!15196 [MSLITE][DEVELOP] fix bug: arm cpu op group conv memory leak

From: @yangruoqi713
Reviewed-by: @zhanghaibo5,@zhang_xue_tong
Signed-off-by: @zhang_xue_tong
This commit is contained in:
mindspore-ci-bot 2021-04-15 19:35:13 +08:00 committed by Gitee
commit d1c9fb19a5
11 changed files with 174 additions and 236 deletions

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -14,7 +14,7 @@
* limitations under the License.
*/
#include "src/runtime/kernel/arm/base/group_convolution.h"
#include "src/runtime/kernel/arm/base/group_convolution_base.h"
#include "src/runtime/infer_manager.h"
#include "include/errorcode.h"
@ -22,7 +22,7 @@ using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int GroupConvolutionCPUKernel::Init() {
int GroupConvolutionBaseCPUKernel::Init() {
for (int i = 0; i < group_num_; ++i) {
auto sub_conv = group_convs_.at(i);
if (sub_conv == nullptr) {
@ -39,7 +39,7 @@ int GroupConvolutionCPUKernel::Init() {
return RET_OK;
}
int GroupConvolutionCPUKernel::ReSize() {
int GroupConvolutionBaseCPUKernel::ReSize() {
for (int i = 0; i < group_num_; ++i) {
auto ret = group_convs_.at(i)->ReSize();
if (ret != RET_OK) {
@ -52,7 +52,7 @@ int GroupConvolutionCPUKernel::ReSize() {
return RET_OK;
}
void GroupConvolutionCPUKernel::FreeSubKernel() {
void GroupConvolutionBaseCPUKernel::FreeSubKernel() {
for (auto &sub_conv : group_convs_) {
// free sub conv input tensors / output tensors manually
auto sub_in_tensors = sub_conv->in_tensors();
@ -72,7 +72,7 @@ void GroupConvolutionCPUKernel::FreeSubKernel() {
}
}
int GroupConvolutionCPUKernel::PreProcess() {
int GroupConvolutionBaseCPUKernel::PreProcess() {
if (!InferShapeDone()) {
op_parameter_->infer_flag_ = true;
@ -133,50 +133,28 @@ int GroupConvolutionCPUKernel::PreProcess() {
return RET_OK;
}
void GroupConvolutionCPUKernel::SeparateInput(int group_id) {
auto in_tensor = in_tensors_.front();
int in_plane = in_tensor->Height() * in_tensor->Width() * in_tensor->Batch();
int sub_in_channel = conv_param_->input_channel_;
int ori_in_channel = sub_in_channel * group_num_;
auto sub_in_data = reinterpret_cast<float *>(group_convs_.at(group_id)->in_tensors().front()->data_c());
float *src_ptr = reinterpret_cast<float *>(ori_in_data_) + group_id * sub_in_channel;
float *dst_ptr = sub_in_data;
for (int i = 0; i < in_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_in_channel * sizeof(float));
src_ptr += ori_in_channel;
dst_ptr += sub_in_channel;
}
}
void GroupConvolutionCPUKernel::PostConcat(int group_id) {
auto out_tensor = out_tensors_.front();
int out_plane = out_tensor->Height() * out_tensor->Width() * out_tensor->Batch();
int sub_out_channel = conv_param_->output_channel_;
int ori_out_channel = sub_out_channel * group_num_;
auto sub_out_data = reinterpret_cast<float *>(group_convs_.at(group_id)->out_tensors().front()->data_c());
float *src_ptr = sub_out_data;
float *dst_ptr = reinterpret_cast<float *>(ori_out_data_) + group_id * sub_out_channel;
for (int i = 0; i < out_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_out_channel * sizeof(float));
src_ptr += sub_out_channel;
dst_ptr += ori_out_channel;
}
}
int GroupConvolutionCPUKernel::Run() {
int GroupConvolutionBaseCPUKernel::Run() {
ori_in_data_ = in_tensors().front()->data_c();
ori_out_data_ = out_tensors().front()->data_c();
for (int i = 0; i < group_num_; ++i) {
// first, separate group conv input into several parts. This step must be in runtime stage.
SeparateInput(i);
auto ret = SeparateInput(i);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Separate input failed.";
return ret;
}
// sun kernels run
auto ret = group_convs_.at(i)->Run();
ret = group_convs_.at(i)->Run();
if (ret != RET_OK) {
MS_LOG(ERROR) << "sub kernel " << i << " execute failed.";
return ret;
}
// post process, concat all outputs of sub-kernels into one output
PostConcat(i);
ret = PostConcat(i);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Concat output failed.";
return ret;
}
}
return RET_OK;
}

