forked from mindspore-Ecosystem/mindspore
!16567 add GPU EmbeddingLookup
From: @TFbunny Reviewed-by: Signed-off-by:
This commit is contained in:
commit
ccde359fc0
|
@ -0,0 +1,144 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/embedding_lookup_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat64),
|
||||
EmbeddingLookupKernel, double, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat64),
|
||||
EmbeddingLookupKernel, double, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EmbeddingLookupKernel, float, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32),
|
||||
EmbeddingLookupKernel, float, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat16),
|
||||
EmbeddingLookupKernel, half, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16),
|
||||
EmbeddingLookupKernel, half, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
EmbeddingLookupKernel, int, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
|
||||
EmbeddingLookupKernel, int, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt16),
|
||||
EmbeddingLookupKernel, int16_t, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt16),
|
||||
EmbeddingLookupKernel, int16_t, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt8),
|
||||
EmbeddingLookupKernel, int8_t, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt8),
|
||||
EmbeddingLookupKernel, int8_t, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeUInt8),
|
||||
EmbeddingLookupKernel, uint8_t, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeUInt8),
|
||||
EmbeddingLookupKernel, uint8_t, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeBool).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeBool),
|
||||
EmbeddingLookupKernel, bool, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeBool).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeBool),
|
||||
EmbeddingLookupKernel, bool, int64_t)
|
||||
// dynamic shape
|
||||
MS_REG_GPU_KERNEL_TWO(EmbeddingLookup,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
EmbeddingLookupKernel, double, int)
|
||||
MS_REG_GPU_KERNEL_TWO(EmbeddingLookup,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
EmbeddingLookupKernel, double, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(EmbeddingLookup,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
EmbeddingLookupKernel, float, int)
|
||||
MS_REG_GPU_KERNEL_TWO(EmbeddingLookup,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
EmbeddingLookupKernel, float, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(EmbeddingLookup,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
EmbeddingLookupKernel, half, int)
|
||||
MS_REG_GPU_KERNEL_TWO(EmbeddingLookup,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
EmbeddingLookupKernel, half, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(EmbeddingLookup,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
EmbeddingLookupKernel, bool, int)
|
||||
MS_REG_GPU_KERNEL_TWO(EmbeddingLookup,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
EmbeddingLookupKernel, bool, int64_t)
|
||||
// dynamic shape ends
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,148 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_EMBEDDING_LOOKUP_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_EMBEDDING_LOOKUP_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/embedding_lookup_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T, typename S>
|
||||
class EmbeddingLookupKernel : public GpuKernel {
|
||||
public:
|
||||
EmbeddingLookupKernel() { ResetResource(); }
|
||||
~EmbeddingLookupKernel() = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
VARIABLE_NOT_USED(workspace);
|
||||
T *input_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
S *indices_addr = GetDeviceAddress<S>(inputs, 1);
|
||||
T *output_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
if (is_dynamic_shape_) {
|
||||
int64_t *offset_device_address = GetDeviceAddress<int64_t>(inputs, 2); // only get this if in dynamic mode
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(&offset_, offset_device_address, sizeof(int64_t),
|
||||
cudaMemcpyDeviceToHost, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync offset_ failed");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_, cudaDeviceSynchronize(),
|
||||
"cudaDeviceSyncFailed - EmbeddingLookup - in dynamic mode");
|
||||
}
|
||||
auto input_dim1 = input_shapes_[0];
|
||||
CalEmbeddingLookup(input_addr, indices_addr, output_addr, dims_[0], dims_[1], dims_[2], input_dim1, offset_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
kernel_node_ = kernel_node;
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num == 3) {
|
||||
is_dynamic_shape_ = true;
|
||||
MS_LOG(INFO) << " EmbeddingLookup running in Dynamic Mode.";
|
||||
} else if (input_num == 2) {
|
||||
MS_LOG(INFO) << " EmbeddingLookup running in Normal Mode.";
