!9099 rewrite caffe parsers

From: @cjh9368
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-12-03 15:49:25 +08:00 committed by Gitee
commit bfbf43e039
65 changed files with 778 additions and 1081 deletions

View File

@ -393,9 +393,14 @@ int AnfExporter::ConvertInputParameter(const std::shared_ptr<AnfNode> &input_ano
if (paramValue != nullptr) {
paramTensor->data.resize(paramValue->tensor_size());
paramTensor->format = schema::Format(paramValue->format());
memcpy(paramTensor->data.data(), paramValue->tensor_addr(), paramValue->tensor_size());
if (EOK != memcpy_s(paramTensor->data.data(), paramTensor->data.size(), paramValue->tensor_addr(),
paramValue->tensor_size())) {
MS_LOG(ERROR) << "memcpy_s failed.";
return RET_ERROR;
}
}
paramTensor->name = input_name;
node_id_map_[input_name] = meta_graphT->allTensors.size();
output_cnode->inputIndex.emplace_back(meta_graphT->allTensors.size());
meta_graphT->allTensors.emplace_back(std::move(paramTensor));
@ -585,9 +590,11 @@ void AnfExporter::SetOpOutputNode(const CNodePtr &cnode, const std::unique_ptr<s
#else
if (tuple->size() == 1) {
node_id_map_[cnode_name] = meta_graphT->allTensors.size();
msTensor->name = cnode_name;
} else {
std::string name = cnode_name + "_o:" + std::to_string(i);
node_id_map_[name] = meta_graphT->allTensors.size();
msTensor->name = name;
}
meta_graphT->allTensors.emplace_back(msTensor);
if (IsPrimitiveCNode(cnode, schema::PrimitiveType_Conv2D) ||
@ -605,6 +612,7 @@ void AnfExporter::SetOpOutputNode(const CNodePtr &cnode, const std::unique_ptr<s
}
ms_tensor->nodeType = schema::NodeType_CNode;
ms_tensor->dataType = TypeId::kNumberTypeFloat32;
ms_tensor->name = cnode_name;
fb_node->outputIndex.emplace_back(meta_graphT->allTensors.size());
node_id_map_[cnode_name] = meta_graphT->allTensors.size();
meta_graphT->allTensors.emplace_back(ms_tensor);

View File

@ -51,7 +51,7 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
{
Optimizer unusedOpRemoveOptimizer;
unusedOpRemoveOptimizer.AddPass(new UnusedNodeRemovePass());
if (ctx.trainModel == false) {
if (!ctx.trainModel) {
unusedOpRemoveOptimizer.AddPass(new DropoutNodeRemovePass());
}
unusedOpRemoveOptimizer.AddPass(new IsolatedNodeRemovePass());
@ -87,8 +87,14 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
// postconvert pass
{
Optimizer fusionOptimizer;
if (ctx.trainModel == false) {
fusionOptimizer.AddPass(new (std::nothrow) BatchNormConvertScalePass());
if (!ctx.trainModel) {
auto batch_norm_scale_pass = new (std::nothrow) BatchNormConvertScalePass();
if (batch_norm_scale_pass == nullptr) {
MS_LOG(ERROR) << "new batch_norm_scale_pass failed.";
return RET_ERROR;
}
batch_norm_scale_pass->SetFmk(ctx.fmk);
fusionOptimizer.AddPass(batch_norm_scale_pass);
}
fusionOptimizer.AddPass(new (std::nothrow) IsolatedNodeRemovePass());
status = fusionOptimizer.Run(graphDefT);
@ -116,7 +122,7 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
formatTransOptimizer.AddPass(new (std::nothrow) TransOpInsertPass());
formatTransOptimizer.AddPass(new (std::nothrow) FormatTransFusionPass());
formatTransOptimizer.AddPass(new (std::nothrow) IsolatedNodeRemovePass());
if (ctx.trainModel == false && ctx.fmk != converter::FmkType_ONNX) {
if (!ctx.trainModel && ctx.fmk != converter::FmkType_ONNX) {
formatTransOptimizer.AddPass(new (std::nothrow) GlobalFormatTransformPass());
formatTransOptimizer.AddPass(new (std::nothrow) IsolatedNodeRemovePass());
}

