forked from mindspore-Ecosystem/mindspore
parent
8d936a6589
commit
ce26d2e987
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -222,6 +222,8 @@ void ElewiseCmp(const int &nums, enum BroadcastOpType op, const T *x0, const T *
|
|||
}
|
||||
}
|
||||
|
||||
template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const double *x0, const double *x1, bool *y,
|
||||
cudaStream_t stream);
|
||||
template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, bool *y,
|
||||
cudaStream_t stream);
|
||||
template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, bool *y,
|
||||
|
@ -292,6 +294,8 @@ void ElewiseArith(const int &nums, enum BroadcastOpType op, const half *x0, cons
|
|||
}
|
||||
}
|
||||
|
||||
template void ElewiseArith(const int &nums, enum BroadcastOpType op, const double *x0, const double *x1, double *y,
|
||||
cudaStream_t stream);
|
||||
template void ElewiseArith(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, float *y,
|
||||
cudaStream_t stream);
|
||||
template void ElewiseArith(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, half *y,
|
||||
|
@ -372,6 +376,9 @@ void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t>
|
|||
}
|
||||
}
|
||||
|
||||
template void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims,
|
||||
const std::vector<size_t> &y_dims, enum BroadcastOpType op, const double *x0,
|
||||
const double *x1, bool *y, cudaStream_t stream);
|
||||
template void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims,
|
||||
const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0, const float *x1,
|
||||
bool *y, cudaStream_t stream);
|
||||
|
@ -501,6 +508,9 @@ void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t
|
|||
}
|
||||
}
|
||||
|
||||
template void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims,
|
||||
const std::vector<size_t> &y_dims, enum BroadcastOpType op, const double *x0,
|
||||
const double *x1, double *y, cudaStream_t stream);
|
||||
template void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims,
|
||||
const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0,
|
||||
const float *x1, float *y, cudaStream_t stream);
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -18,6 +18,20 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
// fp64
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Add, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
BroadcastOpGpuKernel, double)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Sub, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
BroadcastOpGpuKernel, double)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Mul, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
BroadcastOpGpuKernel, double)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Div, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
BroadcastOpGpuKernel, double)
|
||||
|
||||
// fp32
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Greater,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -31,6 +31,10 @@ MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape,
|
|||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
GpuConvertToDynamicShapeGpuKernel, float)
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
GpuConvertToDynamicShapeGpuKernel, double)
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
|
||||
GpuConvertToDynamicShapeGpuKernel, int8_t)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -25,34 +25,32 @@ from mindspore.common.parameter import Parameter
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _inner_ops as inner
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class TensroAdd(nn.Cell):
|
||||
def __init__(self):
|
||||
super(TensroAdd, self).__init__()
|
||||
class AddNet(nn.Cell):
|
||||
def __init__(self, nptype):
|
||||
super(AddNet, self).__init__()
|
||||
|
||||
self.add = P.Add()
|
||||
|
||||
np.random.seed(0)
|
||||
self.x = Parameter(initializer(
|
||||
Tensor(np.random.randn(2, 0).astype(np.float32)), [2, 0]), name='x')
|
||||
Tensor(np.random.randn(2, 0).astype(nptype)), [2, 0]), name='x')
|
||||
self.y = Parameter(initializer(
|
||||
Tensor(np.random.randn(2, 1).astype(np.float32)), [2, 1]), name='y')
|
||||
Tensor(np.random.randn(2, 1).astype(nptype)), [2, 1]), name='y')
