diff --git a/model_zoo/official/cv/FCN8s/README.md b/model_zoo/official/cv/FCN8s/README.md index e0dc23af100..46545f407e1 100644 --- a/model_zoo/official/cv/FCN8s/README.md +++ b/model_zoo/official/cv/FCN8s/README.md @@ -41,7 +41,7 @@ Dataset used: # [环境要求](#contents) - 硬件(Ascend/GPU) - - 需要准备具有Ascend或GPU处理能力的硬件环境. 如需使用Ascend,可以发送 [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) 到ascend@huawei.com。一旦批准,你就可以使用此资源 + - 需要准备具有Ascend或GPU处理能力的硬件环境. - 框架 - [MindSpore](https://www.mindspore.cn/install/en) - 如需获取更多信息,请查看如下链接: diff --git a/model_zoo/official/cv/centerface/README.md b/model_zoo/official/cv/centerface/README.md index 119d37f04d9..a0140e89c94 100644 --- a/model_zoo/official/cv/centerface/README.md +++ b/model_zoo/official/cv/centerface/README.md @@ -82,7 +82,7 @@ other datasets need to use the same format as WiderFace. # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: @@ -229,53 +229,53 @@ sh eval_all.sh 1. train scripts parameters -the command is: python train.py [train parameters] -Major parameters train.py as follows: + the command is: python train.py [train parameters] + Major parameters train.py as follows: -```text ---lr: learning rate ---per_batch_size: batch size on each device ---is_distributed: multi-device or not ---t_max: for cosine lr_scheduler ---max_epoch: training epochs ---warmup_epochs: warmup_epochs, not needed for adam, needed for sgd ---lr scheduler: learning rate scheduler, default is multistep ---lr_epochs: decrease lr steps ---lr_gamma: decrease lr by a factor ---weight_decay: weight decay ---loss_scale: mix precision training ---pretrained_backbone: pretrained mobilenet_v2 model path ---data_dir: data dir ---annot_path: annotations path ---img_dir: img dir in data_dir -``` + ```text + --lr: learning rate + --per_batch_size: batch size on each device + --is_distributed: multi-device or not + --t_max: for cosine lr_scheduler + --max_epoch: training epochs + --warmup_epochs: warmup_epochs, not needed for adam, needed for sgd + --lr scheduler: learning rate scheduler, default is multistep + --lr_epochs: decrease lr steps + --lr_gamma: decrease lr by a factor + --weight_decay: weight decay + --loss_scale: mix precision training + --pretrained_backbone: pretrained mobilenet_v2 model path + --data_dir: data dir + --annot_path: annotations path + --img_dir: img dir in data_dir + ``` 2. centerface unique configs: in config.py; not recommend user to change 3. test scripts parameters: -the command is: python test.py [test parameters] -Major parameters test.py as follows: + the command is: python test.py [test parameters] + Major parameters test.py as follows: -```python -test_script_path: test.py path; ---is_distributed: multi-device or not ---data_dir: img dir ---test_model: test model dir ---ground_truth_mat: ground_truth file, mat type ---save_dir: save_path for evaluate ---rank: use device id ---ckpt_name: test model name -# blow are used for calculate ckpt/model name -# model/ckpt name is "0-" + str(ckpt_num) + "_" + str(steps_per_epoch*ckpt_num) + ".ckpt"; -# ckpt_num is epoch number, can be calculated by device_num -# detail can be found in "test.py" -# if ckpt is specified not need below 4 parameter ---device_num: training device number ---steps_per_epoch: steps for each epoch ---start: start loop number, used to calculate first epoch number ---end: end loop number, used to calculate last epoch number -``` + ```python + test_script_path: test.py path; + --is_distributed: multi-device or not + --data_dir: img dir + --test_model: test model dir + --ground_truth_mat: ground_truth file, mat type + --save_dir: save_path for evaluate + --rank: use device id + --ckpt_name: test model name + # blow are used for calculate ckpt/model name + # model/ckpt name is "0-" + str(ckpt_num) + "_" + str(steps_per_epoch*ckpt_num) + ".ckpt"; + # ckpt_num is epoch number, can be calculated by device_num + # detail can be found in "test.py" + # if ckpt is specified not need below 4 parameter + --device_num: training device number + --steps_per_epoch: steps for each epoch + --start: start loop number, used to calculate first epoch number + --end: end loop number, used to calculate last epoch number + ``` 4. eval scripts parameters: @@ -384,18 +384,18 @@ mkdir [SAVE_PATH] 1. test a single ckpt file -```python -# you need to change the parameter in test.sh -# or use symbolic link as quick start -# or use the command as follow: -# MODEL_PATH: ckpt path saved during training -# DATASET: img dir -# GROUND_TRUTH_MAT: ground_truth file, mat type -# SAVE_PATH: save_path for evaluate -# DEVICE_ID: use device id -# CKPT: test model name -sh test.sh [MODEL_PATH] [DATASET] [GROUND_TRUTH_MAT] [SAVE_PATH] [DEVICE_ID] [CKPT] -``` + ```python + # you need to change the parameter in test.sh + # or use symbolic link as quick start + # or use the command as follow: + # MODEL_PATH: ckpt path saved during training + # DATASET: img dir + # GROUND_TRUTH_MAT: ground_truth file, mat type + # SAVE_PATH: save_path for evaluate + # DEVICE_ID: use device id + # CKPT: test model name + sh test.sh [MODEL_PATH] [DATASET] [GROUND_TRUTH_MAT] [SAVE_PATH] [DEVICE_ID] [CKPT] + ``` 