View File

@ -19,6 +19,7 @@
#include <string>
#include <utility>
#include <vector>
#include "tools/converter/converter_flags.h"
#include "third_party/securec/include/securec.h"
#include "src/common/log_adapter.h"
#include "tools/common/tensor_util.h"
@ -27,10 +28,9 @@
namespace mindspore {
namespace lite {
#define CAFFE_BATCHNORM_OP_WEIGHT_NUM 2
#define TF_BATCHNORM_OP_WEIGHT_NUM 4
#define CAFFE_BATCHNORM_MEAN_INDEX 0
#define CAFFE_BATCHNORM_VARIANCE_INDEX 1
#define CAFFE_BATCHNORM_SCALE_INDEX 2
#define TF_BATCHNORM_SCALE_INDEX 0
#define TF_BATCHNORM_BIAS_INDEX 1
#define TF_BATCHNORM_MEAN_INDEX 2
@ -237,18 +237,27 @@ STATUS BatchNormConvertScalePass::GetBnWeightTensors(MetaGraphT *graph, BNWeight
MS_ASSERT(graph->allTensors.size() > bnNode->inputIndex.at(1));
auto bnWeightTensorIdxes = bnNode->inputIndex;
bnWeightTensorIdxes.erase(bnWeightTensorIdxes.begin());
if (bnWeightTensorIdxes.size() == CAFFE_BATCHNORM_OP_WEIGHT_NUM) {
if (fmkType == converter::FmkType_CAFFE) {
bnWeightTensors->meanTensor = graph->allTensors.at(bnWeightTensorIdxes[CAFFE_BATCHNORM_MEAN_INDEX]).get();
bnWeightTensors->varianceTensor = graph->allTensors.at(bnWeightTensorIdxes[CAFFE_BATCHNORM_VARIANCE_INDEX]).get();
} else if (bnWeightTensorIdxes.size() == TF_BATCHNORM_OP_WEIGHT_NUM) {
auto scaleTensor = graph->allTensors.at(bnWeightTensorIdxes[CAFFE_BATCHNORM_SCALE_INDEX]).get();
// calibrate mean and variance
float scale_factor_data = (reinterpret_cast<float *>(scaleTensor->data.data()))[0];
float scale_factor = scale_factor_data == 0 ? 0 : 1 / scale_factor_data;
auto mean_data = reinterpret_cast<float *>(bnWeightTensors->meanTensor->data.data());
auto variance_data = reinterpret_cast<float *>(bnWeightTensors->varianceTensor->data.data());
for (size_t i = 0; i < GetShapeSize(*bnWeightTensors->meanTensor); i++) {
mean_data[i] *= scale_factor;
}
for (size_t i = 0; i < GetShapeSize(*bnWeightTensors->varianceTensor); i++) {
variance_data[i] *= scale_factor;
}
} else {
bnWeightTensors->scaleTensor = graph->allTensors.at(bnWeightTensorIdxes[TF_BATCHNORM_SCALE_INDEX]).get();
bnWeightTensors->biasTensor = graph->allTensors.at(bnWeightTensorIdxes[TF_BATCHNORM_BIAS_INDEX]).get();
bnWeightTensors->meanTensor = graph->allTensors.at(bnWeightTensorIdxes[TF_BATCHNORM_MEAN_INDEX]).get();
bnWeightTensors->varianceTensor = graph->allTensors.at(bnWeightTensorIdxes[TF_BATCHNORM_VARIANCE_INDEX]).get();
} else {
MS_LOG(ERROR) << "BatchNorm should has 2 or 4 weight tensors, current number of weight tensors: "
<< bnWeightTensorIdxes.size();
return RET_ERROR;
}
if (bnWeightTensors->meanTensor == nullptr) {

