forked from mindspore-Ecosystem/mindspore
!9345 add SubAndFilter dynamic cpu kernel
From: @fangzehua Reviewed-by: Signed-off-by:
This commit is contained in:
commit
c3433b1271
|
@ -0,0 +1,78 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/sub_and_filter_cpu_kernel.h"
|
||||
#include <string>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void SubAndFilterCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
node_ = kernel_node;
|
||||
input_x_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
}
|
||||
|
||||
bool SubAndFilterCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (input_x_dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (input_x_dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "input x dtype only support int32, int64";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SubAndFilterCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(node_, 0);
|
||||
|
||||
batch_size_ = 1;
|
||||
for (size_t i = 0; i < indices_shape.size(); ++i) {
|
||||
batch_size_ *= indices_shape[i];
|
||||
}
|
||||
MS_LOG(INFO) << "SubAndFilter batch_size:" << batch_size_;
|
||||
|
||||
T *input_x = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T max_num = *reinterpret_cast<T *>(inputs[1]->addr);
|
||||
T offset = *reinterpret_cast<T *>(inputs[2]->addr);
|
||||
T *filter_res = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
T *filter_idx = reinterpret_cast<T *>(outputs[1]->addr);
|
||||
|
||||
size_t count = 0;
|
||||
for (size_t i = 0; i < batch_size_; ++i) {
|
||||
T temp = input_x[i] - offset;
|
||||
if (temp < 0 || temp >= max_num) continue;
|
||||
filter_res[count] = temp;
|
||||
filter_idx[count] = i;
|
||||
count++;
|
||||
}
|
||||
MS_LOG(INFO) << "SubAndFilter output count is " << count;
|
||||
std::vector<size_t> out_shape;
|
||||
out_shape.emplace_back(count);
|
||||
std::vector<TypeId> dtypes;
|
||||
for (size_t i = 0; i < AnfAlgo::GetOutputTensorNum(node_); i++) {
|
||||
dtypes.push_back(AnfAlgo::GetOutputInferDataType(node_, i));
|
||||
}
|
||||
AnfAlgo::SetOutputInferTypeAndShape(dtypes, {out_shape, out_shape}, node_.get());
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,66 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_AND_FILTER_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_AND_FILTER_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class SubAndFilterCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SubAndFilterCPUKernel() = default;
|
||||
~SubAndFilterCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
size_t batch_size_{1};
|
||||
TypeId input_x_dtype_{kTypeUnknown};
|
||||
CNodePtr node_ = nullptr;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(SubAndFilter,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SubAndFilterCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(SubAndFilter,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SubAndFilterCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_AND_FILTER_CPU_KERNEL_H_
|
|
@ -211,6 +211,8 @@ AbstractBasePtr InferImplDiv(const AnalysisEnginePtr &, const PrimitivePtr &prim
|
|||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplRealDiv(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplSubAndFilter(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplMapCacheIdx(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplCacheSwapTable(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
|
|
|
@ -568,6 +568,34 @@ AbstractBasePtr InferImplUpdateCache(const AnalysisEnginePtr &, const PrimitiveP
|
|||
return ret;
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplSubAndFilter(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
const std::string op_name = primitive->name();
|
||||
auto input_x = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
|
||||
auto input_x_shp = input_x->shape();
|
||||
MS_EXCEPTION_IF_NULL(input_x);
|
||||
MS_EXCEPTION_IF_NULL(input_x_shp);
|
||||
|
||||
ShapeVector shape;
|
||||
ShapeVector min_shape;
|
||||
ShapeVector max_shape;
|
||||
if (!input_x_shp->max_shape().empty()) {
|
||||
max_shape = input_x_shp->max_shape();
|
||||
} else {
|
||||
max_shape = input_x_shp->shape();
|
||||
}
|
||||
for (size_t i = 0; i < max_shape.size(); i++) {
|
||||
shape.emplace_back(Shape::SHP_ANY);
|
||||
min_shape.emplace_back(1);
|
||||
}
|
||||
auto filter_res =
|
||||
std::make_shared<AbstractTensor>(input_x->element(), std::make_shared<Shape>(shape, min_shape, max_shape));
|
||||
auto filter_idx =
|
||||
std::make_shared<AbstractTensor>(input_x->element(), std::make_shared<Shape>(shape, min_shape, max_shape));
|
||||
AbstractBasePtrList elements = {filter_res, filter_idx};
|
||||
return std::make_shared<AbstractTuple>(elements);
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplDiv(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
const std::string op_name = primitive->name();
