!16379 add cpu model scripts

From: @lijiaqi0612
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-05-19 11:37:16 +08:00 committed by Gitee
commit cb95f8f5a8
11 changed files with 394 additions and 8 deletions

View File

@ -55,8 +55,9 @@ The directory structure is as follows:
# [Environment Requirements](#contents)
- HardwareAscend
- Prepare hardware environment with Ascend processor.
- HardwareAscend, CPU
- Prepare hardware environment with Ascend processor. It also supports the use of CPU processor to prepare the
hardware environment.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
@ -76,9 +77,12 @@ The entire code structure is as following:
│ ├── run_distribute_train_base.sh // shell script for distributed training on Ascend
│ ├── run_distribute_train_beta.sh // shell script for distributed training on Ascend
│ ├── run_eval.sh // shell script for evaluation on Ascend
│ ├── run_eval_cpu.sh // shell script for evaluation on CPU
│ ├── run_export.sh // shell script for exporting air model
│ ├── run_standalone_train_base.sh // shell script for standalone training on Ascend
│ ├── run_standalone_train_beta.sh // shell script for standalone training on Ascend
│ ├── run_train_base_cpu.sh // shell script for training on CPU
│ ├── run_train_btae_cpu.sh // shell script for training on CPU
├── src
│ ├── backbone
│ │ ├── head.py // head unit
@ -100,8 +104,11 @@ The entire code structure is as following:
│ ├── local_adapter.py // local adapter
│ ├── moxing_adapter.py // moxing adapter
├─ base_config.yaml // parameter configuration
├─ base_config_cpu.yaml // parameter configuration
├─ beta_config.yaml // parameter configuration
├─ beta_config_cpu.yaml // parameter configuration
├─ inference_config.yaml // parameter configuration
├─ inference_config_cpu.yaml // parameter configuration
├─ train.py // training scripts
├─ eval.py // evaluation scripts
└─ export.py // export air model
@ -111,7 +118,7 @@ The entire code structure is as following:
### Train
- Stand alone mode
- Stand alone mode(Ascend)
- base model
@ -171,6 +178,36 @@ The entire code structure is as following:
sh run_distribute_train_beta.sh ./rank_table_8p.json
```
- Stand alone mode(CPU)
- base model
```bash
cd ./scripts
sh run_train_base_cpu.sh
```
for example:
```bash
cd ./scripts
sh run_train_base_cpu.sh
```
- beta model
```bash
cd ./scripts
sh run_train_beta_cpu.sh
```
for example:
```bash
cd ./scripts
sh run_train_beta_cpu.sh
```
- ModelArts (If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start training as follows)
- base model

View File

@ -0,0 +1,76 @@
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
enable_modelarts: False
# Url for modelarts
data_url: ""
train_url: ""
checkpoint_url: ""
# Path for local
data_path: "/cache/data"
output_path: "/cache/train"
load_path: "/cache/checkpoint_path"
device_target: "CPU"
enable_profiling: False
# ==============================================================================
# Training options
train_stage: "base"
is_distributed: 0
# dataset related
data_dir: "/cache/data/face_recognition_dataset/train_dataset/"
num_classes: 1
per_batch_size: 64
need_modelarts_dataset_unzip: True
# network structure related
backbone: "r100"
use_se: 1
emb_size: 512
act_type: "relu"
fp16: 1
pre_bn: 1
inference: 0
use_drop: 1
nc_16: 1
# loss related
margin_a: 1.0
margin_b: 0.2
margin_m: 0.3
margin_s: 64
# optimizer related
lr: 0.01
lr_scale: 1
lr_epochs: "8,14,18"
weight_decay: 0.0002
momentum: 0.9
max_epoch: 20
pretrained: ""
warmup_epochs: 0
# distributed parameter
local_rank: 0
world_size: 1
model_parallel: 0
# logging related
log_interval: 100
ckpt_path: "outputs"
max_ckpts: -1
dynamic_init_loss_scale: 65536
ckpt_steps: 1000
---
# Help description for each configuration
enable_modelarts: "Whether training on modelarts, default: False"
data_url: "Url for modelarts"
train_url: "Url for modelarts"
data_path: "The location of the input data."
output_path: "The location of the output file."