View File

@ -23,6 +23,7 @@
#include <utility>
#include "tools/common/graph_util.h"
#include "tools/converter/optimizer.h"
#include "tools/converter/converter_flags.h"
using mindspore::schema::TensorT;
namespace mindspore {
@ -41,6 +42,8 @@ class BatchNormConvertScalePass : public GraphPass {
STATUS Run(MetaGraphT *graph) override;
void SetFmk(converter::FmkType fmk) { this->fmkType = fmk; }
protected:
STATUS GetTransParam(MetaGraphT *graph, const std::unique_ptr<CNodeT> &bnNode);
@ -60,6 +63,7 @@ class BatchNormConvertScalePass : public GraphPass {
float *transBias = nullptr;
std::unique_ptr<TensorT> newScaleWeightTensor = nullptr;
std::unique_ptr<TensorT> newScaleBiasTensor = nullptr;
converter::FmkType fmkType = converter::FmkType_TF;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeArgMaxParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeArgMaxParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
lite::PrimitiveC *CaffeArgMaxParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ArgMaxT> attr = std::make_unique<schema::ArgMaxT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
attr->outMaxValue = false;
@ -58,11 +47,10 @@ STATUS CaffeArgMaxParser::Parse(const caffe::LayerParameter &proto, const caffe:
attr->axis = axis;
attr->axisType = axisType;
attr->keepDims = true;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_ArgMax;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_ArgMax;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeArgMaxParser("ArgMax", new CaffeArgMaxParser());

View File

@ -18,6 +18,7 @@
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_ARGMAX_PARSER_H_
#include <vector>
#include "src/ops/primitive_c.h"
#include "tools/converter/parser/caffe/caffe_node_parser.h"
#include "tools/converter/parser/caffe/caffe_node_parser_registry.h"
@ -28,8 +29,8 @@ class CaffeArgMaxParser : public CaffeNodeParser {
CaffeArgMaxParser() : CaffeNodeParser("argmax") {}
~CaffeArgMaxParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
lite::PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -23,39 +23,24 @@ namespace mindspore {
namespace lite {
using STATUS = int;
STATUS CaffeBatchNormParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeBatchNormParser";
if (weightVec == nullptr) {
MS_LOG(ERROR) << "weightVec is null";
return RET_NULL_PTR;
}
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeBatchNormParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::BatchNormT> attr = std::make_unique<schema::BatchNormT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::BatchNormParameter &batchNormParam = proto.batch_norm_param();
if (proto.bottom_size() != 1) {
MS_LOG(ERROR) << "Layer " << proto.name().c_str() << "bottom numbers is error, it must be 1, but is "
<< proto.bottom_size();
return RET_ERROR;
return nullptr;
}
if (proto.top_size() != 1) {
MS_LOG(ERROR) << "Layer " << proto.name().c_str() << "top numbers is error, it must be 1, but is "
<< proto.top_size();
return RET_ERROR;
return nullptr;
}
if (batchNormParam.has_eps()) {
@ -69,40 +54,10 @@ STATUS CaffeBatchNormParser::Parse(const caffe::LayerParameter &proto, const caf
attr->epsilon = 1e-5;
}
const float blob2Data =
(weight.blobs(2).double_data_size() > 0) ? weight.blobs(2).double_data(0) : weight.blobs(2).data(0);
const float scaleFactor = blob2Data == 0 ? 0 : 1 / blob2Data;
auto gamma = ConvertWeight(weight.blobs(0));
if (gamma == nullptr) {
MS_LOG(ERROR) << "Convert blobs(0) for layer " << weight.name().c_str() << " failed";
return RET_ERROR;
}
auto estimatedMean = reinterpret_cast<float *>(gamma->data.data());
auto estimatedMeanShapeSize = GetShapeSize(*gamma);
for (size_t i = 0; i < estimatedMeanShapeSize; i++) {
estimatedMean[i] = estimatedMean[i] * scaleFactor;
}
estimatedMean = nullptr;
weightVec->push_back(gamma);
auto beta = ConvertWeight(weight.blobs(1));
if (beta == nullptr) {
MS_LOG(ERROR) << "Convert blobs(1) for layer " << weight.name().c_str() << " failed";
return RET_ERROR;
}
auto estimatedVariance = reinterpret_cast<float *>(beta->data.data());
size_t estimatedVarianceShapeSize = GetShapeSize(*beta);
for (size_t i = 0; i < estimatedVarianceShapeSize; i++) {
estimatedVariance[i] = estimatedVariance[i] * scaleFactor;
}
estimatedVariance = nullptr;
weightVec->push_back(beta);
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_BatchNorm;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_BatchNorm;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeBatchNormParser("BatchNorm", new CaffeBatchNormParser());