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_H_
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_BASE_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_BASE_H_
#include <utility>
#include <vector>
@ -25,23 +25,23 @@
#include "nnacl/fp32/conv_common_fp32.h"
namespace mindspore::kernel {
class GroupConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
class GroupConvolutionBaseCPUKernel : public ConvolutionBaseCPUKernel {
public:
GroupConvolutionCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
std::vector<kernel::LiteKernel *> group_convs, const int group_num)
GroupConvolutionBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
std::vector<kernel::LiteKernel *> group_convs, const int group_num)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx),
group_convs_(std::move(group_convs)),
group_num_(group_num) {} // opParameter(in channel, out channel) in this kernel has been split to groups, if
// you want to get real params, multiply in channel / out channel with group num
~GroupConvolutionCPUKernel() override { FreeSubKernel(); }
~GroupConvolutionBaseCPUKernel() override { FreeSubKernel(); }
int Init() override;
int ReSize() override;
int Run() override;
int PreProcess() override;
virtual void SeparateInput(int group_id);
virtual void PostConcat(int group_id);
virtual int SeparateInput(int group_id) = 0;
virtual int PostConcat(int group_id) = 0;
void FreeSubKernel();
protected:
@ -52,4 +52,4 @@ class GroupConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_H_
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_BASE_H_

