forked from mindspore-Ecosystem/mindspore
!16228 se-resnet50 & resnext50 310 infer
From: @zhangxiaoxiao16 Reviewed-by: @c_34,@wuxuejian Signed-off-by: @c_34
This commit is contained in:
commit
d32f041248
|
@ -521,9 +521,10 @@ Current batch_Size can only be set to 1. The precision calculation process needs
|
|||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
bash run_infer_310.sh [MINDIR_PATH] [NET_TYPE] [DATA_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `NET_TYPE` can choose from [resnet18, se-resnet50].
|
||||
- `DEVICE_ID` is optional, default value is 0.
|
||||
|
||||
### result
|
||||
|
|
|
@ -487,9 +487,10 @@ python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [
|
|||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
bash run_infer_310.sh [MINDIR_PATH] [NET_TYPE] [DATA_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `NET_TYPE` 选择范围:[resnet18, se-resnet50]。
|
||||
- `DEVICE_ID` 可选,默认值为0。
|
||||
|
||||
### 结果
|
||||
|
|
|
@ -53,6 +53,7 @@ using mindspore::dataset::Execute;
|
|||
|
||||
DEFINE_string(mindir_path, "", "mindir path");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_string(network, "resnet18", "networktype");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
|
@ -83,19 +84,26 @@ int main(int argc, char **argv) {
|
|||
|
||||
std::map<double, double> costTime_map;
|
||||
size_t size = all_files.size();
|
||||
// Define transform
|
||||
std::vector<int32_t> crop_paras = {224};
|
||||
std::vector<int32_t> resize_paras = {256};
|
||||
std::vector<float> mean = {0.485 * 255, 0.456 * 255, 0.406 * 255};
|
||||
std::vector<float> std = {0.229 * 255, 0.224 * 255, 0.225 * 255};
|
||||
|
||||
std::shared_ptr<TensorTransform> decode(new Decode());
|
||||
std::shared_ptr<TensorTransform> resize(new Resize(resize_paras));
|
||||
std::shared_ptr<TensorTransform> centercrop(new CenterCrop(crop_paras));
|
||||
std::shared_ptr<TensorTransform> normalize(new Normalize(mean, std));
|
||||
std::shared_ptr<TensorTransform> resize(new Resize({256}));
|
||||
std::shared_ptr<TensorTransform> centercrop(new CenterCrop({224}));
|
||||
std::shared_ptr<TensorTransform> normalize(new Normalize({123.675, 116.28, 103.53},
|
||||
{58.395, 57.12, 57.375}));
|
||||
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
|
||||
|
||||
std::vector<std::shared_ptr<TensorTransform>> trans_list = {decode, resize, centercrop, normalize, hwc2chw};
|
||||
std::shared_ptr<TensorTransform> sr_resize(new Resize({292}));
|
||||
std::shared_ptr<TensorTransform> sr_centercrop(new CenterCrop({256}));
|
||||
std::shared_ptr<TensorTransform> sr_normalize(new Normalize({123.68, 116.78, 103.94},
|
||||
{1.0, 1.0, 1.0}));
|
||||
|
||||
std::vector<std::shared_ptr<TensorTransform>> trans_list;
|
||||
|
||||
if (FLAGS_network == "se-resnet50") {
|
||||
trans_list = {decode, sr_resize, sr_centercrop, sr_normalize, hwc2chw};
|
||||
} else {
|
||||
trans_list = {decode, resize, centercrop, normalize, hwc2chw};
|
||||
}
|
||||
mindspore::dataset::Execute SingleOp(trans_list);
|
||||
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
|
|
|
@ -14,8 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
if [[ $# -lt 3 || $# -gt 4 ]]; then
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [NET_TYPE] [DATA_PATH] [DEVICE_ID]
|
||||
NET_TYPE can choose from [resnet18, se-resnet50]
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
@ -28,15 +29,23 @@ get_real_path(){
|
|||
fi
|
||||
}
|
||||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
if [ $2 == 'resnet18' ] || [ $2 == 'se-resnet50' ]; then
|
||||
network=$2
|
||||
else
|
||||
echo "NET_TYPE can choose from [resnet18, se-resnet50]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
data_path=$(get_real_path $3)
|
||||
|
||||
device_id=0
|
||||
if [ $# == 3 ]; then
|
||||
device_id=$3
|
||||
if [ $# == 4 ]; then
|
||||
device_id=$4
|
||||
fi
|
||||
|
||||
echo "mindir name: "$model
|
||||
echo "dataset path: "$data_path
|
||||
echo "network: "$network
|
||||
echo "device id: "$device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
|
@ -59,7 +68,7 @@ function compile_app()
|
|||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