|
||||
|
||||
self.x1 = Parameter(initializer(
|
||||
Tensor(np.arange(3).reshape(3).astype(np.float32)), [3]), name='x1')
|
||||
Tensor(np.arange(3).reshape(3).astype(nptype)), [3]), name='x1')
|
||||
self.y1 = Parameter(initializer(
|
||||
Tensor(np.array([2]).astype(np.float32)), [1]), name='y1')
|
||||
Tensor(np.array([2]).astype(nptype)), [1]), name='y1')
|
||||
|
||||
self.x2 = Parameter(initializer(
|
||||
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='x2')
|
||||
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='x2')
|
||||
self.y2 = Parameter(initializer(
|
||||
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y2')
|
||||
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='y2')
|
||||
|
||||
self.x3 = Parameter(initializer(
|
||||
Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(np.float32)), [1, 1, 3, 3]), name='x3')
|
||||
Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(nptype)), [1, 1, 3, 3]), name='x3')
|
||||
self.y3 = Parameter(initializer(
|
||||
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y3')
|
||||
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='y3')
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -61,14 +59,13 @@ class TensroAdd(nn.Cell):
|
|||
self.add(self.x3, self.y3))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_TensorAdd():
|
||||
add = TensroAdd()
|
||||
output = add()
|
||||
def add(nptype):
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
add_net = AddNet(nptype)
|
||||
output = add_net()
|
||||
expect0 = np.array([])
|
||||
expect1 = np.array([2, 3, 4])
|
||||
expect1 = np.array([2, 3, 4]).astype(nptype)
|
||||
expect2 = np.array(
|
||||
[[[[0., 2., 4.],
|
||||
[6., 8., 10.],
|
||||
|
@ -96,7 +93,7 @@ def test_TensorAdd():
|
|||
[138., 140., 142.]],
|
||||
[[144., 146., 148.],
|
||||
[150., 152., 154.],
|
||||
[156., 158., 160.]]]])
|
||||
[156., 158., 160.]]]]).astype(nptype)
|
||||
expect3 = np.array(
|
||||
[[[[0., 2., 4.],
|
||||
[6., 8., 10.],
|
||||
|
@ -124,13 +121,42 @@ def test_TensorAdd():
|
|||
[75., 77., 79.]],
|
||||
[[72., 74., 76.],
|
||||
[78., 80., 82.],
|
||||
[84., 86., 88.]]]]
|
||||
)
|
||||
[84., 86., 88.]]]]).astype(nptype)
|
||||
assert (output[0].asnumpy() == expect0).all()
|
||||
assert (output[1].asnumpy() == expect1).all()
|
||||
assert (output[2].asnumpy() == expect2).all()
|
||||
assert (output[3].asnumpy() == expect3).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_float64():
|
||||
add(np.float64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_float32():
|
||||
add(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_float16():
|
||||
add(np.float16)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_int64():
|
||||
add(np.int64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_int32():
|
||||
add(np.int32)
|
||||
|
||||
class Tensoradd_d(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Tensoradd_d, self).__init__()
|
||||
|
@ -142,18 +168,16 @@ class Tensoradd_d(nn.Cell):
|
|||
y = self.test_dynamic(y)
|
||||
return self.add(x, y)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_TensorAdd_dynamic():
|
||||
|
||||
def add_dynamic(nptype):
|
||||
context.set_context(device_target='GPU', mode=context.GRAPH_MODE)
|
||||
net = Tensoradd_d()
|
||||
|
||||
x1 = Tensor(np.arange(3).reshape(3).astype(np.float32))
|
||||
y1 = Tensor(np.array([2]).astype(np.float32))
|
||||
x1 = Tensor(np.arange(3).reshape(3).astype(nptype))
|
||||
y1 = Tensor(np.array([2]).astype(nptype))
|
||||
|
||||
x2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32))
|
||||
y2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32))
|
||||
x2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype))
|
||||
y2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype))
|
||||
|
||||
expect1 = np.array([2, 3, 4])
|
||||
expect2 = np.array(
|
||||
|
@ -189,3 +213,33 @@ def test_TensorAdd_dynamic():
|
|||
output2 = net(x2, y2)
|
||||
assert (output1.asnumpy() == expect1).all()
|
||||
assert (output2.asnumpy() == expect2).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_dynamic_float64():
|
||||
add_dynamic(np.float64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_dynamic_float32():
|
||||