View File

@ -33,7 +33,11 @@ ConvParameter *CreateNewConvParameter(ConvParameter *parameter) {
return conv_parameter;
}
void FreeMemory(const std::vector<lite::Tensor *> *new_inputs, const std::vector<lite::Tensor *> *new_outputs) {
void FreeCurrentConv(ConvParameter *conv_param, const std::vector<lite::Tensor *> *new_inputs,
const std::vector<lite::Tensor *> *new_outputs) {
if (conv_param != nullptr) {
free(conv_param);
}
for (auto &in_tensor : *new_inputs) {
delete in_tensor;
}
@ -99,20 +103,22 @@ void GroupConvCreator::CopyQuantParam(std::vector<lite::Tensor *> *tensors) {
}
}
bool GroupConvCreator::CheckIfValidPoint(void *ptr) {
if (ptr == nullptr) {
for (auto &sub_conv : group_convs_) {
delete sub_conv;
void GroupConvCreator::FreeGroupConvs() {
for (auto &sub_conv : group_convs_) {
for (auto &in_tensor : sub_conv->in_tensors()) {
delete in_tensor;
}
return false;
for (auto &out_tensor : sub_conv->out_tensors()) {
delete out_tensor;
}
delete sub_conv;
}
return true;
}
int GroupConvCreator::NewInputTensor(std::vector<lite::Tensor *> *tensors) {
auto in_tensor =
CreateVarTensor({input_shape_, schema::Format_NHWC, data_type_, lite::Tensor::Category::VAR, true}, infered_);
if (!CheckIfValidPoint(in_tensor)) {
if (in_tensor == nullptr) {
return lite::RET_ERROR;
}
tensors->emplace_back(in_tensor);
@ -121,7 +127,7 @@ int GroupConvCreator::NewInputTensor(std::vector<lite::Tensor *> *tensors) {
int GroupConvCreator::NewOutputTensor(std::vector<lite::Tensor *> *tensors, lite::Tensor *output) {
auto out_tensor = CreateVarTensor({output_shape_, output->format(), data_type_, output->category(), false}, infered_);
if (!CheckIfValidPoint(out_tensor)) {
if (out_tensor == nullptr) {
return lite::RET_ERROR;
}
if (is_quant_) {
@ -138,7 +144,7 @@ int GroupConvCreator::NewConstTensor(std::vector<lite::Tensor *> *tensors, int g
}
for (auto &info : const_tensor_list) {
auto const_tensor = CreateConstTensor(origin_inputs_.at(info.first), info.second, group_id);
if (!CheckIfValidPoint(const_tensor)) {
if (const_tensor == nullptr) {
return lite::RET_ERROR;
}
tensors->emplace_back(const_tensor);
@ -171,26 +177,30 @@ void GroupConvCreator::SetShapeOfTensors() {
int GroupConvCreator::GetSingleConvParam(ConvParameter *conv_param, std::vector<lite::Tensor *> *new_inputs,
std::vector<lite::Tensor *> *new_outputs, int group_id) {
if (!CheckIfValidPoint(conv_param)) {
if (conv_param == nullptr) {
FreeGroupConvs();
return lite::RET_ERROR;
}
// create new input for each group
if (NewInputTensor(new_inputs) != lite::RET_OK) {
MS_LOG(ERROR) << "new input tensor failed.";
FreeMemory(new_inputs, {});
FreeGroupConvs();
FreeCurrentConv(conv_param, new_inputs, {});
return lite::RET_ERROR;
}
// const tensor
if (NewConstTensor(new_inputs, group_id) != lite::RET_OK) {
MS_LOG(ERROR) << "new const tensor failed.";
FreeMemory(new_inputs, {});
FreeGroupConvs();
FreeCurrentConv(conv_param, new_inputs, {});
return lite::RET_ERROR;
}
// create new output tensor
for (auto &output : origin_outputs_) {
if (NewOutputTensor(new_outputs, output) != lite::RET_OK) {
MS_LOG(ERROR) << "new output tensor failed.";
FreeMemory(new_inputs, new_outputs);
FreeGroupConvs();
FreeCurrentConv(conv_param, new_inputs, new_outputs);
return lite::RET_ERROR;
}
}

View File

@ -57,7 +57,7 @@ class GroupConvCreator {
void set_output_shape(const std::vector<int> &shape) { output_shape_ = shape; }
void set_filter_shape(const std::vector<int> &shape) { filter_shape_ = shape; }
void set_bias_shape(const std::vector<int> &shape) { bias_shape_ = shape; }
bool CheckIfValidPoint(void *ptr);
void FreeGroupConvs();
int NewInputTensor(std::vector<lite::Tensor *> *tensors);
int NewConstTensor(std::vector<lite::Tensor *> *tensors, int group_id);
int NewOutputTensor(std::vector<lite::Tensor *> *tensors, lite::Tensor *output);