View File

@ -18,6 +18,7 @@
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_BATCHNORM_PARSER_H_
#include <vector>
#include "src/ops/primitive_c.h"
#include "tools/converter/parser/caffe/caffe_node_parser.h"
#include "tools/converter/parser/caffe/caffe_node_parser_registry.h"
@ -28,8 +29,7 @@ class CaffeBatchNormParser : public CaffeNodeParser {
CaffeBatchNormParser() : CaffeNodeParser("batchnorm") {}
~CaffeBatchNormParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,29 +19,18 @@
namespace mindspore {
namespace lite {
STATUS CaffeConcatParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeConcatParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeConcatParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ConcatT> attr = std::make_unique<schema::ConcatT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::ConcatParameter &concatParam = proto.concat_param();
if (concatParam.has_axis() && concatParam.has_concat_dim()) {
MS_LOG(ERROR) << "Concat param in caffe have concat_dim and axis simultaneously, return fail";
return RET_ERROR;
return nullptr;
}
if (concatParam.has_concat_dim()) {
@ -49,7 +38,7 @@ STATUS CaffeConcatParser::Parse(const caffe::LayerParameter &proto, const caffe:
auto concat_dim_value = (int32_t)concatParam.concat_dim();
if (concat_dim_value < 0) {
MS_LOG(ERROR) << "concat_dim value in model is smaller than 0:" << concat_dim_value;
return RET_ERROR;
return nullptr;
}
attr->axis = concat_dim_value;
} else if (concatParam.has_axis()) {
@ -60,11 +49,12 @@ STATUS CaffeConcatParser::Parse(const caffe::LayerParameter &proto, const caffe:
MS_LOG(DEBUG) << "by default, set axis = 1";
attr->axis = 1;
}
attr->n = proto.bottom_size();
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Concat;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Concat;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeConcatParser("Concat", new CaffeConcatParser());

View File

@ -21,17 +21,14 @@
#include "tools/converter/parser/caffe/caffe_node_parser.h"
#include "tools/converter/parser/caffe/caffe_node_parser_registry.h"
namespace mindspore {
namespace lite {
namespace mindspore::lite {
class CaffeConcatParser : public CaffeNodeParser {
public:
CaffeConcatParser() : CaffeNodeParser("concat") {}
~CaffeConcatParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore
} // namespace mindspore::lite
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_CONCAT_PARSER_H_

View File

@ -15,9 +15,8 @@
*/
#include "tools/converter/parser/caffe/caffe_converter.h"
#include "tools/converter/parser/caffe/caffe_model_parser.h"
namespace mindspore {
namespace lite {
namespace mindspore::lite {
CaffeConverter::CaffeConverter() { modelParser = new CaffeModelParser(); }
} // namespace lite
} // namespace mindspore
} // namespace mindspore::lite

View File

@ -20,7 +20,6 @@
#include <string>
#include <memory>
#include "tools/converter/converter.h"
#include "tools/converter/parser/caffe/caffe_model_parser.h"
#include "tools/converter/graphdef_transform.h"
namespace mindspore::lite {