device_target: 'Target device type'
enable_profiling: 'Whether enable profiling while training, default: False'
train_stage: "Train stage, base or beta"
is_distributed: "If multi device"

View File

@ -0,0 +1,76 @@
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
enable_modelarts: False
# Url for modelarts
data_url: ""
train_url: ""
checkpoint_url: ""
# Path for local
data_path: "/cache/data"
output_path: "/cache/train"
load_path: "/cache/checkpoint_path"
device_target: "CPU"
enable_profiling: False
# ==============================================================================
# Training options
train_stage: "beta"
is_distributed: 0
# dataset related
data_dir: "/cache/data/face_recognition_dataset/train_dataset/"
num_classes: 1
per_batch_size: 64
need_modelarts_dataset_unzip: True
# network structure related
backbone: "r100"
use_se: 0
emb_size: 256
act_type: "relu"
fp16: 1
pre_bn: 0
inference: 0
use_drop: 1
nc_16: 1
# loss related
margin_a: 1.0
margin_b: 0.2
margin_m: 0.3
margin_s: 64
# optimizer related
lr: 0.04
lr_scale: 1
lr_epochs: "8,14,18"
weight_decay: 0.0002
momentum: 0.9
max_epoch: 20
pretrained: "your_pretrained_model"
warmup_epochs: 0
# distributed parameter
local_rank: 0
world_size: 1
model_parallel: 0
# logging related
log_interval: 100
ckpt_path: "outputs"
max_ckpts: -1
dynamic_init_loss_scale: 65536
ckpt_steps: 1000
---
# Help description for each configuration
enable_modelarts: "Whether training on modelarts, default: False"
data_url: "Url for modelarts"
train_url: "Url for modelarts"
data_path: "The location of the input data."
output_path: "The location of the output file."
device_target: 'Target device type'
enable_profiling: 'Whether enable profiling while training, default: False'
train_stage: "Train stage, base or beta"
is_distributed: "If multi device"

View File

@ -33,7 +33,7 @@ from model_utils.config import config
from model_utils.moxing_adapter import moxing_wrapper
from model_utils.device_adapter import get_device_id, get_device_num, get_rank_id
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=get_device_id())
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id())
class TxtDataset():

View File

@ -0,0 +1,60 @@
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
enable_modelarts: False
# Url for modelarts
data_url: ""
train_url: ""
checkpoint_url: ""
# Path for local
data_path: "/cache/data"
output_path: "/cache/train"
load_path: "/cache/checkpoint_path"
device_target: "CPU"
enable_profiling: False
# ==============================================================================
# Training options
# distributed parameter
is_distributed: 0
local_rank: 0
world_size: 1
# test weight
weight: 'your_test_model'
test_dir: '/cache/data/face_recognition_dataset/'
need_modelarts_dataset_unzip: True
# model define
backbone: "r100"
use_se: 0
emb_size: 256
act_type: "relu"
fp16: 1
pre_bn: 0
inference: 1
use_drop: 0
# test and dis batch size
test_batch_size: 128
dis_batch_size: 512
# log
log_interval: 100
ckpt_path: "outputs/models"
# test and dis image list
test_img_predix: ""
test_img_list: ""
dis_img_predix: ""
dis_img_list: ""
---
# Help description for each configuration
enable_modelarts: "Whether training on modelarts, default: False"
data_url: "Url for modelarts"
train_url: "Url for modelarts"
data_path: "The location of the input data."
output_path: "The location of the output file."
device_target: 'Target device type'
enable_profiling: 'Whether enable profiling while training, default: False'

View File

@ -0,0 +1,38 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
dirname_path=$(dirname "$(pwd)")
echo ${dirname_path}
export PYTHONPATH=${dirname_path}:$PYTHONPATH
USE_DEVICE_ID=0
echo 'start device '$USE_DEVICE_ID
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
EXECUTE_PATH=$(pwd)
echo *******************EXECUTE_PATH= $EXECUTE_PATH
if [ -d "${EXECUTE_PATH}/log_inference" ]; then
echo "[INFO] Delete old log_inference log files"
rm -rf ${EXECUTE_PATH}/log_inference
fi
mkdir ${EXECUTE_PATH}/log_inference
cd ${EXECUTE_PATH}/log_inference || exit
env > ${EXECUTE_PATH}/log_inference/face_recognition.log
python ${EXECUTE_PATH}/../eval.py --config_path=${EXECUTE_PATH}/../inference_config_cpu.yaml &> ${EXECUTE_PATH}/log_inference/face_recognition.log &
echo "[INFO] Start inference..."