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -15,123 +15,11 @@
*/
#include "src/runtime/kernel/arm/fp16/group_convolution_fp16.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/infer_manager.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int GroupConvolutionFP16CPUKernel::Init() {
for (int i = 0; i < group_num_; ++i) {
auto ret = group_convs_.at(i)->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Sub kernel init failed.";
return ret;
}
}
// if infer shape is done, resize func will be invoked in sub kernels
return RET_OK;
}
int GroupConvolutionFP16CPUKernel::ReSize() {
for (int i = 0; i < group_num_; ++i) {
auto ret = group_convs_.at(i)->ReSize();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Sub kernel resize failed.";
return RET_ERROR;
}
}
conv_param_->input_channel_ /= group_num_;
conv_param_->output_channel_ /= group_num_;
return RET_OK;
}
void GroupConvolutionFP16CPUKernel::FreeSubKernel() {
for (auto &sub_conv : group_convs_) {
// free sub conv input tensors / output tensors manually
auto sub_in_tensors = sub_conv->in_tensors();
auto sub_in_tensor_num = sub_in_tensors.size();
for (size_t i = 0; i < sub_in_tensor_num; ++i) {
delete sub_in_tensors[i];
sub_in_tensors[i] = nullptr;
}
auto sub_out_tensors = sub_conv->out_tensors();
auto sub_out_tensor_num = sub_out_tensors.size();
for (size_t i = 0; i < sub_out_tensor_num; ++i) {
delete sub_out_tensors[i];
sub_out_tensors[i] = nullptr;
}
delete sub_conv;
sub_conv = nullptr;
}
}
int GroupConvolutionFP16CPUKernel::PreProcess() {
if (!InferShapeDone()) {
op_parameter_->infer_flag_ = true;
auto ret = lite::KernelInferShape(in_tensors_, &out_tensors_, op_parameter_);
if (ret != 0) {
op_parameter_->infer_flag_ = false;
MS_LOG(ERROR) << "InferShape fail!";
return ret;
}
// if infershape func is called in runtime stage, we should malloc memory and set shape info for outputs of sub
// kernels here.
std::vector<int> in_shape;
std::vector<int> out_shape;
for (int i = 0; i < group_num_; ++i) {
// in
auto in_tensor = in_tensors_.front();
in_shape = {in_tensor->Batch(), in_tensor->Height(), in_tensor->Width(), conv_param_->input_channel_};
auto sub_kernel_in_tensor = group_convs_.at(i)->in_tensors().front();
sub_kernel_in_tensor->set_shape(in_shape);
ret = sub_kernel_in_tensor->MallocData();
if (ret != RET_OK) {
FreeSubKernel();
MS_LOG(ERROR) << "sub kernel in tensor malloc data failed.";
return ret;
}
// out
auto out_tensor = out_tensors_.front();
out_shape = {out_tensor->Batch(), out_tensor->Height(), out_tensor->Width(), conv_param_->output_channel_};
auto sub_kernel_out_tensors = group_convs_[i]->out_tensors();
for (auto tensor : sub_kernel_out_tensors) {
tensor->set_shape(out_shape);
ret = tensor->MallocData();
if (ret != RET_OK) {
FreeSubKernel();
MS_LOG(ERROR) << "sub kernel out tensor malloc data failed.";
return ret;
}
}
}
ret = ReSize();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ReSize fail!ret: " << ret;
return ret;
}
}
auto outputs = this->out_tensors();
for (auto *output : outputs) {
MS_ASSERT(output != nullptr);
auto ret = output->MallocData();
if (ret != RET_OK) {
FreeSubKernel();
MS_LOG(ERROR) << "fp16 group conv out tensor malloc data failed.";
return ret;
}
}
return RET_OK;
}
int GroupConvolutionFP16CPUKernel::SeparateInput(int group_id) {
// input may either be float32 or float16