View File

@ -19,7 +19,7 @@
namespace mindspore {
namespace lite {
STATUS CaffeConvolutionParser::ParseGroupConvolution(schema::CNodeT *op, schema::Conv2DT *attr) {
STATUS CaffeConvolutionParser::ParseGroupConvolution(schema::PrimitiveT *primitiveT, schema::Conv2DT *attr) {
if (attr->group == 1) {
return RET_OK;
}
@ -46,32 +46,17 @@ STATUS CaffeConvolutionParser::ParseGroupConvolution(schema::CNodeT *op, schema:
depthwiseConv2DParam->hasBias = attr->hasBias;
depthwiseConv2DParam->activationType = attr->activationType;
delete attr;
op->primitive->value.type = schema::PrimitiveType_DepthwiseConv2D;
op->primitive->value.value = depthwiseConv2DParam.release();
primitiveT->value.type = schema::PrimitiveType_DepthwiseConv2D;
primitiveT->value.value = depthwiseConv2DParam.release();
return RET_OK;
}
STATUS CaffeConvolutionParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeConvolutionParser";
if (weightVec == nullptr) {
MS_LOG(ERROR) << "weightVec is null";
return RET_NULL_PTR;
}
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeConvolutionParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
auto attr = std::make_unique<schema::Conv2DT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
return nullptr;
}
attr->format = schema::Format_NCHW;
@ -82,7 +67,7 @@ STATUS CaffeConvolutionParser::Parse(const caffe::LayerParameter &proto, const c
auto status = CaffeConvBaseParser::ParsePads(convParam, &pad);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParsePads for " << proto.name().c_str() << " failed";
return RET_ERROR;
return nullptr;
}
attr->padUp = pad[0];
attr->padDown = pad[1];
@ -94,7 +79,7 @@ STATUS CaffeConvolutionParser::Parse(const caffe::LayerParameter &proto, const c
status = CaffeConvBaseParser::ParseStrides(convParam, &stride);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseStrides for " << proto.name().c_str() << " failed";
return RET_ERROR;
return nullptr;
}
attr->strideH = stride[0];
attr->strideW = stride[1];
@ -104,7 +89,7 @@ STATUS CaffeConvolutionParser::Parse(const caffe::LayerParameter &proto, const c
status = CaffeConvBaseParser::ParseDilations(convParam, &dilation);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseDilations for " << proto.name().c_str() << " failed";
return RET_ERROR;
return nullptr;
}
attr->dilateH = dilation[0];
attr->dilateW = dilation[1];
@ -114,7 +99,7 @@ STATUS CaffeConvolutionParser::Parse(const caffe::LayerParameter &proto, const c
status = CaffeConvBaseParser::ParseKernels(convParam, &kernel);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseKernels for " << proto.name().c_str() << " failed";
return RET_ERROR;
return nullptr;
}
attr->kernelH = kernel[0];
attr->kernelW = kernel[1];
@ -124,7 +109,7 @@ STATUS CaffeConvolutionParser::Parse(const caffe::LayerParameter &proto, const c
auto ret = CaffeConvBaseParser::ParseChannelOut(convParam, &(attr->channelOut));
if (ret != RET_OK) {
MS_LOG(ERROR) << "conv channel out failed";
return RET_ERROR;
return nullptr;
}
auto &weightBlob = weight.blobs(0);
if (weightBlob.has_shape()) {
@ -134,23 +119,17 @@ STATUS CaffeConvolutionParser::Parse(const caffe::LayerParameter &proto, const c
}
attr->padMode = schema::PadMode_CAFFE;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Conv2D;
op->primitive->value.value = attr.release();
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Conv2D;
primitive->value.value = attr.release();
status = ParseGroupConvolution(op, static_cast<schema::Conv2DT *>(op->primitive->value.value));
status = ParseGroupConvolution(primitive.get(), static_cast<schema::Conv2DT *>(primitive->value.value));
if (status != RET_OK) {
MS_LOG(ERROR) << "Parse group convolution failed";
return RET_ERROR;
return nullptr;
}
status = CaffeConvBaseParser::ParseWeight(weight, weightVec);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseWeight for " << proto.name().c_str() << " failed";
return RET_ERROR;
}
return status;
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeConvolutionParser("Convolution", new CaffeConvolutionParser());

View File

@ -29,11 +29,10 @@ class CaffeConvolutionParser : public CaffeNodeParser {
CaffeConvolutionParser() : CaffeNodeParser("convolution") {}
~CaffeConvolutionParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
private:
static STATUS ParseGroupConvolution(schema::CNodeT *op, schema::Conv2DT *attr);
static STATUS ParseGroupConvolution(schema::PrimitiveT *primitiveT, schema::Conv2DT *attr);
};
} // namespace lite
} // namespace mindspore

View File

@ -19,27 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeCropParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeCropParser";
if (weightVec == nullptr) {
MS_LOG(ERROR) << "weightVec is null";
return RET_NULL_PTR;
}
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeCropParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::CropT> attr = std::make_unique<schema::CropT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
if (!proto.has_crop_param()) {
@ -66,11 +51,10 @@ STATUS CaffeCropParser::Parse(const caffe::LayerParameter &proto, const caffe::L
attr->offsets = offsets;
}
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Crop;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Crop;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeCropParser("Crop", new CaffeCropParser());