add_dynamic(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_dynamic_float16():
|
||||
add_dynamic(np.float16)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_dynamic_int64():
|
||||
add_dynamic(np.int64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_add_dynamic_int32():
|
||||
add_dynamic(np.int32)
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -29,24 +29,17 @@ class NetDiv(nn.Cell):
|
|||
def construct(self, x, y):
|
||||
return self.div(x, y)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_div():
|
||||
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32)
|
||||
x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32)
|
||||
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
x3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
||||
y3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
||||
x4_np = np.array(768).astype(np.float32)
|
||||
y4_np = np.array(3072.5).astype(np.float32)
|
||||
x5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16)
|
||||
y5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16)
|
||||
x6_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.int32)
|
||||
y6_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.int32)
|
||||
def div(nptype):
|
||||
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
|
||||
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
|
||||
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
|
||||
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(nptype)
|
||||
x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(nptype)
|
||||
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
|
||||
x3_np = np.random.randint(1, 5, 1).astype(nptype)
|
||||
y3_np = np.random.randint(1, 5, 1).astype(nptype)
|
||||
x4_np = np.array(78).astype(nptype)
|
||||
y4_np = np.array(37.5).astype(nptype)
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
y0 = Tensor(y0_np)
|
||||
|
@ -58,28 +51,24 @@ def test_div():
|
|||
y3 = Tensor(y3_np)
|
||||
x4 = Tensor(x4_np)
|
||||
y4 = Tensor(y4_np)
|
||||
x5 = Tensor(x5_np)
|
||||
y5 = Tensor(y5_np)
|
||||
x6 = Tensor(x6_np)
|
||||
y6 = Tensor(y6_np)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
div = NetDiv()
|
||||
output0 = div(x0, y0)
|
||||
div_net = NetDiv()
|
||||
output0 = div_net(x0, y0)
|
||||
expect0 = np.divide(x0_np, y0_np)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = div(x1, y1)
|
||||
output1 = div_net(x1, y1)
|
||||
expect1 = np.divide(x1_np, y1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
output2 = div(x2, y2)
|
||||
output2 = div_net(x2, y2)
|
||||
expect2 = np.divide(x2_np, y2_np)
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
|
@ -87,30 +76,46 @@ def test_div():
|
|||
assert output2.shape == expect2.shape
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
output3 = div(x3, y3)
|
||||
output3 = div_net(x3, y3)
|
||||
expect3 = np.divide(x3_np, y3_np)
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape == expect3.shape
|
||||
|
||||
output4 = div(x4, y4)
|
||||
output4 = div_net(x4, y4)
|
||||
expect4 = np.divide(x4_np, y4_np)
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape == expect4.shape
|
||||
|
||||
output5 = div(x5, y5)
|
||||
expect5 = np.divide(x5_np, y5_np)
|
||||
diff5 = output5.asnumpy() - expect5
|
||||
error5 = np.ones(shape=expect5.shape) * 1.0e-5
|
||||
assert np.all(diff5 < error5)
|
||||
assert output5.shape == expect5.shape
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_div_float64():
|
||||
div(np.float64)
|
||||
|
||||
output6 = div(x6, y6)
|
||||
expect6 = np.divide(x6_np, y6_np)
|
||||
diff6 = output6.asnumpy() - expect6
|
||||
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
||||
assert np.all(diff6 < error6)
|
||||
assert output6.shape == expect6.shape
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_div_float32():
|
||||
div(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_div_float16():
|
||||
div(np.float16)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_div_int64():
|
||||
div(np.int64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_div_int32():
|
||||
div(np.int32)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -63,6 +63,12 @@ def gpu_convert_to_dynamic_shape_float(dtype):
|
|||
|
||||
np.random.seed(0)
|
||||
finfo = np.finfo(dtype)
