.
steps_per_epoch (float): Steps of one epoch.
lr_init (float): Initial learning rate. Default: 0.01.
lr_max (float): Maximum learning rate. Default: 0.1.
warmup_epochs (int): The number of warming up epochs. Default: 5.
Returns:
np.array, learning rate array.
"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
warmup_steps = steps_per_epoch * warmup_epochs
if warmup_steps != 0:
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
else:
inc_each_step = 0
for i in range(int(total_steps)):
if i < warmup_steps:
lr = float(lr_init) + inc_each_step * float(i)
else:
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
lr = float(lr_max) * base * base
if lr < 0.0:
lr = 0.0
lr_each_step.append(lr)
current_step = global_step
lr_each_step = np.array(lr_each_step).astype(np.float32)
learning_rate = lr_each_step[current_step:]
return learning_rate

View File

@ -0,0 +1,193 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""DPN model train with MindSpore"""
import os
import argparse
from mindspore import context
from mindspore import Tensor
from mindspore.nn import SGD
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.callback import LossMonitor, ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.communication.management import init, get_group_size, get_rank
from mindspore.common import set_seed
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.imagenet_dataset import classification_dataset
from src.dpn import dpns
from src.config import config
from src.lr_scheduler import get_lr_drop, get_lr_warmup
from src.crossentropy import CrossEntropy
from src.callbacks import SaveCallback
device_id = int(os.getenv('DEVICE_ID'))
set_seed(1)
def parse_args():
"""parameters"""
parser = argparse.ArgumentParser('dpn training')
# dataset related
parser.add_argument('--data_dir', type=str, default='', help='Imagenet data dir')
# network related
parser.add_argument('--pretrained', default='', type=str, help='ckpt path to load')
# distributed related
parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
parser.add_argument('--ckpt_path', type=str, default='', help='ckpt path to save')
parser.add_argument('--eval_each_epoch', type=int, default=0, help='ckpt path to save')
args, _ = parser.parse_known_args()
args.image_size = config.image_size
args.num_classes = config.num_classes
args.lr_init = config.lr_init
args.lr_max = config.lr_max
args.factor = config.factor
args.global_step = config.global_step
args.epoch_number_to_drop = config.epoch_number_to_drop
args.epoch_size = config.epoch_size
args.warmup_epochs = config.warmup_epochs
args.weight_decay = config.weight_decay
args.momentum = config.momentum
args.batch_size = config.batch_size
args.num_parallel_workers = config.num_parallel_workers
args.backbone = config.backbone
args.loss_scale_num = config.loss_scale_num
args.is_save_on_master = config.is_save_on_master
args.rank = config.rank
args.group_size = config.group_size
args.dataset = config.dataset
args.label_smooth = config.label_smooth
args.label_smooth_factor = config.label_smooth_factor
args.keep_checkpoint_max = config.keep_checkpoint_max
args.lr_schedule = config.lr_schedule
return args
def dpn_train(args):
# init context
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend", save_graphs=False, device_id=device_id)
# init distributed
if args.is_distributed:
init()
args.rank = get_rank()
args.group_size = get_group_size()
context.set_auto_parallel_context(device_num=args.group_size, parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
# select for master rank save ckpt or all rank save, compatiable for model parallel
args.rank_save_ckpt_flag = 0
if args.is_save_on_master:
if args.rank == 0:
args.rank_save_ckpt_flag = 1
else:
args.rank_save_ckpt_flag = 1
# create dataset
args.train_dir = os.path.join(args.data_dir, 'train')
args.eval_dir = os.path.join(args.data_dir, 'val')
train_dataset = classification_dataset(args.train_dir,
image_size=args.image_size,
per_batch_size=args.batch_size,
max_epoch=1,
num_parallel_workers=args.num_parallel_workers,
shuffle=True,
rank=args.rank,
group_size=args.group_size)
if args.eval_each_epoch:
print("create eval_dataset")
eval_dataset = classification_dataset(args.eval_dir,
image_size=args.image_size,
per_batch_size=args.batch_size,
max_epoch=1,
num_parallel_workers=args.num_parallel_workers,
shuffle=False,
rank=args.rank,
group_size=args.group_size,
mode='eval')
train_step_size = train_dataset.get_dataset_size()
# choose net
net = dpns[args.backbone](num_classes=args.num_classes)
# load checkpoint
if os.path.isfile(args.pretrained):
print("load ckpt")
load_param_into_net(net, load_checkpoint(args.pretrained))
# learing rate schedule
if args.lr_schedule == 'drop':
print("lr_schedule:drop")
lr = Tensor(get_lr_drop(global_step=args.global_step,
total_epochs=args.epoch_size,
steps_per_epoch=train_step_size,
lr_init=args.lr_init,
factor=args.factor))
elif args.lr_schedule == 'warmup':
print("lr_schedule:warmup")
lr = Tensor(get_lr_warmup(global_step=args.global_step,
total_epochs=args.epoch_size,
steps_per_epoch=train_step_size,
lr_init=args.lr_init,
lr_max=args.lr_max,
warmup_epochs=args.warmup_epochs))
# optimizer
opt = SGD(net.trainable_params(),
lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
loss_scale=args.loss_scale_num)
# loss scale
loss_scale = FixedLossScaleManager(args.loss_scale_num, False)
# loss function
if args.dataset == "imagenet-1K":
print("Use SoftmaxCrossEntropyWithLogits")
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
else:
if not args.label_smooth:
args.label_smooth_factor = 0.0
print("Use Label_smooth CrossEntropy")
loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
# create model
model = Model(net, amp_level="O2",
keep_batchnorm_fp32=False,
loss_fn=loss,
optimizer=opt,
loss_scale_manager=loss_scale,
metrics={'top_1_accuracy', 'top_5_accuracy'})
# loss/time monitor & ckpt save callback
loss_cb = LossMonitor()
time_cb = TimeMonitor(data_size=train_step_size)
cb = [loss_cb, time_cb]
if args.rank_save_ckpt_flag:
if args.eval_each_epoch:
save_cb = SaveCallback(model, eval_dataset, args.ckpt_path)
cb += [save_cb]
else:
config_ck = CheckpointConfig(save_checkpoint_steps=train_step_size,
keep_checkpoint_max=args.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="dpn", directory=args.ckpt_path, config=config_ck)
cb.append(ckpoint_cb)
# train model
model.train(args.epoch_size, train_dataset, callbacks=cb)
if __name__ == '__main__':
dpn_train(parse_args())
print('DPN training success!')