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Argument number is " << input_num << ", but EmbeddingLookup needs 2 or 3.";
|
||||
}
|
||||
input_shapes_ = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
indices_shapes_ = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 1);
|
||||
output_shapes_ = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
if (!is_dynamic_shape_) {
|
||||
offset_ = GetAttr<int64_t>(kernel_node, "offset");
|
||||
}
|
||||
Reshape();
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void ResetResource() noexcept override {
|
||||
is_dynamic_shape_ = false;
|
||||
input_shapes_.clear();
|
||||
indices_shapes_.clear();
|
||||
output_shapes_.clear();
|
||||
std::fill(dims_, dims_ + 3, 0);
|
||||
offset_ = 0;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
size_t size = GetSize(input_shapes_);
|
||||
input_size_list_.push_back(size);
|
||||
size = GetSize(indices_shapes_);
|
||||
input_size_list_.push_back(size);
|
||||
if (is_dynamic_shape_) {
|
||||
input_size_list_.push_back(sizeof(int64_t));
|
||||
}
|
||||
size = GetSize(output_shapes_);
|
||||
output_size_list_.push_back(size);
|
||||
}
|
||||
|
||||
private:
|
||||
void Reshape() {
|
||||
int64_t axis = 0;
|
||||
size_t dim_before_axis = 1;
|
||||
for (size_t i = 0; i < LongToSize(axis); i++) {
|
||||
dim_before_axis *= output_shapes_[i];
|
||||
}
|
||||
size_t dim_of_indices = 1;
|
||||
for (size_t i = 0; i < indices_shapes_.size(); i++) {
|
||||
dim_of_indices *= indices_shapes_[i];
|
||||
}
|
||||
size_t dim_after_indices = 1;
|
||||
for (size_t i = LongToSize(axis) + indices_shapes_.size(); i < output_shapes_.size(); i++) {
|
||||
dim_after_indices *= output_shapes_[i];
|
||||
}
|
||||
dims_[0] = dim_before_axis;
|
||||
dims_[1] = dim_of_indices;
|
||||
dims_[2] = dim_after_indices;
|
||||
return;
|
||||
}
|
||||
size_t GetSize(const std::vector<size_t> &shape) const {
|
||||
if (shape.size() == 0) {
|
||||
return 0;
|
||||
}
|
||||
size_t result = sizeof(T);
|
||||
for (size_t i = 0; i < shape.size(); i++) {
|
||||
result *= shape[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<size_t> input_shapes_;
|
||||
std::vector<size_t> indices_shapes_;
|
||||
std::vector<size_t> output_shapes_;
|
||||
size_t dims_[3] = {};
|
||||
int64_t offset_;
|
||||
bool is_dynamic_shape_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_EMBEDDING_LOOKUP_GPU_KERNEL_H_
|
|
@ -73,6 +73,20 @@ MS_REG_GPU_KERNEL_TWO(
|
|||
Gather, KernelAttr().AddInputAttr(kNumberTypeBool).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeBool),
|
||||
GatherV2GpuFwdKernel, bool, int64_t)
|
||||
// dynamic shape
|
||||
MS_REG_GPU_KERNEL_TWO(Gather,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
GatherV2GpuFwdKernel, double, int)
|
||||
MS_REG_GPU_KERNEL_TWO(Gather,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
GatherV2GpuFwdKernel, double, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(Gather,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
|
|
|
@ -0,0 +1,88 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/gatherv2.cuh"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/embedding_lookup_impl.cuh"
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
__global__ void SubOffset(T *indices, size_t size, int64_t offset) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
indices[pos] -= static_cast<T>(offset);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
void CalEmbeddingLookup(T *input, S *indices, T *output, size_t output_dim0, size_t output_dim1, size_t output_dim2,
|
||||
size_t input_dim1, int64_t offset, cudaStream_t stream) {
|
||||
size_t size = output_dim0 * output_dim1 * output_dim2;
|
||||
SubOffset<<<GET_BLOCKS(output_dim1), GET_THREADS, 0, stream>>>(indices, output_dim1, offset);
|
||||
GatherV2Kernel<<<GET_BLOCKS(size), GET_THREADS, 0, stream>>>(input, indices, output, output_dim0, output_dim1,
|
||||
output_dim2, input_dim1);
|
||||
// restore indices
|
||||
SubOffset<<<GET_BLOCKS(output_dim1), GET_THREADS, 0, stream>>>(indices, output_dim1, -offset);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalEmbeddingLookup<float, int>(float *input, int *indices, float *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1, int64_t offset,
|
||||
cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<float, int64_t>(float *input, int64_t *indices, float *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1,
|
||||
int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<half, int>(half *input, int *indices, half *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1, int64_t offset,
|
||||
cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<half, int64_t>(half *input, int64_t *indices, half *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1,
|
||||
int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<double, int>(double *input, int *indices, double *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1, int64_t offset,