auto in_tensor = in_tensors_.front();
@ -173,7 +61,7 @@ int GroupConvolutionFP16CPUKernel::SeparateInput(int group_id) {
return RET_OK;
}
void GroupConvolutionFP16CPUKernel::PostConcat(int group_id) {
int GroupConvolutionFP16CPUKernel::PostConcat(int group_id) {
// output is must float16 data type
auto out_tensor = out_tensors_.front();
int out_plane = out_tensor->Height() * out_tensor->Width() * out_tensor->Batch();
@ -182,34 +70,12 @@ void GroupConvolutionFP16CPUKernel::PostConcat(int group_id) {
auto sub_out_data = reinterpret_cast<float16_t *>(group_convs_.at(group_id)->out_tensors().front()->data_c());
MS_ASSERT(sub_out_data);
float16_t *src_ptr = sub_out_data;
float16_t *dst_ptr = ori_out_data_ + group_id * sub_out_channel;
float16_t *dst_ptr = reinterpret_cast<float16_t *>(ori_out_data_) + group_id * sub_out_channel;
for (int i = 0; i < out_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_out_channel * sizeof(float16_t));
src_ptr += sub_out_channel;
dst_ptr += ori_out_channel;
}
}
int GroupConvolutionFP16CPUKernel::Run() {
ori_in_data_ = in_tensors().front()->data_c();
ori_out_data_ = reinterpret_cast<float16_t *>(out_tensors().front()->data_c());
MS_ASSERT(ori_out_data_);
for (int i = 0; i < group_num_; ++i) {
// first, separate group conv input into several parts. This step must be in runtime stage.
auto ret = SeparateInput(i);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Separate input failed.";
return ret;
}
// sun kernels run
ret = group_convs_.at(i)->Run();
if (ret != RET_OK) {
MS_LOG(ERROR) << "sub kernel " << i << " execute failed.";
return ret;
}
// post process, concat all outputs of sub-kernels into one output
PostConcat(i);
}
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -21,34 +21,21 @@
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/op_base.h"
#include "src/runtime/kernel/arm/base/convolution_base.h"
#include "src/runtime/kernel/arm/base/group_convolution_base.h"
#include "nnacl/fp16/conv_fp16.h"
namespace mindspore::kernel {
class GroupConvolutionFP16CPUKernel : public ConvolutionBaseCPUKernel {
class GroupConvolutionFP16CPUKernel : public GroupConvolutionBaseCPUKernel {
public:
GroupConvolutionFP16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
std::vector<kernel::LiteKernel *> group_convs, const int group_num)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx),
group_convs_(std::move(group_convs)),
group_num_(group_num) {} // opParameter(in channel, out channel) in this kernel has been split to groups, if
: GroupConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, std::move(group_convs), group_num) {
} // opParameter(in channel, out channel) in this kernel has been split to groups, if
// you want to get real params, multiply in channel / out channel with group num
~GroupConvolutionFP16CPUKernel() override { FreeSubKernel(); }
int Init() override;
int ReSize() override;
int Run() override;
int PreProcess() override;
int SeparateInput(int group_id);
void PostConcat(int group_id);
void FreeSubKernel();
private:
std::vector<kernel::LiteKernel *> group_convs_;
void *ori_in_data_ = nullptr; // do not free
float16_t *ori_out_data_ = nullptr; // do not free
const int group_num_;
int SeparateInput(int group_id) override;
int PostConcat(int group_id) override;
};
} // namespace mindspore::kernel