sh build.sh &> build.log
|
||||
bash build.sh &> build.log
|
||||
}
|
||||
|
||||
function infer()
|
||||
|
@ -73,7 +82,7 @@ function infer()
|
|||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
|
||||
../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --network=$network --device_id=$device_id &> infer.log
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
- [Training Process](#training-process)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Model Export](#model-export)
|
||||
- [Inference Process](#inference-process)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#evaluation-performance)
|
||||
|
@ -212,7 +213,29 @@ acc=93.88%(TOP5)
|
|||
python export.py --device_target [PLATFORM] --ckpt_file [CKPT_PATH] --file_format [EXPORT_FORMAT]
|
||||
```
|
||||
|
||||
`EXPORT_FORMAT` should be in ["AIR", "ONNX", "MINDIR"]
|
||||
The `ckpt_file` parameter is required.
|
||||
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"].
|
||||
|
||||
## [Inference Process](#contents)
|
||||
|
||||
### Usage
|
||||
|
||||
Before performing inference, the mindir file must be exported by export.py. Currently, only batchsize 1 is supported.
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
`DEVICE_ID` is optional, default value is 0.
|
||||
|
||||
### result
|
||||
|
||||
Inference result is saved in current path, you can find result in acc.log file.
|
||||
|
||||
```log
|
||||
Total data:50000, top1 accuracy:0.78462, top5 accuracy:0.94182
|
||||
```
|
||||
|
||||
# [Model description](#contents)
|
||||
|
||||
|
|
|
@ -18,6 +18,9 @@
|
|||
- [样例](#样例-1)
|
||||
- [结果](#结果)
|
||||
- [模型导出](#模型导出)
|
||||
- [推理过程](#推理过程)
|
||||
- [用法](#用法-2)
|
||||
- [结果](#结果-2)
|
||||
- [模型描述](#模型描述)
|
||||
- [性能](#性能)
|
||||
- [训练性能](#训练性能)
|
||||
|
@ -216,7 +219,30 @@ acc=93.88%(TOP5)
|
|||
python export.py --device_target [PLATFORM] --ckpt_file [CKPT_PATH] --file_format [EXPORT_FORMAT]
|
||||
```
|
||||
|
||||
`EXPORT_FORMAT` 可选 ["AIR", "ONNX", "MINDIR"].
|
||||
`ckpt_file` 参数为必填项。
|
||||
`EXPORT_FORMAT` 可选 ["AIR", "MINDIR"]。
|
||||
|
||||
## [推理过程](#contents)
|
||||
|
||||
### 用法
|
||||
|
||||
在执行推理之前,需要通过export.py导出mindir文件。
|
||||
目前仅可处理batch_Size为1。
|
||||
|
||||
```shell
|
||||
#Ascend310 推理
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
`DEVICE_ID` 可选,默认值为 0。
|
||||
|
||||
### 结果
|
||||
|
||||
推理结果保存在当前路径,可在acc.log中看到最终精度结果。
|
||||
|
||||
```log
|
||||
Total data:50000, top1 accuracy:0.78462, top5 accuracy:0.94182
|
||||
```
|
||||
|
||||
# 模型描述
|
||||
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <dirent.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "include/api/types.h"
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||
DIR *OpenDir(std::string_view dirName);
|
||||
std::string RealPath(std::string_view path);
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||
std::vector<std::string> GetAllFiles(std::string dir_name);
|
||||
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,14 @@
|
|||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(MindSporeCxxTestcase[CXX])
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT}/../)
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main main.cc utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,18 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
|
@ -0,0 +1,145 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <sys/time.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <dirent.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/context.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/api/serialization.h"
|
||||
#include "include/dataset/vision_ascend.h"
|
||||
#include "include/dataset/execute.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
#include "include/dataset/vision.h"
|
||||
#include "inc/utils.h"
|
||||
|
||||
using mindspore::dataset::vision::Decode;
|
||||
using mindspore::dataset::vision::Resize;
|
||||
using mindspore::dataset::vision::CenterCrop;
|
||||
using mindspore::dataset::vision::Normalize;
|
||||
using mindspore::dataset::vision::HWC2CHW;
|
||||
using mindspore::dataset::TensorTransform;
|
||||
using mindspore::Context;
|
||||