View File

@ -0,0 +1,45 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
dirname_path=$(dirname "$(pwd)")
echo ${dirname_path}
export PYTHONPATH=${dirname_path}:$PYTHONPATH
USE_DEVICE_ID=0
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
EXECUTE_PATH=$(pwd)
echo *******************EXECUTE_PATH= $EXECUTE_PATH
if [ -d "${EXECUTE_PATH}/log_standalone_graph" ]; then
echo "[INFO] Delete old data_standalone log files"
rm -rf ${EXECUTE_PATH}/log_standalone_graph
fi
mkdir ${EXECUTE_PATH}/log_standalone_graph
rm -rf ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID
mkdir -p ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID
cd ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID || exit
env > ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log
python ${EXECUTE_PATH}/../train.py \
--config_path=${EXECUTE_PATH}/../base_config_cpu.yaml \
--train_stage=base \
--is_distributed=0 &> ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log &
echo "[INFO] Start training..."

View File

@ -0,0 +1,44 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
dirname_path=$(dirname "$(pwd)")
echo ${dirname_path}
export PYTHONPATH=${dirname_path}:$PYTHONPATH
USE_DEVICE_ID=0
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
EXECUTE_PATH=$(pwd)
echo *******************EXECUTE_PATH= $EXECUTE_PATH
if [ -d "${EXECUTE_PATH}/log_standalone_graph" ]; then
echo "[INFO] Delete old data_stanalone log files"
rm -rf ${EXECUTE_PATH}/log_standalone_graph
fi
mkdir ${EXECUTE_PATH}/log_standalone_graph
rm -rf ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID
mkdir -p ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID
cd ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID || exit
env > ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log
python ${EXECUTE_PATH}/../train.py \
--config_path=${EXECUTE_PATH}/../beta_config_cpu.yaml \
--train_stage=beta \
--is_distributed=0 &> ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log &
echo "[INFO] Start training..."

View File

@ -21,6 +21,7 @@ from collections import defaultdict
import numpy as np
from PIL import Image, ImageFile
from utils.config import config
from mindspore.communication.management import get_group_size, get_rank
ImageFile.LOAD_TRUNCATED_IMAGES = True
@ -56,9 +57,14 @@ class DistributedCustomSampler:
self.epoch_gen = 1
def _sample_(self, indices):
"""sample"""
sampled = []
for indice in indices:
sampled_id = indice
if config.device_target == 'CPU':
if self.k >= len(sampled_id):
continue
sampled.extend(np.random.choice(self.dataset.id2range[sampled_id][:], self.k).tolist())
return sampled

View File

@ -21,6 +21,7 @@ import mindspore.dataset as de
import mindspore.dataset.vision.py_transforms as F
import mindspore.dataset.transforms.py_transforms as F2
from utils.config import config
from src.custom_dataset import DistributedCustomSampler, CustomDataset
__all__ = ['get_de_dataset']
@ -44,9 +45,12 @@ def get_de_dataset(args):
os.makedirs(os.path.dirname(cache_path))
dataset = CustomDataset(args.data_dir, cache_path, args.is_distributed)
args.logger.info("dataset len:{}".format(dataset.__len__()))
sampler = DistributedCustomSampler(dataset, num_replicas=args.world_size, rank=args.local_rank,
is_distributed=args.is_distributed)
de_dataset = de.GeneratorDataset(dataset, ["image", "label"], sampler=sampler)
if config.device_target == 'Ascend':
sampler = DistributedCustomSampler(dataset, num_replicas=args.world_size, rank=args.local_rank,
is_distributed=args.is_distributed)
de_dataset = de.GeneratorDataset(dataset, ["image", "label"], sampler=sampler)
elif config.device_target == 'CPU':
de_dataset = de.GeneratorDataset(dataset, ["image", "label"])
args.logger.info("after sampler de_dataset datasize :{}".format(de_dataset.get_dataset_size()))
de_dataset = de_dataset.map(input_columns="image", operations=transform)
de_dataset = de_dataset.map(input_columns="label", operations=transform_label)

View File

@ -41,7 +41,7 @@ from model_utils.config import config
from model_utils.device_adapter import get_device_id, get_device_num, get_rank_id
mindspore.common.seed.set_seed(1)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False,
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, save_graphs=False,
device_id=get_device_id(), reserve_class_name_in_scope=False, enable_auto_mixed_precision=False)
class DistributedHelper(Cell):