2. test many out ckpt for user to choose the best one @@ -433,19 +433,19 @@ cd ../../../scripts; 1. eval a single testing output -```python -# you need to change the parameter in eval.sh -# default eval the ckpt saved in ./scripts/output/centerface/999 -sh eval.sh -``` + ```python + # you need to change the parameter in eval.sh + # default eval the ckpt saved in ./scripts/output/centerface/999 + sh eval.sh + ``` 2. eval many testing output for user to choose the best one -```python -# you need to change the parameter in eval_all.sh -# default eval the ckpt saved in ./scripts/output/centerface/[89-140] -sh eval_all.sh -``` + ```python + # you need to change the parameter in eval_all.sh + # default eval the ckpt saved in ./scripts/output/centerface/[89-140] + sh eval_all.sh + ``` 3. test+eval diff --git a/model_zoo/official/cv/cnnctc/README.md b/model_zoo/official/cv/cnnctc/README.md index 535e5f3c10c..aa287823310 100644 --- a/model_zoo/official/cv/cnnctc/README.md +++ b/model_zoo/official/cv/cnnctc/README.md @@ -96,7 +96,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) diff --git a/model_zoo/official/cv/crnn/README.md b/model_zoo/official/cv/crnn/README.md index 3b3247ecd7d..e110c022faf 100644 --- a/model_zoo/official/cv/crnn/README.md +++ b/model_zoo/official/cv/crnn/README.md @@ -58,7 +58,7 @@ We provide `convert_ic03.py`, `convert_iiit5k.py`, `convert_svt.py` as exmples f ## [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. You will be able to have access to related resources once approved. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/crnn_seq2seq_ocr/README.md b/model_zoo/official/cv/crnn_seq2seq_ocr/README.md index 668d20bf875..00a9f0e6caa 100755 --- a/model_zoo/official/cv/crnn_seq2seq_ocr/README.md +++ b/model_zoo/official/cv/crnn_seq2seq_ocr/README.md @@ -38,7 +38,7 @@ For training and evaluation, we use the French Street Name Signs (FSNS) released ## [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. You will be able to have access to related resources once approved. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/ctpn/README.md b/model_zoo/official/cv/ctpn/README.md index 1c0a8de70b7..69bc893fb69 100644 --- a/model_zoo/official/cv/ctpn/README.md +++ b/model_zoo/official/cv/ctpn/README.md @@ -1,9 +1,9 @@ -![](https://www.mindspore.cn/static/img/logo_black.6a5c850d.png) - - +![logo](https://www.mindspore.cn/static/img/logo_black.6a5c850d.png) # CTPN for Ascend + + - [CTPN Description](#CTPN-description) - [Model Architecture](#model-architecture) - [Dataset](#dataset) @@ -57,7 +57,7 @@ Here we used 6 datasets for training, and 1 datasets for Evaluation. # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/deeplabv3/README.md b/model_zoo/official/cv/deeplabv3/README.md index 41b53bba1e4..cc0c5452f4e 100644 --- a/model_zoo/official/cv/deeplabv3/README.md +++ b/model_zoo/official/cv/deeplabv3/README.md @@ -74,7 +74,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend) -- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. +- Prepare hardware environment with Ascend. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: @@ -83,7 +83,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil - Install python packages in requirements.txt - Generate config json file for 8pcs training - ``` + ```bash # From the root of this project cd src/tools/ python3 get_multicards_json.py 10.111.*.* @@ -108,47 +108,47 @@ For 8 devices training, training steps are as follows: 1. Train s16 with vocaug dataset, finetuning from resnet101 pretrained model, script is: -```shell -run_distribute_train_s16_r1.sh -``` + ```shell + run_distribute_train_s16_r1.sh + ``` 2. Train s8 with vocaug dataset, finetuning from model in previous step, training script is: -```shell -run_distribute_train_s8_r1.sh -``` + ```shell + run_distribute_train_s8_r1.sh + ``` 3. Train s8 with voctrain dataset, finetuning from model in previous step, training script is: -```shell -run_distribute_train_s8_r2.sh -``` + ```shell + run_distribute_train_s8_r2.sh + ``` For evaluation, evaluating steps are as follows: 1. Eval s16 with voc val dataset, eval script is: -```shell -run_eval_s16.sh -``` + ```shell + run_eval_s16.sh + ``` 2. Eval s8 with voc val dataset, eval script is: -```shell -run_eval_s8.sh -``` + ```shell + run_eval_s8.sh + ``` 3. Eval s8 multiscale with voc val dataset, eval script is: -```shell -run_eval_s8_multiscale.sh -``` + ```shell + run_eval_s8_multiscale.sh + ``` 4. Eval s8 multiscale and flip with voc val dataset, eval script is: -```shell -run_eval_s8_multiscale_flip.sh -``` + ```shell + run_eval_s8_multiscale_flip.sh + ``` # [Script Description](#contents) @@ -245,64 +245,64 @@ For 8 devices training, training steps are as follows: 1. Train s16 with vocaug dataset, finetuning from resnet101 pretrained model, script is as follows: -```shell -# run_distribute_train_s16_r1.sh -for((i=0;i<=$RANK_SIZE-1;i++)); -do - export RANK_ID=${i} - export DEVICE_ID=$((i + RANK_START_ID)) - echo 'start rank='${i}', device id='${DEVICE_ID}'...' - mkdir ${train_path}/device${DEVICE_ID} - cd ${train_path}/device${DEVICE_ID} || exit - python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \ - --data_file=/PATH/TO/MINDRECORD_NAME \ - --train_epochs=300 \ - --batch_size=32 \ - --crop_size=513 \ - --base_lr=0.08 \ - --lr_type=cos \ - --min_scale=0.5 \ - --max_scale=2.0 \ - --ignore_label=255 \ - --num_classes=21 \ - --model=deeplab_v3_s16 \ - --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL \ - --is_distributed \ - --save_steps=410 \ - --keep_checkpoint_max=200 >log 2>&1 & -done -``` + ```shell + # run_distribute_train_s16_r1.sh + for((i=0;i<=$RANK_SIZE-1;i++)); + do + export RANK_ID=${i} + export DEVICE_ID=$((i + RANK_START_ID)) + echo 'start rank='${i}', device id='${DEVICE_ID}'...' + mkdir ${train_path}/device${DEVICE_ID} + cd ${train_path}/device${DEVICE_ID} || exit + python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \ + --data_file=/PATH/TO/MINDRECORD_NAME \ + --train_epochs=300 \ + --batch_size=32 \ + --crop_size=513 \ + --base_lr=0.08 \ + --lr_type=cos \ + --min_scale=0.5 \ + --max_scale=2.0 \ + --ignore_label=255 \ + --num_classes=21 \ + --model=deeplab_v3_s16 \ + --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL \ + --is_distributed \ + --save_steps=410 \ + --keep_checkpoint_max=200 >log 2>&1 & + done + ``` 2. Train s8 with vocaug dataset, finetuning from model in previous step, training script is as follows: -```shell -# run_distribute_train_s8_r1.sh -for((i=0;i<=$RANK_SIZE-1;i++)); -do - export RANK_ID=${i} - export DEVICE_ID=$((i + RANK_START_ID)) - echo 'start rank='${i}', device id='${DEVICE_ID}'...' - mkdir ${train_path}/device${DEVICE_ID} - cd ${train_path}/device${DEVICE_ID} || exit - python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \ - --data_file=/PATH/TO/MINDRECORD_NAME \ - --train_epochs=800 \ - --batch_size=16 \ - --crop_size=513 \ - --base_lr=0.02 \ - --lr_type=cos \ - --min_scale=0.5 \ - --max_scale=2.0 \ - --ignore_label=255 \ - --num_classes=21 \ - --model=deeplab_v3_s8 \ - --loss_scale=2048 \ - --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL \ - --is_distributed \ - --save_steps=820 \ - --keep_checkpoint_max=200 >log 2>&1 & -done -``` + ```shell + # run_distribute_train_s8_r1.sh + for((i=0;i<=$RANK_SIZE-1;i++)); + do + export RANK_ID=${i} + export DEVICE_ID=$((i + RANK_START_ID)) + echo 'start rank='${i}', device id='${DEVICE_ID}'...' + mkdir ${train_path}/device${DEVICE_ID} + cd ${train_path}/device${DEVICE_ID} || exit + python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \ + --data_file=/PATH/TO/MINDRECORD_NAME \ + --train_epochs=800 \ + --batch_size=16 \ + --crop_size=513 \ + --base_lr=0.02 \ + --lr_type=cos \ + --min_scale=0.5 \ + --max_scale=2.0 \ + --ignore_label=255 \ + --num_classes=21 \ + --model=deeplab_v3_s8 \ + --loss_scale=2048 \ + --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL \ + --is_distributed \ + --save_steps=820 \ + --keep_checkpoint_max=200 >log 2>&1 & + done + ``` 3. Train s8 with voctrain dataset, finetuning from model in previous step, training script is as follows: @@ -566,4 +566,4 @@ In dataset.py, we set the seed inside "create_dataset" function. We also use ran # [ModelZoo Homepage](#contents) - Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). \ No newline at end of file +Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). diff --git a/model_zoo/official/cv/deeplabv3/README_CN.md b/model_zoo/official/cv/deeplabv3/README_CN.md index 97661945bd9..688124f2b9b 100644 --- a/model_zoo/official/cv/deeplabv3/README_CN.md +++ b/model_zoo/official/cv/deeplabv3/README_CN.md @@ -71,7 +71,7 @@ Pascal VOC数据集和语义边界数据集(Semantic Boundaries Dataset,SBD - 配置并运行build_data.sh,将数据集转换为MindRecords。scripts/build_data.sh中的参数: - ``` + ```bash --data_root 训练数据的根路径 --data_lst 训练数据列表(如上准备) --dst_path MindRecord所在路径 @@ -89,7 +89,7 @@ Pascal VOC数据集和语义边界数据集(Semantic Boundaries Dataset,SBD # 环境要求 - 硬件(Ascend) - - 准备Ascend处理器搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 准备Ascend处理器搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 如需查看详情,请参见如下资源: @@ -98,7 +98,7 @@ Pascal VOC数据集和语义边界数据集(Semantic Boundaries Dataset,SBD - 安装requirements.txt中的python包。 - 生成config json文件用于8卡训练。 - ``` + ```bash # 从项目根目录进入 cd src/tools/ python3 get_multicards_json.py 10.111.*.* @@ -123,47 +123,47 @@ run_standalone_train.sh 1. 使用VOCaug数据集训练s16,微调ResNet-101预训练模型。脚本如下: -```bash -run_distribute_train_s16_r1.sh -``` + ```bash + run_distribute_train_s16_r1.sh + ``` 2. 使用VOCaug数据集训练s8,微调上一步的模型。脚本如下: -```bash -run_distribute_train_s8_r1.sh -``` + ```bash + run_distribute_train_s8_r1.sh + ``` 3. 使用VOCtrain数据集训练s8,微调上一步的模型。脚本如下: -```bash -run_distribute_train_s8_r2.sh -``` + ```bash + run_distribute_train_s8_r2.sh + ``` 评估步骤如下: 1. 使用voc val数据集评估s16。评估脚本如下: -```bash -run_eval_s16.sh -``` + ```bash + run_eval_s16.sh + ``` 2. 使用voc val数据集评估s8。评估脚本如下: -```bash -run_eval_s8.sh -``` + ```bash + run_eval_s8.sh + ``` 3. 使用voc val数据集评估多尺度s8。评估脚本如下: -```bash -run_eval_s8_multiscale.sh -``` + ```bash + run_eval_s8_multiscale.sh + ``` 4. 使用voc val数据集评估多尺度和翻转s8。