|
||||
|
||||
# np.random.uniform will overflow if we use min/max for float64, so we use
|
||||
# the finfo for float32, but still test the operator with float64 input.
|
||||
if dtype == np.float64:
|
||||
finfo = np.finfo(np.float32)
|
||||
|
||||
float_min = finfo.min
|
||||
float_max = finfo.max
|
||||
x = np.random.uniform(low=float_min, high=float_max, size=12).astype(dtype)
|
||||
|
@ -103,6 +109,12 @@ def test_gpu_convert_to_dynamic_shape_float16():
|
|||
def test_gpu_convert_to_dynamic_shape_float32():
|
||||
gpu_convert_to_dynamic_shape_float(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_gpu_convert_to_dynamic_shape_float64():
|
||||
gpu_convert_to_dynamic_shape_float(np.float64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -31,20 +31,17 @@ class NetMul(nn.Cell):
|
|||
return self.mul(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul():
|
||||
x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
y0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
x1_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
y1_np = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(np.float32)
|
||||
x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32)
|
||||
y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
x3_np = np.random.uniform(-2, 2, 1).astype(np.float32)
|
||||
y3_np = np.random.uniform(-2, 2, 1).astype(np.float32)
|
||||
x4_np = np.array(768).astype(np.float32)
|
||||
y4_np = np.array(3072.5).astype(np.float32)
|
||||
def mul(nptype):
|
||||
x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
y0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
x1_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
y1_np = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(nptype)
|
||||
x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype)
|
||||
y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
x3_np = np.random.uniform(-2, 2, 1).astype(nptype)
|
||||
y3_np = np.random.uniform(-2, 2, 1).astype(nptype)
|
||||
x4_np = np.array(78).astype(nptype)
|
||||
y4_np = np.array(37.5).astype(nptype)
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
y0 = Tensor(y0_np)
|
||||
|
@ -58,36 +55,36 @@ def test_mul():
|
|||
y4 = Tensor(y4_np)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
mul = NetMul()
|
||||
output0 = mul(x0, y0)
|
||||
mul_net = NetMul()
|
||||
output0 = mul_net(x0, y0)
|
||||
expect0 = np.multiply(x0_np, y0_np)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = mul(x1, y1)
|
||||
output1 = mul_net(x1, y1)
|
||||
expect1 = np.multiply(x1_np, y1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
output2 = mul(x2, y2)
|
||||
output2 = mul_net(x2, y2)
|
||||
expect2 = np.multiply(x2_np, y2_np)
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
output3 = mul(x3, y3)
|
||||
output3 = mul_net(x3, y3)
|
||||
expect3 = np.multiply(x3_np, y3_np)
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape == expect3.shape
|
||||
|
||||
output4 = mul(x4, y4)
|
||||
output4 = mul_net(x4, y4)
|
||||
expect4 = np.multiply(x4_np, y4_np)
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
|
@ -95,42 +92,72 @@ def test_mul():
|
|||
assert output4.shape == expect4.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
mul = NetMul()
|
||||
output0 = mul(x0, y0)
|
||||
mul_net = NetMul()
|
||||
output0 = mul_net(x0, y0)
|
||||
expect0 = np.multiply(x0_np, y0_np)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = mul(x1, y1)
|
||||
output1 = mul_net(x1, y1)
|
||||
expect1 = np.multiply(x1_np, y1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
output2 = mul(x2, y2)
|
||||
output2 = mul_net(x2, y2)
|
||||
expect2 = np.multiply(x2_np, y2_np)
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
output3 = mul(x3, y3)
|
||||
output3 = mul_net(x3, y3)
|
||||
expect3 = np.multiply(x3_np, y3_np)
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape == expect3.shape
|
||||
|
||||
output4 = mul(x4, y4)
|
||||
output4 = mul_net(x4, y4)
|
||||
expect4 = np.multiply(x4_np, y4_np)
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape == expect4.shape
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_float64():
|
||||
mul(np.float64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_float32():
|
||||
mul(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_float16():
|
||||
mul(np.float16)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_int64():
|
||||
mul(np.int64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_int32():
|
||||
mul(np.int32)
|
||||
|
||||
class NetMul_dynamic(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetMul_dynamic, self).__init__()
|
||||
|
@ -143,14 +170,12 @@ class NetMul_dynamic(nn.Cell):
|
|||
out = self.mul(x, y)
|
||||
return out
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_dynamic():
|
||||
x1_np = np.array([768]).astype(np.float32)
|
||||
y1_np = np.array([3072.5]).astype(np.float32)
|
||||
x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32)
|
||||
y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
|
||||
def mul_dynamic(nptype):
|
||||
x1_np = np.array([78]).astype(nptype)
|
||||
y1_np = np.array([37.5]).astype(nptype)
|
||||
x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype)
|
||||
y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
|
||||
x1 = Tensor(x1_np)
|
||||
y1 = Tensor(y1_np)
|
||||
|
@ -159,10 +184,10 @@ def test_mul_dynamic():
|
|||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
mul = NetMul_dynamic()
|
||||
mul_net = NetMul_dynamic()
|
||||
|
||||
output1 = mul(x1, y1)
|
||||
output2 = mul(x2, y2)
|
||||
output1 = mul_net(x1, y1)
|
||||
output2 = mul_net(x2, y2)
|
||||
expect1 = np.multiply(x1_np, y1_np)
|
||||
expect2 = np.multiply(x2_np, y2_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
|
@ -173,3 +198,33 @@ def test_mul_dynamic():
|
|||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_dynamic_float64():
|
||||
mul_dynamic(np.float64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_dynamic_float32():
|
||||
mul_dynamic(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_dynamic_float16():
|
||||
mul_dynamic(np.float16)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_dynamic_int64():
|
||||
mul_dynamic(np.int64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mul_dynamic_int32():
|
||||
mul_dynamic(np.int32)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -31,20 +31,17 @@ class Net(nn.Cell):
|
|||
return self.sub(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_Sub():
|
||||
np_x0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
np_y0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
np_x1 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
np_y1 = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(np.float32)
|
||||
np_x2 = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32)
|
||||
np_y2 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
np_x3 = np.random.uniform(-2, 2, 1).astype(np.float32)
|
||||
np_y3 = np.random.uniform(-2, 2, 1).astype(np.float32)
|
||||
np_x4 = np.array(768).astype(np.float32)
|
||||
np_y4 = np.array(3072.5).astype(np.float32)
|
||||
def sub(nptype):
|
||||
np_x0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
np_y0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
np_x1 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
np_y1 = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(nptype)
|
||||
np_x2 = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype)
|
||||
np_y2 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
|
||||
np_x3 = np.random.uniform(-2, 2, 1).astype(nptype)
|
||||
np_y3 = np.random.uniform(-2, 2, 1).astype(nptype)
|
||||
np_x4 = np.array(768).astype(nptype)
|
||||
np_y4 = np.array(3072.5).astype(nptype)
|
||||
x0 = Tensor(np_x0)
|
||||
y0 = Tensor(np_y0)
|
||||
x1 = Tensor(np_x1)
|
||||
|
@ -68,12 +65,12 @@ def test_Sub():
|
|||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
sub = Net()
|
||||
output0 = sub(x0, y0)
|
||||
output1 = sub(x1, y1)
|
||||
output2 = sub(x2, y2)
|
||||
output3 = sub(x3, y3)
|
||||
output4 = sub(x4, y4)
|
||||
sub_net = Net()
|
||||
output0 = sub_net(x0, y0)
|
||||
output1 = sub_net(x1, y1)
|
||||
output2 = sub_net(x2, y2)
|
||||
output3 = sub_net(x3, y3)
|
||||
output4 = sub_net(x4, y4)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape == expect0.shape
|
||||
|
@ -91,12 +88,12 @@ def test_Sub():
|
|||
assert output4.shape == expect4.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
sub = Net()
|
||||
output0 = sub(x0, y0)
|
||||
output1 = sub(x1, y1)
|
||||
output2 = sub(x2, y2)
|
||||
output3 = sub(x3, y3)
|
||||
output4 = sub(x4, y4)
|
||||
sub_net = Net()
|
||||
output0 = sub_net(x0, y0)
|
||||
output1 = sub_net(x1, y1)
|
||||
output2 = sub_net(x2, y2)
|
||||
output3 = sub_net(x3, y3)
|
||||
output4 = sub_net(x4, y4)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape == expect0.shape
|
||||
|
@ -112,3 +109,33 @@ def test_Sub():
|
|||
diff4 = output4.asnumpy() - expect4
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape == expect4.shape
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sub_float64():
|
||||
sub(np.float64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sub_float32():
|
||||
sub(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sub_float16():
|
||||
sub(np.float16)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sub_int64():
|
||||
sub(np.int64)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sub_int32():
|
||||
sub(np.int32)
|
||||
|
|
Loading…
Reference in New Issue