View File

@ -28,8 +28,7 @@ class CaffeCropParser : public CaffeNodeParser {
CaffeCropParser() : CaffeNodeParser("crop") {}
~CaffeCropParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,7 +19,7 @@
namespace mindspore {
namespace lite {
STATUS CaffeDeconvolutionParser::ParseGroupDeconvolution(schema::CNodeT *op, schema::DeConv2DT *attr) {
STATUS CaffeDeconvolutionParser::ParseGroupDeconvolution(schema::PrimitiveT *primitive, schema::DeConv2DT *attr) {
if (attr->group == 1) {
return RET_OK;
}
@ -46,28 +46,13 @@ STATUS CaffeDeconvolutionParser::ParseGroupDeconvolution(schema::CNodeT *op, sch
deDepthwiseConv2DParam->hasBias = attr->hasBias;
deDepthwiseConv2DParam->activationType = attr->activationType;
delete attr;
op->primitive->value.type = schema::PrimitiveType_DeDepthwiseConv2D;
op->primitive->value.value = deDepthwiseConv2DParam.release();
primitive->value.type = schema::PrimitiveType_DeDepthwiseConv2D;
primitive->value.value = deDepthwiseConv2DParam.release();
return RET_OK;
}
STATUS CaffeDeconvolutionParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeDeconvolutionParser";
if (weightVec == nullptr) {
MS_LOG(ERROR) << "weightVec is null";
return RET_NULL_PTR;
}
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeDeconvolutionParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::DeConv2DT> attr(new (std::nothrow) schema::DeConv2DT());
attr->format = schema::Format::Format_NCHW;
@ -78,7 +63,7 @@ STATUS CaffeDeconvolutionParser::Parse(const caffe::LayerParameter &proto, const
auto status = CaffeConvBaseParser::ParsePads(convParam, &pad);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParsePads for " << proto.name().c_str() << " failed";
return RET_ERROR;
return nullptr;
}
attr->padUp = pad[0];
attr->padDown = pad[1];
@ -90,7 +75,7 @@ STATUS CaffeDeconvolutionParser::Parse(const caffe::LayerParameter &proto, const
status = CaffeConvBaseParser::ParseStrides(convParam, &stride);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseStrides for " << proto.name().c_str() << " failed";
return RET_ERROR;
return nullptr;
}
attr->strideH = stride[0];
attr->strideW = stride[1];
@ -100,7 +85,7 @@ STATUS CaffeDeconvolutionParser::Parse(const caffe::LayerParameter &proto, const
status = CaffeConvBaseParser::ParseDilations(convParam, &dilation);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseDilations for " << proto.name().c_str() << " failed";
return RET_ERROR;
return nullptr;
}
attr->dilateH = dilation[0];
attr->dilateW = dilation[1];
@ -110,7 +95,7 @@ STATUS CaffeDeconvolutionParser::Parse(const caffe::LayerParameter &proto, const
status = CaffeConvBaseParser::ParseKernels(convParam, &kernel);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseKernels for " << proto.name().c_str() << " failed";
return RET_ERROR;
return nullptr;
}
attr->kernelH = kernel[0];
attr->kernelW = kernel[1];
@ -120,7 +105,7 @@ STATUS CaffeDeconvolutionParser::Parse(const caffe::LayerParameter &proto, const
auto ret = CaffeConvBaseParser::ParseChannelOut(convParam, &(attr->channelOut));
if (ret != RET_OK) {
MS_LOG(ERROR) << "deconv channel get failed";
return RET_ERROR;
return nullptr;
}
auto &weightBlob = weight.blobs(0);
if (weightBlob.has_shape()) {
@ -132,24 +117,16 @@ STATUS CaffeDeconvolutionParser::Parse(const caffe::LayerParameter &proto, const
attr->channelIn = weightBlob.num() * attr->group;
}
attr->padMode = schema::PadMode_CAFFE;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_DeConv2D;
primitive->value.value = attr.release();
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_DeConv2D;
op->primitive->value.value = attr.get();
status = ParseGroupDeconvolution(op, attr.release());
status = ParseGroupDeconvolution(primitive.get(), primitive->value.AsDeConv2D());
if (status != RET_OK) {
MS_LOG(ERROR) << "Parse group deconvolution failed";
return RET_ERROR;
return nullptr;
}
status = CaffeConvBaseParser::ParseWeight(weight, weightVec);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseWeight for " << proto.name().c_str() << " failed";
return RET_ERROR;
}
return status;
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeDeconvolutionParser("Deconvolution", new CaffeDeconvolutionParser());