评估脚本如下: -```bash -run_eval_s8_multiscale_flip.sh -``` + ```bash + run_eval_s8_multiscale_flip.sh + ``` # 脚本说明 diff --git a/model_zoo/official/cv/deeptext/README.md b/model_zoo/official/cv/deeptext/README.md index bb6d20b6c5a..77fefad87d4 100644 --- a/model_zoo/official/cv/deeptext/README.md +++ b/model_zoo/official/cv/deeptext/README.md @@ -49,7 +49,7 @@ Here we used 4 datasets for training, and 1 datasets for Evaluation. # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/densenet/README.md b/model_zoo/official/cv/densenet/README.md index 90462eaed84..43b5b6fb385 100644 --- a/model_zoo/official/cv/densenet/README.md +++ b/model_zoo/official/cv/densenet/README.md @@ -78,7 +78,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/densenet/README_CN.md b/model_zoo/official/cv/densenet/README_CN.md index 07e00f4513c..11316c3136d 100644 --- a/model_zoo/official/cv/densenet/README_CN.md +++ b/model_zoo/official/cv/densenet/README_CN.md @@ -82,7 +82,7 @@ DenseNet-100使用的数据集: Cifar-10 # 环境要求 - 硬件(Ascend/GPU) -- 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 +- 准备Ascend或GPU处理器搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/dpn/README.md b/model_zoo/official/cv/dpn/README.md index 9a5358b357d..123a7381150 100644 --- a/model_zoo/official/cv/dpn/README.md +++ b/model_zoo/official/cv/dpn/README.md @@ -70,7 +70,7 @@ The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advan To run the python scripts in the repository, you need to prepare the environment as follow: - Hardware - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to [ascend@huawei.com](mailto:ascend@huawei.com). Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Python and dependencies - Python3.7 - Mindspore 1.1.0 diff --git a/model_zoo/official/cv/faster_rcnn/README.md b/model_zoo/official/cv/faster_rcnn/README.md index 78226698bcd..91276ea26fa 100644 --- a/model_zoo/official/cv/faster_rcnn/README.md +++ b/model_zoo/official/cv/faster_rcnn/README.md @@ -48,7 +48,7 @@ Dataset used: [COCO2017]() # Environment Requirements - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Docker base image - [Ascend Hub](ascend.huawei.com/ascendhub/#/home) diff --git a/model_zoo/official/cv/faster_rcnn/README_CN.md b/model_zoo/official/cv/faster_rcnn/README_CN.md index a9d01444b34..c9a859edcd1 100644 --- a/model_zoo/official/cv/faster_rcnn/README_CN.md +++ b/model_zoo/official/cv/faster_rcnn/README_CN.md @@ -49,7 +49,7 @@ Faster R-CNN是一个两阶段目标检测网络,该网络采用RPN,可以 # 环境要求 - 硬件(Ascend/GPU) - - 使用Ascend处理器来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 使用Ascend处理器来搭建硬件环境。 - 获取基础镜像 - [Ascend Hub](https://ascend.huawei.com/ascendhub/#/home) diff --git a/model_zoo/official/cv/googlenet/README.md b/model_zoo/official/cv/googlenet/README.md index b0a39d7defb..0c392063deb 100644 --- a/model_zoo/official/cv/googlenet/README.md +++ b/model_zoo/official/cv/googlenet/README.md @@ -68,7 +68,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/googlenet/README_CN.md b/model_zoo/official/cv/googlenet/README_CN.md index 03df3c1a8dd..fc114e74e20 100644 --- a/model_zoo/official/cv/googlenet/README_CN.md +++ b/model_zoo/official/cv/googlenet/README_CN.md @@ -75,7 +75,7 @@ GoogleNet由多个inception模块串联起来,可以更加深入。 降维的 # 环境要求 - 硬件(Ascend/GPU) - - 使用Ascend或GPU处理器来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 使用Ascend或GPU处理器来搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install/en) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/inceptionv3/README.md b/model_zoo/official/cv/inceptionv3/README.md index bfba3390aa0..49b8044b99b 100644 --- a/model_zoo/official/cv/inceptionv3/README.md +++ b/model_zoo/official/cv/inceptionv3/README.md @@ -59,7 +59,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend) -- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. +- Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/inceptionv3/README_CN.md b/model_zoo/official/cv/inceptionv3/README_CN.md index 7a295db95b8..ce35335e7b2 100644 --- a/model_zoo/official/cv/inceptionv3/README_CN.md +++ b/model_zoo/official/cv/inceptionv3/README_CN.md @@ -70,7 +70,7 @@ InceptionV3的总体网络架构如下: # 环境要求 - 硬件(Ascend) -- 使用Ascend来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 +- 使用Ascend来搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install/en) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/inceptionv4/README.md b/model_zoo/official/cv/inceptionv4/README.md index eac92df58d9..d19faf842dc 100644 --- a/model_zoo/official/cv/inceptionv4/README.md +++ b/model_zoo/official/cv/inceptionv4/README.md @@ -51,7 +51,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - or prepare GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) diff --git a/model_zoo/official/cv/maskrcnn/README.md b/model_zoo/official/cv/maskrcnn/README.md index aef4277d6be..88d082e9731 100644 --- a/model_zoo/official/cv/maskrcnn/README.md +++ b/model_zoo/official/cv/maskrcnn/README.md @@ -53,7 +53,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - Docker base image diff --git a/model_zoo/official/cv/maskrcnn/README_CN.md b/model_zoo/official/cv/maskrcnn/README_CN.md index 0065d2a3a4f..4be4834db40 100644 --- a/model_zoo/official/cv/maskrcnn/README_CN.md +++ b/model_zoo/official/cv/maskrcnn/README_CN.md @@ -55,7 +55,7 @@ MaskRCNN是一个两级目标检测网络,作为FasterRCNN的扩展模型, # 环境要求 - 硬件(昇腾处理器) - - 采用昇腾处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 采用昇腾处理器搭建硬件环境。 - 框架 - [MindSpore](https://gitee.com/mindspore/mindspore) - 获取基础镜像 diff --git a/model_zoo/official/cv/maskrcnn_mobilenetv1/README.md b/model_zoo/official/cv/maskrcnn_mobilenetv1/README.md index 0be61ab07ec..2e18640ce97 100644 --- a/model_zoo/official/cv/maskrcnn_mobilenetv1/README.md +++ b/model_zoo/official/cv/maskrcnn_mobilenetv1/README.md @@ -54,7 +54,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/mobilenetv1/README.md b/model_zoo/official/cv/mobilenetv1/README.md index c971774e0e5..15b858359c2 100644 --- a/model_zoo/official/cv/mobilenetv1/README.md +++ b/model_zoo/official/cv/mobilenetv1/README.md @@ -64,7 +64,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil ## Environment Requirements - Hardware(Ascend) - - Prepare hardware environment with Ascend. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/mobilenetv2/README.md b/model_zoo/official/cv/mobilenetv2/README.md index 2c5d4b8fa45..e0a29eed30d 100644 --- a/model_zoo/official/cv/mobilenetv2/README.md +++ b/model_zoo/official/cv/mobilenetv2/README.md @@ -50,7 +50,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend/GPU/CPU) - - Prepare hardware environment with Ascend, GPU or CPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend, GPU or CPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/mobilenetv2/README_CN.md b/model_zoo/official/cv/mobilenetv2/README_CN.md index 12d55fd6c3d..027a4a8ee65 100644 --- a/model_zoo/official/cv/mobilenetv2/README_CN.md +++ b/model_zoo/official/cv/mobilenetv2/README_CN.md @@ -56,7 +56,7 @@ MobileNetV2总体网络架构如下: # 环境要求 - 硬件(Ascend/GPU/CPU) - - 使用Ascend、GPU或CPU处理器来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 使用Ascend、GPU或CPU处理器来搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/mobilenetv2_quant/README_CN.md b/model_zoo/official/cv/mobilenetv2_quant/README_CN.md index 6a45135fbd3..6471eb45cf1 100644 --- a/model_zoo/official/cv/mobilenetv2_quant/README_CN.md +++ b/model_zoo/official/cv/mobilenetv2_quant/README_CN.md @@ -65,7 +65,7 @@ MobileNetV2总体网络架构如下: # 环境要求 - 硬件:昇腾处理器(Ascend) - - 使用昇腾处理器来搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 使用昇腾处理器来搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 如需查看详情,请参见如下资源 diff --git a/model_zoo/official/cv/mobilenetv2_quant/Readme.md b/model_zoo/official/cv/mobilenetv2_quant/Readme.md index 5a22ea8eea5..241aade01e8 100644 --- a/model_zoo/official/cv/mobilenetv2_quant/Readme.md +++ b/model_zoo/official/cv/mobilenetv2_quant/Readme.md @@ -52,7 +52,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware:Ascend - - Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below diff --git a/model_zoo/official/cv/openpose/README.md b/model_zoo/official/cv/openpose/README.md index 68798789dd8..d9760f795f6 100644 --- a/model_zoo/official/cv/openpose/README.md +++ b/model_zoo/official/cv/openpose/README.md @@ -75,7 +75,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware (Ascend) - - Prepare hardware environment with Ascend. If you want to try, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - Download the VGG19 model of the MindSpore version: diff --git a/model_zoo/official/cv/psenet/README.md b/model_zoo/official/cv/psenet/README.md index 5b473f888ad..02784a84be5 100644 --- a/model_zoo/official/cv/psenet/README.md +++ b/model_zoo/official/cv/psenet/README.md @@ -46,7 +46,7 @@ A testing set containing about 2000 readable words # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](http://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/psenet/README_CN.md b/model_zoo/official/cv/psenet/README_CN.md index c2f40f8f8d1..a76810a6efe 100644 --- a/model_zoo/official/cv/psenet/README_CN.md +++ b/model_zoo/official/cv/psenet/README_CN.md @@ -47,7 +47,7 @@ # 环境要求 - 硬件:昇腾处理器(Ascend) - - 使用Ascend处理器来搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 使用Ascend处理器来搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) diff --git a/model_zoo/official/cv/resnet/README.md b/model_zoo/official/cv/resnet/README.md index 724b2460849..a677b9e5b5f 100644 --- a/model_zoo/official/cv/resnet/README.md +++ b/model_zoo/official/cv/resnet/README.md @@ -82,7 +82,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend/GPU/CPU) - - Prepare hardware environment with Ascend, GPU or CPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend, GPU or CPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/resnet/README_CN.md b/model_zoo/official/cv/resnet/README_CN.md index 6affe2445df..5d5cb5d3892 100755 --- a/model_zoo/official/cv/resnet/README_CN.md +++ b/model_zoo/official/cv/resnet/README_CN.md @@ -85,7 +85,7 @@ ResNet的总体网络架构如下: # 环境要求 - 硬件(Ascend/GPU) - - 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 准备Ascend或GPU处理器搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install/en) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/resnet152/README-CN.md b/model_zoo/official/cv/resnet152/README-CN.md index 75e7f9e2f99..7f1898a4d4a 100644 --- a/model_zoo/official/cv/resnet152/README-CN.md +++ b/model_zoo/official/cv/resnet152/README-CN.md @@ -35,7 +35,7 @@ ResNet152的总体网络架构如下:[链接](https://arxiv.org/pdf/1512.03385 # 环境要求 - 硬件 - - 准备Ascend处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 