using mindspore::Serialization;
|
||||
using mindspore::Model;
|
||||
using mindspore::Status;
|
||||
using mindspore::ModelType;
|
||||
using mindspore::GraphCell;
|
||||
using mindspore::kSuccess;
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::dataset::Execute;
|
||||
|
||||
|
||||
DEFINE_string(mindir_path, "", "mindir path");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (RealPath(FLAGS_mindir_path).empty()) {
|
||||
std::cout << "Invalid mindir" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto context = std::make_shared<Context>();
|
||||
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||
ascend310->SetDeviceID(FLAGS_device_id);
|
||||
context->MutableDeviceInfo().push_back(ascend310);
|
||||
mindspore::Graph graph;
|
||||
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
|
||||
Model model;
|
||||
Status ret = model.Build(GraphCell(graph), context);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "ERROR: Build failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto all_files = GetAllInputData(FLAGS_dataset_path);
|
||||
if (all_files.empty()) {
|
||||
std::cout << "ERROR: no input data." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::map<double, double> costTime_map;
|
||||
size_t size = all_files.size();
|
||||
|
||||
std::shared_ptr<TensorTransform> decode(new Decode());
|
||||
std::shared_ptr<TensorTransform> resize(new Resize({256}));
|
||||
std::shared_ptr<TensorTransform> centercrop(new CenterCrop({224}));
|
||||
std::shared_ptr<TensorTransform> normalize(new Normalize({123.675, 116.28, 103.53},
|
||||
{58.395, 57.12, 57.375}));
|
||||
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
|
||||
|
||||
std::vector<std::shared_ptr<TensorTransform>> trans_list;
|
||||
trans_list = {decode, resize, centercrop, normalize, hwc2chw};
|
||||
|
||||
mindspore::dataset::Execute SingleOp(trans_list);
|
||||
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
for (size_t j = 0; j < all_files[i].size(); ++j) {
|
||||
struct timeval start = {0};
|
||||
struct timeval end = {0};
|
||||
double startTimeMs;
|
||||
double endTimeMs;
|
||||
std::vector<MSTensor> inputs;
|
||||
std::vector<MSTensor> outputs;
|
||||
std::cout << "Start predict input files:" << all_files[i][j] <<std::endl;
|
||||
auto imgDvpp = std::make_shared<MSTensor>();
|
||||
SingleOp(ReadFileToTensor(all_files[i][j]), imgDvpp.get());
|
||||
|
||||
inputs.emplace_back(imgDvpp->Name(), imgDvpp->DataType(), imgDvpp->Shape(),
|
||||
imgDvpp->Data().get(), imgDvpp->DataSize());
|
||||
gettimeofday(&start, nullptr);
|
||||
ret = model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, nullptr);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "Predict " << all_files[i][j] << " failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||
WriteResult(all_files[i][j], outputs);
|
||||
}
|
||||
}
|
||||
double average = 0.0;
|
||||
int inferCount = 0;
|
||||
|
||||
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||
double diff = 0.0;
|
||||
diff = iter->second - iter->first;
|
||||
average += diff;
|
||||
inferCount++;
|
||||
}
|
||||
average = average / inferCount;
|
||||
std::stringstream timeCost;
|
||||
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
|
||||
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
|
||||
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
|
||||
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
|
||||
fileStream << timeCost.str();
|
||||
fileStream.close();
|
||||
costTime_map.clear();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,185 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include "inc/utils.h"
|
||||
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
|
||||
|
||||
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name) {
|
||||
std::vector<std::vector<std::string>> ret;
|
||||
|
||||
DIR *dir = OpenDir(dir_name);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
struct dirent *filename;
|
||||
/* read all the files in the dir ~ */
|
||||
std::vector<std::string> sub_dirs;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string d_name = std::string(filename->d_name);
|
||||
// get rid of "." and ".."