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -24,7 +24,7 @@
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_slidewindow_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_indirect_fp32.h"
#include "src/runtime/kernel/arm/base/group_convolution_creator.h"
#include "src/runtime/kernel/arm/base/group_convolution.h"
#include "src/runtime/kernel/arm/fp32/group_convolution_fp32.h"
#include "schema/model_generated.h"
#include "include/errorcode.h"
@ -207,8 +207,8 @@ kernel::LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor
reinterpret_cast<OpParameter *>(new_conv_param), new_inputs, new_outputs, ctx));
}
return new (std::nothrow)
GroupConvolutionCPUKernel(op_parameter, inputs, outputs, ctx, *(group_conv_creator.get_group_conv()),
reinterpret_cast<ConvParameter *>(op_parameter)->group_);
GroupConvolutionFp32CPUKernel(op_parameter, inputs, outputs, ctx, *(group_conv_creator.get_group_conv()),
reinterpret_cast<ConvParameter *>(op_parameter)->group_);
}
/* creator func */

View File

@ -0,0 +1,53 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/group_convolution_fp32.h"
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int GroupConvolutionFp32CPUKernel::SeparateInput(int group_id) {
auto in_tensor = in_tensors_.front();
int in_plane = in_tensor->Height() * in_tensor->Width() * in_tensor->Batch();
int sub_in_channel = conv_param_->input_channel_;
int ori_in_channel = sub_in_channel * group_num_;
auto sub_in_data = reinterpret_cast<float *>(group_convs_.at(group_id)->in_tensors().front()->data_c());
float *src_ptr = reinterpret_cast<float *>(ori_in_data_) + group_id * sub_in_channel;
float *dst_ptr = sub_in_data;
for (int i = 0; i < in_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_in_channel * sizeof(float));
src_ptr += ori_in_channel;
dst_ptr += sub_in_channel;
}
return RET_OK;
}
int GroupConvolutionFp32CPUKernel::PostConcat(int group_id) {
auto out_tensor = out_tensors_.front();
int out_plane = out_tensor->Height() * out_tensor->Width() * out_tensor->Batch();
int sub_out_channel = conv_param_->output_channel_;
int ori_out_channel = sub_out_channel * group_num_;
auto sub_out_data = reinterpret_cast<float *>(group_convs_.at(group_id)->out_tensors().front()->data_c());
float *src_ptr = sub_out_data;
float *dst_ptr = reinterpret_cast<float *>(ori_out_data_) + group_id * sub_out_channel;
for (int i = 0; i < out_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_out_channel * sizeof(float));
src_ptr += sub_out_channel;
dst_ptr += ori_out_channel;
}
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -0,0 +1,40 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GROUP_CONVOLUTION_FP32_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GROUP_CONVOLUTION_FP32_H_
#include <utility>
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/op_base.h"
#include "src/runtime/kernel/arm/base/group_convolution_base.h"
namespace mindspore::kernel {
class GroupConvolutionFp32CPUKernel : public GroupConvolutionBaseCPUKernel {
public:
GroupConvolutionFp32CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
std::vector<kernel::LiteKernel *> group_convs, const int group_num)
: GroupConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, std::move(group_convs), group_num) {
} // opParameter(in channel, out channel) in this kernel has been split to groups, if
// you want to get real params, multiply in channel / out channel with group num
int SeparateInput(int group_id) override;
int PostConcat(int group_id) override;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GROUP_CONVOLUTION_FP32_H_

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -16,8 +16,10 @@
#include "src/runtime/kernel/arm/int8/group_convolution_int8.h"
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
void GroupConvolutionInt8CPUKernel::SeparateInput(int group_id) {
int GroupConvolutionInt8CPUKernel::SeparateInput(int group_id) {
int in_plane = conv_param_->input_h_ * conv_param_->input_w_ * conv_param_->input_batch_;
int sub_in_channel = conv_param_->input_channel_;
int ori_in_channel = sub_in_channel * group_num_;
@ -29,9 +31,10 @@ void GroupConvolutionInt8CPUKernel::SeparateInput(int group_id) {
src_ptr += ori_in_channel;
dst_ptr += sub_in_channel;
}
return RET_OK;
}
void GroupConvolutionInt8CPUKernel::PostConcat(int group_id) {
int GroupConvolutionInt8CPUKernel::PostConcat(int group_id) {
int out_plane = conv_param_->output_h_ * conv_param_->output_w_ * conv_param_->output_batch_;
int sub_out_channel = conv_param_->output_channel_;
int ori_out_channel = sub_out_channel * group_num_;
@ -43,5 +46,6 @@ void GroupConvolutionInt8CPUKernel::PostConcat(int group_id) {
src_ptr += sub_out_channel;
dst_ptr += ori_out_channel;
}
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -21,19 +21,19 @@
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/op_base.h"
#include "src/runtime/kernel/arm/base/group_convolution.h"
#include "src/runtime/kernel/arm/base/group_convolution_base.h"
namespace mindspore::kernel {
class GroupConvolutionInt8CPUKernel : public GroupConvolutionCPUKernel {
class GroupConvolutionInt8CPUKernel : public GroupConvolutionBaseCPUKernel {
public:
GroupConvolutionInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
std::vector<kernel::LiteKernel *> group_convs, const int group_num)
: GroupConvolutionCPUKernel(parameter, inputs, outputs, ctx, std::move(group_convs), group_num) {
: GroupConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, std::move(group_convs), group_num) {
} // opParameter(in channel, out channel) in this kernel has been split to groups, if
// you want to get real params, multiply in channel / out channel with group num
void SeparateInput(int group_id) override;
void PostConcat(int group_id) override;
int SeparateInput(int group_id) override;
int PostConcat(int group_id) override;
};
} // namespace mindspore::kernel