准备Ascend处理器搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install/en) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/resnet50_quant/README.md b/model_zoo/official/cv/resnet50_quant/README.md index 2c08da8b993..6c75d0d9f47 100644 --- a/model_zoo/official/cv/resnet50_quant/README.md +++ b/model_zoo/official/cv/resnet50_quant/README.md @@ -59,7 +59,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware:Ascend - - Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/resnet50_quant/README_CN.md b/model_zoo/official/cv/resnet50_quant/README_CN.md index e3a8300a2e1..ac0f43332d9 100644 --- a/model_zoo/official/cv/resnet50_quant/README_CN.md +++ b/model_zoo/official/cv/resnet50_quant/README_CN.md @@ -64,7 +64,7 @@ ResNet-50总体网络架构如下: # 环境要求 - 硬件:昇腾处理器(Ascend) - - 使用昇腾处理器来搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 使用昇腾处理器来搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) diff --git a/model_zoo/official/cv/resnet_thor/README.md b/model_zoo/official/cv/resnet_thor/README.md index cba50a97ef6..2a8a934d0b2 100644 --- a/model_zoo/official/cv/resnet_thor/README.md +++ b/model_zoo/official/cv/resnet_thor/README.md @@ -52,7 +52,7 @@ The classical first-order optimization algorithm, such as SGD, has a small amoun ## Environment Requirements - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) diff --git a/model_zoo/official/cv/resnet_thor/README_CN.md b/model_zoo/official/cv/resnet_thor/README_CN.md index 58ff735d8d5..f1bb862cf77 100644 --- a/model_zoo/official/cv/resnet_thor/README_CN.md +++ b/model_zoo/official/cv/resnet_thor/README_CN.md @@ -57,7 +57,7 @@ ResNet-50的总体网络架构如下:[链接](https://arxiv.org/pdf/1512.03385 ## 环境要求 - 硬件:昇腾处理器(Ascend或GPU) - - 使用Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) 至ascend@huawei.com,审核通过即可获得资源。 + - 使用Ascend或GPU处理器搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) diff --git a/model_zoo/official/cv/resnext101/README_CN.md b/model_zoo/official/cv/resnext101/README_CN.md index e88c873e24e..a28bcdad911 100644 --- a/model_zoo/official/cv/resnext101/README_CN.md +++ b/model_zoo/official/cv/resnext101/README_CN.md @@ -1,4 +1,4 @@ -# ResNext101-64x4d for MindSpore +# ResNext101-64x4d 本仓库提供了ResNeXt101-64x4d模型的训练脚本和超参配置,以达到论文中的准确性。 @@ -65,7 +65,7 @@ ResNeXt是ResNet网络的改进版本,比ResNet的网络多了块多了cardina ## 快速入门指南 -目录说明,代码参考了Modelzoo上的[ResNext50_for_MindSpore](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnext50) +目录说明,代码参考了Modelzoo上的[ResNext50](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnext50) ```path . @@ -221,4 +221,3 @@ python export.py --device_target [PLATFORM] --ckpt_file [CKPT_PATH] --file_forma | **NPUs** | train performance | | :------: | :---------------: | | 1 | 196.33image/sec | - diff --git a/model_zoo/official/cv/resnext50/README.md b/model_zoo/official/cv/resnext50/README.md index 0fcd8e632c3..afb4e5bed12 100644 --- a/model_zoo/official/cv/resnext50/README.md +++ b/model_zoo/official/cv/resnext50/README.md @@ -53,7 +53,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend/GPU) -- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. +- Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/resnext50/README_CN.md b/model_zoo/official/cv/resnext50/README_CN.md index 41da9b0836e..6dbf0ed0d87 100644 --- a/model_zoo/official/cv/resnext50/README_CN.md +++ b/model_zoo/official/cv/resnext50/README_CN.md @@ -58,7 +58,7 @@ ResNeXt整体网络架构如下: # 环境要求 - 硬件(Ascend或GPU) - - 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 准备Ascend或GPU处理器搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/retinanet/README_CN.md b/model_zoo/official/cv/retinanet/README_CN.md index 02bc29479d0..989e8c6317e 100644 --- a/model_zoo/official/cv/retinanet/README_CN.md +++ b/model_zoo/official/cv/retinanet/README_CN.md @@ -58,7 +58,7 @@ MSCOCO2017 ## [环境要求](#content) - 硬件(Ascend) - - 使用Ascend处理器准备硬件环境。如果您想使用Ascend,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com。一旦获得批准,您就可以获取资源。 + - 使用Ascend处理器准备硬件环境。 - 架构 - [MindSpore](https://www.mindspore.cn/install/en) - 想要获取更多信息,请检查以下资源: diff --git a/model_zoo/official/cv/shufflenetv1/README_CN.md b/model_zoo/official/cv/shufflenetv1/README_CN.md index e4998b4e36a..6d29a1e177b 100644 --- a/model_zoo/official/cv/shufflenetv1/README_CN.md +++ b/model_zoo/official/cv/shufflenetv1/README_CN.md @@ -42,7 +42,7 @@ ShuffleNetV1的核心部分被分成三个阶段,每个阶段重复堆积了 # 环境要求 - 硬件(Ascend) - - 使用Ascend来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 使用Ascend来搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/simple_pose/README.md b/model_zoo/official/cv/simple_pose/README.md index 9dde9dc5373..3c3c6911b76 100644 --- a/model_zoo/official/cv/simple_pose/README.md +++ b/model_zoo/official/cv/simple_pose/README.md @@ -60,7 +60,7 @@ The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advan To run the python scripts in the repository, you need to prepare the environment as follow: - Hardware - - Prepare hardware environment with Ascend. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to [ascend@huawei.com](mailto:ascend@huawei.com). Once approved, you can get the resources. + - Prepare hardware environment with Ascend. - Python and dependencies - python 3.7 - mindspore 1.0.1 diff --git a/model_zoo/official/cv/squeezenet/README.md b/model_zoo/official/cv/squeezenet/README.md index bf529f69337..441ca62ca33 100644 --- a/model_zoo/official/cv/squeezenet/README.md +++ b/model_zoo/official/cv/squeezenet/README.md @@ -63,7 +63,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil # [Environment Requirements](#contents) - Hardware(Ascend/CPU) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. Squeezenet training on GPU performs badly now, and it is still in research. See [squeezenet in research](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/squeezenet) to get up-to-date details. + - Prepare hardware environment with Ascend processor. Squeezenet training on GPU performs is not good now, and it is still in research. See [squeezenet in research](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/squeezenet) to get up-to-date details. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/tinydarknet/README.md b/model_zoo/official/cv/tinydarknet/README.md index d3153fe2a9b..77012ed8ee3 100644 --- a/model_zoo/official/cv/tinydarknet/README.md +++ b/model_zoo/official/cv/tinydarknet/README.md @@ -56,7 +56,7 @@ Dataset used can refer to [paper]() # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/cv/yolov3_resnet18/README_CN.md b/model_zoo/official/cv/yolov3_resnet18/README_CN.md index 991837dfc2d..b4409ee9331 100644 --- a/model_zoo/official/cv/yolov3_resnet18/README_CN.md +++ b/model_zoo/official/cv/yolov3_resnet18/README_CN.md @@ -69,7 +69,7 @@ YOLOv3整体网络架构如下: # 环境要求 - 硬件(Ascend处理器) - - 准备Ascend处理器搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 + - 准备Ascend处理器搭建硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/cv/yolov4/README.md b/model_zoo/official/cv/yolov4/README.md index f852aa2f016..279de662684 100644 --- a/model_zoo/official/cv/yolov4/README.md +++ b/model_zoo/official/cv/yolov4/README.md @@ -62,7 +62,7 @@ other datasets need to use the same format as MS COCO. # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/gnn/gcn/README.md b/model_zoo/official/gnn/gcn/README.md index 738857484db..6dffd848d77 100644 --- a/model_zoo/official/gnn/gcn/README.md +++ b/model_zoo/official/gnn/gcn/README.md @@ -36,7 +36,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap ## [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/gnn/gcn/README_CN.md b/model_zoo/official/gnn/gcn/README_CN.md index 49709a6edbe..dcc6105acf8 100644 --- a/model_zoo/official/gnn/gcn/README_CN.md +++ b/model_zoo/official/gnn/gcn/README_CN.md @@ -44,7 +44,7 @@ GCN包含两个图卷积层。每一层以节点特征和邻接矩阵为输入 ## 环境要求 - 硬件(Ascend处理器) - - 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei,审核通过即可获得资源。 + - 准备Ascend或GPU处理器搭建硬件环境。 - 框架 - [MindSpore](https://gitee.com/mindspore/mindspore) - 如需查看详情,请参见如下资源: diff --git a/model_zoo/official/nlp/bert/README.md b/model_zoo/official/nlp/bert/README.md index af1e717136b..4108f19611d 100644 --- a/model_zoo/official/nlp/bert/README.md +++ b/model_zoo/official/nlp/bert/README.md @@ -56,7 +56,7 @@ The backbone structure of BERT is transformer. For BERT_base, the transformer co # [Environment Requirements](#contents) - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend/GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get access to the resources. + - Prepare hardware environment with Ascend/GPU processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/bert/README_CN.md b/model_zoo/official/nlp/bert/README_CN.md index 4b9ca2f79c5..98f0fb5e775 100644 --- a/model_zoo/official/nlp/bert/README_CN.md +++ b/model_zoo/official/nlp/bert/README_CN.md @@ -59,7 +59,7 @@ BERT的主干结构为Transformer。对于BERT_base,Transformer包含12个编 # 环境要求 - 硬件(Ascend处理器) - - 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过后,即可获得资源。 + - 准备Ascend或GPU处理器搭建硬件环境。 - 框架 - [MindSpore](https://gitee.com/mindspore/mindspore) - 更多关于Mindspore的信息,请查看以下资源: diff --git a/model_zoo/official/nlp/bert_thor/README.md b/model_zoo/official/nlp/bert_thor/README.md index 35dcaf77cf8..24f042c884c 100644 --- a/model_zoo/official/nlp/bert_thor/README.md +++ b/model_zoo/official/nlp/bert_thor/README.md @@ -50,7 +50,7 @@ The classical first-order optimization algorithm, such as SGD, has a small amoun ## Environment Requirements - Hardware(Ascend) - - Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/bert_thor/README_CN.md b/model_zoo/official/nlp/bert_thor/README_CN.md index 6db8bd6740c..304272c938b 100644 --- a/model_zoo/official/nlp/bert_thor/README_CN.md +++ b/model_zoo/official/nlp/bert_thor/README_CN.md @@ -56,7 +56,7 @@ BERT的总体架构包含3个嵌入层,用于查找令牌嵌入、位置嵌入 环境要求 - 硬件(Ascend) - - 使用Ascend处理器准备硬件环境。- 如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过即可获得资源。 + - 使用Ascend处理器准备硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 更多关于Mindspore的信息,请查看以下资源: diff --git a/model_zoo/official/nlp/fasttext/README.md b/model_zoo/official/nlp/fasttext/README.md index 24fa09f67e7..cc63e79473b 100644 --- a/model_zoo/official/nlp/fasttext/README.md +++ b/model_zoo/official/nlp/fasttext/README.md @@ -50,7 +50,7 @@ architecture. In the following sections, we will introduce how to run the script # [Environment Requirements](#content) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/gnmt_v2/README.md b/model_zoo/official/nlp/gnmt_v2/README.md index 89a6ef9d2dc..3c7409eab82 100644 --- a/model_zoo/official/nlp/gnmt_v2/README.md +++ b/model_zoo/official/nlp/gnmt_v2/README.md @@ -47,7 +47,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap ## Platform - Hardware (Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you could get the resources for trial. + - Prepare hardware environment with Ascend processor. - Framework - Install [MindSpore](https://www.mindspore.cn/install/en). - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/gpt/README.md b/model_zoo/official/nlp/gpt/README.md index de96560bc95..49ac0e716db 100644 --- a/model_zoo/official/nlp/gpt/README.md +++ b/model_zoo/official/nlp/gpt/README.md @@ -30,7 +30,7 @@ GPT3 stacks many layers of decoder of transformer. According to the layer number # [Environment Requirements](#contents) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get access to the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/gru/README.md b/model_zoo/official/nlp/gru/README.md index 9958dec152c..53876b42720 100644 --- a/model_zoo/official/nlp/gru/README.md +++ b/model_zoo/official/nlp/gru/README.md @@ -45,7 +45,7 @@ In this model, we use the Multi30K dataset as our train and test dataset.As trai # [Environment Requirements](#content) - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/lstm/README.md b/model_zoo/official/nlp/lstm/README.md index c8889a76af9..360195e1cfb 100644 --- a/model_zoo/official/nlp/lstm/README.md +++ b/model_zoo/official/nlp/lstm/README.md @@ -39,7 +39,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap # [Environment Requirements](#contents) - Hardware(GPU/CPU/Ascend) - - If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you could get the resources for trial. + - Prepare hardware environment with Ascend, GPU or CPU processor. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/mass/README.md b/model_zoo/official/nlp/mass/README.md index 4b33fba44e5..9ae73502eaa 100644 --- a/model_zoo/official/nlp/mass/README.md +++ b/model_zoo/official/nlp/mass/README.md @@ -488,7 +488,7 @@ More detail about LR scheduler could be found in `src/utils/lr_scheduler.py`. ## Platform - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/mass/README_CN.md b/model_zoo/official/nlp/mass/README_CN.md index a07f812b44f..9a0ec500a6c 100644 --- a/model_zoo/official/nlp/mass/README_CN.md +++ b/model_zoo/official/nlp/mass/README_CN.md @@ -487,7 +487,7 @@ python weights_average.py --input_files your_checkpoint_list --output_file model ## 平台 - 硬件(Ascend或GPU) - - 使用Ascend或GPU处理器准备硬件环境。- 如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过即可获得资源。 + - 使用Ascend或GPU处理器准备硬件环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install) - 更多关于Mindspore的信息,请查看以下资源: diff --git a/model_zoo/official/nlp/prophetnet/README.md b/model_zoo/official/nlp/prophetnet/README.md index 6c8220824df..4aa46ea46c0 100644 --- a/model_zoo/official/nlp/prophetnet/README.md +++ b/model_zoo/official/nlp/prophetnet/README.md @@ -546,7 +546,7 @@ The comparisons between MASS and other baseline methods in terms of PPL on Corne ## Platform - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you could get the resources for trial. + - Prepare hardware environment with Ascend processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/official/nlp/textcnn/README.md b/model_zoo/official/nlp/textcnn/README.md index 7110530368f..47f5cec53fd 100644 --- a/model_zoo/official/nlp/textcnn/README.md +++ b/model_zoo/official/nlp/textcnn/README.md @@ -40,7 +40,7 @@ Dataset used: [Movie Review Data]() # [Environment Requirements](#contents) - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/research/nlp/dscnn/README.md b/model_zoo/research/nlp/dscnn/README.md index 22cfa5347c1..8863494606a 100644 --- a/model_zoo/research/nlp/dscnn/README.md +++ b/model_zoo/research/nlp/dscnn/README.md @@ -57,7 +57,7 @@ Dataset used: [Speech commands dataset version 2](https://arxiv.org/abs/1804.032 # [Environment Requirements](#contents) - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - Third party open source package(if have) diff --git a/model_zoo/research/recommend/autodis/README.md b/model_zoo/research/recommend/autodis/README.md index d904ea0909b..18e39c358ee 100644 --- a/model_zoo/research/recommend/autodis/README.md +++ b/model_zoo/research/recommend/autodis/README.md @@ -37,7 +37,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s # [Environment Requirements](#contents) - Hardware(Ascend/GPU) - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: diff --git a/model_zoo/research/rl/ldp_linucb/README.md b/model_zoo/research/rl/ldp_linucb/README.md index 9c37d2068e7..1d7f7d940d8 100644 --- a/model_zoo/research/rl/ldp_linucb/README.md +++ b/model_zoo/research/rl/ldp_linucb/README.md @@ -35,7 +35,7 @@ Dataset used: [MovieLens 100K](https://grouplens.org/datasets/movielens/100k/) # [Environment Requirements](#contents) - Hardware (Ascend/GPU) - - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the[application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. + - Prepare hardware environment with Ascend or GPU processor. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: