gpu add kernel select

This commit is contained in:
VectorSL 2020-04-14 19:41:00 +08:00
parent 39b9e831cb
commit d248b05a98
5 changed files with 252 additions and 0 deletions

View File

@ -0,0 +1,43 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/arrays/select_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(Select,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
SelectGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Select,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
SelectGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(Select,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
SelectGpuKernel, int)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,95 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H
#define MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H
#include <vector>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
#include "kernel/gpu/cuda_impl/select_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T>
class SelectGpuKernel : public GpuKernel {
public:
SelectGpuKernel() : input_size_(0), output_size_(0) {}
~SelectGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
bool *input_cond = GetDeviceAddress<bool>(inputs, 0);
T *input_x = GetDeviceAddress<T>(inputs, 1);
T *input_y = GetDeviceAddress<T>(inputs, 2);
T *output = GetDeviceAddress<T>(outputs, 0);
CalSelect(output_size_ / sizeof(T), input_cond, input_x, input_y, output,
reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
if (!CheckParam(kernel_node)) {
return false;
}
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
input_size_ = sizeof(bool);
output_size_ = sizeof(T);
for (size_t x : shape) {
input_size_ = input_size_ * x;
output_size_ = output_size_ * x;
}
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
input_size_list_.push_back(output_size_);
input_size_list_.push_back(output_size_);
output_size_list_.push_back(output_size_);
}
private:
bool CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 3) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but SelectGpuKernel needs 3 output.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but SelectGpuKernel needs 1 output.";
return false;
}
return true;
}
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
size_t input_size_;
size_t output_size_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H

View File

@ -0,0 +1,42 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdint.h>
#include <include/cuda_runtime.h>
#include "kernel/gpu/cuda_impl/select_impl.cuh"
template <typename T>
__global__ void Select(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output) {
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
output[pos] = cond[pos] ? input_x[pos] : input_y[pos];
}
return;
}
template <typename T>
void CalSelect(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output,
cudaStream_t cuda_stream) {
Select<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, cond, input_x, input_y, output);
return;
}
template void CalSelect<float>(const size_t size, const bool* cond, const float* input_X, const float* input_y,
float* output, cudaStream_t cuda_stream);
template void CalSelect<int>(const size_t size, const bool* cond, const int* input_X, const int* input_y, int* output,
cudaStream_t cuda_stream);
template void CalSelect<half>(const size_t size, const bool* cond, const half* input_X, const half* input_y,
half* output, cudaStream_t cuda_stream);

View File

@ -0,0 +1,25 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_
#include "device/gpu/cuda_common.h"
template <typename T>
void CalSelect(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output,
cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_

View File

@ -0,0 +1,47 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np
import mindspore.context as context
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.select = P.Select()
def construct(self, cond, x, y):
return self.select(cond, x, y)
cond = np.array([[True, False], [True, False]]).astype(np.bool)
x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
y = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_select():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
select = Net()
output = select(Tensor(cond), Tensor(x), Tensor(y))
expect = [[1.2, 2], [1, 4.0]]
error = np.ones(shape=[2, 2]) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)