|
||||
if (d_name == "." || d_name == ".." || d_name.empty()) {
|
||||
continue;
|
||||
}
|
||||
std::string dir_path = RealPath(std::string(dir_name) + "/" + filename->d_name);
|
||||
struct stat s;
|
||||
lstat(dir_path.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
sub_dirs.emplace_back(dir_path);
|
||||
}
|
||||
std::sort(sub_dirs.begin(), sub_dirs.end());
|
||||
|
||||
(void)std::transform(sub_dirs.begin(), sub_dirs.end(), std::back_inserter(ret),
|
||||
[](const std::string &d) { return GetAllFiles(d); });
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string dir_name) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dir_name);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
|
||||
std::vector<std::string> res;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string d_name = std::string(filename->d_name);
|
||||
if (d_name == "." || d_name == ".." || d_name.size() <= 3) {
|
||||
continue;
|
||||
}
|
||||
res.emplace_back(std::string(dir_name) + "/" + filename->d_name);
|
||||
}
|
||||
std::sort(res.begin(), res.end());
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dirName);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
std::vector<std::string> res;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||
continue;
|
||||
}
|
||||
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
}
|
||||
std::sort(res.begin(), res.end());
|
||||
for (auto &f : res) {
|
||||
std::cout << "image file: " << f << std::endl;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||
std::string homePath = "./result_Files";
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t outputSize;
|
||||
std::shared_ptr<const void> netOutput;
|
||||
netOutput = outputs[i].Data();
|
||||
outputSize = outputs[i].DataSize();
|
||||
int pos = imageFile.rfind('/');
|
||||
std::string fileName(imageFile, pos + 1);
|
||||
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||
std::string outFileName = homePath + "/" + fileName;
|
||||
FILE *outputFile = fopen(outFileName.c_str(), "wb");
|
||||
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||
fclose(outputFile);
|
||||
outputFile = nullptr;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||
if (file.empty()) {
|
||||
std::cout << "Pointer file is nullptr" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
std::ifstream ifs(file);
|
||||
if (!ifs.good()) {
|
||||
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
if (!ifs.is_open()) {
|
||||
std::cout << "File: " << file << "open failed" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||
ifs.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
|
||||
DIR *OpenDir(std::string_view dirName) {
|
||||
if (dirName.empty()) {
|
||||
std::cout << " dirName is null ! " << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::string realPath = RealPath(dirName);
|
||||
struct stat s;
|
||||
lstat(realPath.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
DIR *dir;
|
||||
dir = opendir(realPath.c_str());
|
||||
if (dir == nullptr) {
|
||||
std::cout << "Can not open dir " << dirName << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||
return dir;
|
||||
}
|
||||
|
||||
std::string RealPath(std::string_view path) {
|
||||
char realPathMem[PATH_MAX] = {0};
|
||||
char *realPathRet = nullptr;
|
||||
realPathRet = realpath(path.data(), realPathMem);
|
||||
if (realPathRet == nullptr) {
|
||||
std::cout << "File: " << path << " is not exist.";
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string realPath(realPathMem);
|
||||
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||
return realPath;
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""create_imagenet2012_label"""
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="resnet imagenet2012 label")
|
||||
parser.add_argument("--img_path", type=str, required=True, help="imagenet2012 file path.")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def create_label(file_path):
|
||||
print("[WARNING] Create imagenet label. Currently only use for Imagenet2012!")
|
||||
dirs = os.listdir(file_path)
|
||||
file_list = []
|
||||
for file in dirs:
|
||||
file_list.append(file)
|
||||
file_list = sorted(file_list)
|
||||
|
||||
total = 0
|
||||
img_label = {}
|
||||
for i, file_dir in enumerate(file_list):
|
||||
files = os.listdir(os.path.join(file_path, file_dir))
|
||||
for f in files:
|
||||
img_label[f] = i
|
||||
total += len(files)
|
||||
|
||||
with open("imagenet_label.json", "w+") as label:
|
||||
json.dump(img_label, label)
|
||||
|
||||
print("[INFO] Completed! Total {} data.".format(total))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
create_label(args.img_path)
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -17,6 +17,7 @@ resnext export mindir.
|
|||
"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
|
||||
from src.config import config
|
||||
from src.image_classification import get_network
|
||||
|
@ -38,10 +39,15 @@ if args.device_target == "Ascend":
|
|||
context.set_context(device_id=args.device_id)
|
||||
|
||||
if __name__ == '__main__':
|
||||
net = get_network(num_classes=config.num_classes, platform=args.device_target)
|
||||
network = get_network(num_classes=config.num_classes, platform=args.device_target)
|
||||
|
||||
param_dict = load_checkpoint(args.ckpt_file)
|
||||
load_param_into_net(net, param_dict)
|
||||
load_param_into_net(network, param_dict)
|
||||
if args.device_target == "Ascend":
|
||||
network.to_float(mstype.float16)
|
||||
else:
|
||||
auto_mixed_precision(network)
|
||||
network.set_train(False)
|
||||
input_shp = [args.batch_size, 3, args.height, args.width]
|
||||
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
|
||||
export(net, input_array, file_name=args.file_name, file_format=args.file_format)
|
||||
export(network, input_array, file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
|
@ -0,0 +1,51 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""post process for 310 inference"""
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
import numpy as np
|
||||
from src.config import config
|
||||
|
||||
batch_size = 1
|
||||
parser = argparse.ArgumentParser(description="resnet inference")
|
||||
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
|
||||
parser.add_argument("--label_path", type=str, required=True, help="image file path.")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def get_result(result_path, label_path):
|
||||
files = os.listdir(result_path)
|
||||
with open(label_path, "r") as label:
|
||||
labels = json.load(label)
|
||||
|
||||
top1 = 0
|
||||
top5 = 0
|
||||
total_data = len(files)
|
||||
for file in files:
|
||||
img_ids_name = file.split('_0.')[0]
|
||||
data_path = os.path.join(result_path, img_ids_name + "_0.bin")
|
||||
result = np.fromfile(data_path, dtype=np.float16).reshape(batch_size, config.num_classes)
|
||||
for batch in range(batch_size):
|
||||
predict = np.argsort(-result[batch], axis=-1)
|
||||
if labels[img_ids_name+".JPEG"] == predict[0]:
|
||||
top1 += 1
|
||||
if labels[img_ids_name+".JPEG"] in predict[:5]:
|
||||
top5 += 1
|
||||
print(f"Total data: {total_data}, top1 accuracy: {top1/total_data}, top5 accuracy: {top5/total_data}.")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
get_result(args.result_path, args.label_path)
|
|
@ -0,0 +1,99 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
|
||||
device_id=0
|
||||
if [ $# == 3 ]; then
|
||||
device_id=$3
|
||||
fi
|
||||
|
||||
echo "mindir name: "$model
|
||||
echo "dataset path: "$data_path
|
||||
echo "device id: "$device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||
else
|
||||
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||
fi
|
||||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer/src/ || exit
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
bash build.sh &> build.log
|
||||
}
|
||||
|
||||
function infer()
|
||||
{
|
||||
cd - || exit
|
||||
if [ -d result_Files ]; then
|
||||
rm -rf ./result_Files
|
||||
fi
|
||||
if [ -d time_Result ]; then
|
||||
rm -rf ./time_Result
|
||||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
{
|
||||
python3.7 ../create_imagenet2012_label.py --img_path=$data_path
|
||||
python3.7 ../postprocess.py --result_path=./result_Files --label_path=./imagenet_label.json &> acc.log &
|
||||
}
|
||||
|
||||
compile_app
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "compile app code failed"
|
||||
exit 1
|
||||
fi
|
||||
infer
|
||||
if [ $? -ne 0 ]; then
|
||||
echo " execute inference failed"
|
||||
exit 1
|
||||
fi
|
||||
cal_acc
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "calculate accuracy failed"
|
||||
exit 1
|
||||
fi
|
Loading…
Reference in New Issue