|
||||
cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<double, int64_t>(double *input, int64_t *indices, double *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1,
|
||||
int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<int, int>(int *input, int *indices, int *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1, int64_t offset,
|
||||
cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<int, int64_t>(int *input, int64_t *indices, int *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1,
|
||||
int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<int16_t, int>(int16_t *input, int *indices, int16_t *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1,
|
||||
int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<int16_t, int64_t>(int16_t *input, int64_t *indices, int16_t *output,
|
||||
size_t output_dim0, size_t output_dim1, size_t output_dim2,
|
||||
size_t input_dim1, int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<int8_t, int>(int8_t *input, int *indices, int8_t *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1, int64_t offset,
|
||||
cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<int8_t, int64_t>(int8_t *input, int64_t *indices, int8_t *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1,
|
||||
int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<uint8_t, int>(uint8_t *input, int *indices, uint8_t *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1,
|
||||
int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<uint8_t, int64_t>(uint8_t *input, int64_t *indices, uint8_t *output,
|
||||
size_t output_dim0, size_t output_dim1, size_t output_dim2,
|
||||
size_t input_dim1, int64_t offset, cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<bool, int>(bool *input, int *indices, bool *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1, int64_t offset,
|
||||
cudaStream_t stream);
|
||||
template void CalEmbeddingLookup<bool, int64_t>(bool *input, int64_t *indices, bool *output, size_t output_dim0,
|
||||
size_t output_dim1, size_t output_dim2, size_t input_dim1,
|
||||
int64_t offset, cudaStream_t stream);
|
|
@ -0,0 +1,24 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_EMBEDDING_LOOKUP_IMPL_CUH_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_EMBEDDING_LOOKUP_IMPL_CUH_
|
||||
|
||||
template <typename T, typename S>
|
||||
void CalEmbeddingLookup(T *input, S *indices, T *output, size_t output_dim0, size_t output_dim1, size_t output_dim2,
|
||||
size_t input_dim1, int64_t offset, cudaStream_t stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_EMBEDDING_LOOKUP_IMPL_CUH_
|
|
@ -16,8 +16,13 @@
|
|||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_GATHERV2_CUH_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_GATHERV2_CUH_
|
||||
|
||||
template <typename T, typename S>
|
||||
void GatherV2(T *input, S *indices, T *output, size_t output_dim0, size_t output_dim1, size_t output_dim2,
|
||||
size_t input_dim1, cudaStream_t stream);
|
||||
|
||||
template <typename T, typename S>
|
||||
__global__ void GatherV2Kernel(T *input, S *indices, T *output, size_t output_dim0, size_t output_dim1,
|
||||
size_t output_dim2, size_t input_dim1);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_GATHERV2_CUH_
|
||||
|
|
|
@ -5056,7 +5056,7 @@ class EmbeddingLookup(PrimitiveWithCheck):
|
|||
ValueError: If length of shape of `input_params` is greater than 2.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32)
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.embeddinglookup = P.EmbeddingLookup()
|
||||
|
||||
def construct(self, input_params, input_indices, offset):
|
||||
return self.embeddinglookup(input_params, input_indices, offset)
|
||||
|
||||
|
||||
def embeddinglookup_testcase(nptype):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]).astype(nptype))
|
||||
input_indices = Tensor(np.array([[5, 2], [8, 5]]).astype(np.int32))
|
||||
offset = 4
|
||||
output = Net()(input_params, input_indices, offset)
|
||||
expect = np.array([[[10, 11], [0, 0]], [[0, 0], [10, 11]]]).astype(nptype)
|
||||
np.testing.assert_almost_equal(expect, output.asnumpy())
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]).astype(nptype))
|
||||
input_indices = Tensor(np.array([[5, 2], [8, 5]]).astype(np.int32))
|
||||
offset = 4
|
||||
output = Net()(input_params, input_indices, offset)
|
||||
expect = np.array([[[10, 11], [0, 0]], [[0, 0], [10, 11]]]).astype(nptype)
|
||||
np.testing.assert_almost_equal(expect, output.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_embeddinglookup_float32():
|
||||
embeddinglookup_testcase(np.float32)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_embeddinglookup_float16():
|
||||
embeddinglookup_testcase(np.float16)
|
Loading…
Reference in New Issue