diff --git a/mindspore/nn/layer/rnns.py b/mindspore/nn/layer/rnns.py index 88ff4383250..4001fd1d62b 100644 --- a/mindspore/nn/layer/rnns.py +++ b/mindspore/nn/layer/rnns.py @@ -390,13 +390,17 @@ class RNN(_RNNBase): shape (seq_len, batch_size, `input_size`) or (batch_size, seq_len, `input_size`). - **hx** (Tensor) - Tensor of data type mindspore.float32 and shape (num_directions * `num_layers`, batch_size, `hidden_size`). Data type of `hx` must be the same as `x`. - - **seq_length** (Tensor) - The length of each batch. + - **seq_length** (Tensor) - The length of each sequence in a input batch. Tensor of shape :math:`(\text{batch_size})`. Default: None. + This input indicates the real sequence length before padding to avoid padded elements + have been used to compute hidden state and affect the final output. It is recommend to + use this input when **x** has padding elements. Outputs: Tuple, a tuple contains (`output`, `h_n`). - - **output** (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * `hidden_size`). + - **output** (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * `hidden_size`) or + (batch_size, seq_len, num_directions * `hidden_size`). - **hx_n** (Tensor) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`). Raises: @@ -479,13 +483,17 @@ class GRU(_RNNBase): shape (seq_len, batch_size, `input_size`) or (batch_size, seq_len, `input_size`). - **hx** (Tensor) - Tensor of data type mindspore.float32 and shape (num_directions * `num_layers`, batch_size, `hidden_size`). Data type of `hx` must be the same as `x`. - - **seq_length** (Tensor) - The length of each batch. + - **seq_length** (Tensor) - The length of each sequence in a input batch. Tensor of shape :math:`(\text{batch_size})`. Default: None. + This input indicates the real sequence length before padding to avoid padded elements + have been used to compute hidden state and affect the final output. It is recommend to + use this input when **x** has padding elements. Outputs: Tuple, a tuple contains (`output`, `h_n`). - - **output** (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * `hidden_size`). + - **output** (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * `hidden_size`) or + (batch_size, seq_len, num_directions * `hidden_size`). - **hx_n** (Tensor) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`). Raises: @@ -550,7 +558,7 @@ class RNNCell(_RNNCellBase): input_size (int): Number of features of input. hidden_size (int): Number of features of hidden layer. has_bias (bool): Whether the cell has bias `b_ih` and `b_hh`. Default: True. - nonlinearity (str): The non-linearity to use. Can be either ``'tanh'`` or ``'relu'``. Default: ``'tanh'`` + nonlinearity (str): The non-linearity to use. Can be either `tanh` or `relu`. Default: `tanh`. Inputs: - **x** (Tensor) - Tensor of shape (batch_size, `input_size`). @@ -561,7 +569,7 @@ class RNNCell(_RNNCellBase): - **h'** (Tensor) - Tensor of shape (batch_size, `hidden_size`). Raises: - TypeError: If `input_size`, `hidden_size` is not an int. + TypeError: If `input_size` or `hidden_size` is not an int or not great than 0. TypeError: If `has_bias` is not a bool. ValueError: If `nonlinearity` is not in ['tanh', 'relu'].