|
||||
|
|
|
@ -63,6 +63,7 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
|
|||
{prim::kPrimUnsortedSegmentMax, {InferImplUnsortedSegmentMax, true}},
|
||||
{prim::kPrimUnsortedSegmentMin, {InferImplUnsortedSegmentMin, true}},
|
||||
{prim::kPrimScatterAdd, {InferImplScatterAdd, true}},
|
||||
{prim::kPrimSubAndFilter, {InferImplSubAndFilter, true}},
|
||||
{prim::kPrimScatterUpdate, {InferImplScatterUpdate, true}},
|
||||
{prim::kPrimMapCacheIdx, {InferImplMapCacheIdx, true}},
|
||||
{prim::kPrimCacheSwapTable, {InferImplCacheSwapTable, true}},
|
||||
|
|
|
@ -98,6 +98,7 @@ inline const PrimitivePtr kPrimUnsortedSegmentSum = std::make_shared<Primitive>(
|
|||
inline const PrimitivePtr kPrimUnsortedSegmentMin = std::make_shared<Primitive>("UnsortedSegmentMin");
|
||||
inline const PrimitivePtr kPrimConcatOffset = std::make_shared<Primitive>("ConcatOffset");
|
||||
inline const PrimitivePtr kPrimReshape = std::make_shared<Primitive>("Reshape");
|
||||
inline const PrimitivePtr kPrimSubAndFilter = std::make_shared<Primitive>("SubAndFilter");
|
||||
inline const PrimitivePtr kPrimMapCacheIdx = std::make_shared<Primitive>("MapCacheIdx");
|
||||
inline const PrimitivePtr kPrimUpdateCache = std::make_shared<Primitive>("UpdateCache");
|
||||
inline const PrimitivePtr kPrimCacheSwapTable = std::make_shared<Primitive>("CacheSwapTable");
|
||||
|
|
|
@ -90,7 +90,7 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg
|
|||
CusMatMulCubeDenseRight,
|
||||
CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle)
|
||||
from .sparse_ops import SparseToDense
|
||||
from ._cache_ops import CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx
|
||||
from ._cache_ops import CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter
|
||||
|
||||
__all__ = [
|
||||
'Unique',
|
||||
|
|
|
@ -56,6 +56,51 @@ class UpdateCache(PrimitiveWithCheck):
|
|||
return input_x_dtype
|
||||
|
||||
|
||||
class SubAndFilter(PrimitiveWithCheck):
|
||||
"""
|
||||
Dynamic kernel, sub an offset and
|
||||
return the elements which in range [0, max_num).
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Input tensor.
|
||||
- **max_num** (Int) - The max value of element that after sub `offset`.
|
||||
- **offset** (int) - Specifies the offset value of this `input_x`.
|
||||
|
||||
Outputs:
|
||||
tuple(Tensor), tuple of 2 tensors, filter_res and filter_idx.
|
||||
- **filter_res** (Tensor) - The result that `input_x` minus `offset`,
|
||||
and return which in the range [0, max_num).
|
||||
- **filter_idx** (Tensor) - A tensor containing indices of elements in the input
|
||||
coressponding to the output tensor.
|
||||
|
||||
Supported Platforms:
|
||||
`CPU`
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1, 3, 5, 8, 9, 16]), mindspore.int32)
|
||||
>>> max_num = 10
|
||||
>>> offset = 5
|
||||
>>> output = ops.SubAndFilter()(x, max_num, offset)
|
||||
>>> print(output)
|
||||
(Tensor(shape=[3], dtype=Int32, value= [0, 3, 4]),
|
||||
Tensor(shape=[3], dtype=Int32, value= [2, 3, 4]))
|
||||
"""
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init SubAndFilter"""
|
||||
|
||||
self.init_prim_io_names(inputs=['input_x', 'max_num', 'offset'],
|
||||
outputs=['sub_res', 'sub_idx'])
|
||||
|
||||
def check_shape(self, input_x_shape, max_num_shape, offset_shape):
|
||||
return (-1, -1)
|
||||
|
||||
def check_dtype(self, input_x_dtype, max_num_dtype, offset_dtype):
|
||||
validator.check_tensor_dtype_valid(
|
||||
"input_x", input_x_dtype, mstype.int_type, self.name)
|
||||
return input_x_dtype
|
||||
|
||||
|
||||
class SearchCacheIdx(PrimitiveWithInfer):
|
||||
"""
|
||||
Search the keys of a hashmap, and return the values.
|
||||
|
@ -254,7 +299,8 @@ class MapCacheIdx(PrimitiveWithCheck):
|
|||
hashmap_dtype = hashmap['dtype']
|
||||
indices_dtype = indices['dtype']
|
||||
args = {"hashmap": hashmap_dtype, "indices": indices_dtype}
|
||||
validator.check_tensor_type_same(args, mstype.int_type, self.name)
|
||||
validator.check_tensors_dtypes_same_and_valid(
|
||||
args, mstype.int_type, self.name)
|
||||
out_dtype = (hashmap_dtype, hashmap_dtype,
|
||||
hashmap_dtype, hashmap_dtype)
|
||||
|
||||
|
|
|
@ -0,0 +1,48 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.sub_and_filter = P.SubAndFilter()
|
||||
self.offset = 5
|
||||
self.max_num = 10
|
||||
|
||||
def construct(self, x):
|
||||
return self.sub_and_filter(x, self.max_num, self.offset)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sub_and_filter():
|
||||
x = Tensor(np.array([1, 3, 5, 9, 6, 15]), mstype.int32)
|
||||
sub_and_filter = Net()
|
||||
output = sub_and_filter(x)
|
||||
expect1 = np.array([0, 4, 1])
|
||||
expect2 = np.array([2, 3, 4])
|
||||
assert (output[0].asnumpy() == expect1).all()
|
||||
assert (output[1].asnumpy() == expect2).all()
|
Loading…
Reference in New Issue