View File

@ -29,11 +29,10 @@ class CaffeDeconvolutionParser : public CaffeNodeParser {
CaffeDeconvolutionParser() : CaffeNodeParser("deconvolution") {}
~CaffeDeconvolutionParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
private:
static STATUS ParseGroupDeconvolution(schema::CNodeT *op, schema::DeConv2DT *attr);
static STATUS ParseGroupDeconvolution(schema::PrimitiveT *primitive, schema::DeConv2DT *attr);
};
} // namespace lite
} // namespace mindspore

View File

@ -20,47 +20,36 @@
namespace mindspore {
namespace lite {
STATUS CaffeEltwiseParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeEltwiseParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeEltwiseParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::EltwiseT> attr = std::make_unique<schema::EltwiseT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
if (proto.bottom_size() < 2) {
MS_LOG(ERROR) << "Eltwise Op " << proto.name() << " need at least 2 inputs,but input size is "
<< proto.bottom_size();
return RET_ERROR;
return nullptr;
}
const caffe::EltwiseParameter &eltwiseParam = proto.eltwise_param();
if (eltwiseParam.coeff_size() != 0 && eltwiseParam.coeff_size() != proto.bottom_size()) {
MS_LOG(ERROR) << "Coeff size(" << eltwiseParam.coeff_size()
<< ") check fail, Eltwise Layer takes one coefficient per bottom blob.";
return RET_ERROR;
return nullptr;
}
if (eltwiseParam.operation() == caffe::EltwiseParameter::PROD && eltwiseParam.coeff_size() != 0) {
MS_LOG(ERROR) << "Eltwise layer only takes coefficients for summation.";
return RET_ERROR;
return nullptr;
}
if (eltwiseParam.coeff_size() != 0 &&
(std::fabs(eltwiseParam.coeff(0) - 1) > 1e-5 || std::fabs(eltwiseParam.coeff(1) - 1) > 1e-5)) {
MS_LOG(ERROR) << "Eltwise only support coefficient 1 for summation now.";
return RET_ERROR;
return nullptr;
}
if (proto.has_eltwise_param() && eltwiseParam.has_operation()) {
@ -76,16 +65,15 @@ STATUS CaffeEltwiseParser::Parse(const caffe::LayerParameter &proto, const caffe
break;
default:
MS_LOG(ERROR) << "Eltwise parse params fail, unsupported opration: " << eltwiseParam.operation();
return RET_ERROR;
return nullptr;
}
} else {
attr->mode = schema::EltwiseMode_SUM;
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Eltwise;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Eltwise;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeEltwiseParser("Eltwise", new CaffeEltwiseParser());

View File

@ -28,8 +28,7 @@ class CaffeEltwiseParser : public CaffeNodeParser {
CaffeEltwiseParser() : CaffeNodeParser("eltwise") {}
~CaffeEltwiseParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeEluParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeEluParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeEluParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::EluT> attr = std::make_unique<schema::EluT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
if (proto.has_elu_param()) {
@ -44,11 +33,10 @@ STATUS CaffeEluParser::Parse(const caffe::LayerParameter &proto, const caffe::La
attr->alpha = eluParameter.alpha();
}
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Elu;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Elu;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeEluParser("ELU", new CaffeEluParser());

View File

@ -28,8 +28,7 @@ class CaffeEluParser : public CaffeNodeParser {
CaffeEluParser() : CaffeNodeParser("elu") {}
~CaffeEluParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -20,23 +20,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeExpParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse ExpParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeExpParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ExpT> attr = std::make_unique<schema::ExpT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::ExpParameter &exp_param = proto.exp_param();
@ -55,10 +44,10 @@ STATUS CaffeExpParser::Parse(const caffe::LayerParameter &proto, const caffe::La
} else {
attr->shift = 0;
}
op->primitive->value.type = schema::PrimitiveType_Exp;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Exp;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeExpParser("Exp", new CaffeExpParser());

View File

@ -28,8 +28,7 @@ class CaffeExpParser : public CaffeNodeParser {
CaffeExpParser() : CaffeNodeParser("exp") {}
~CaffeExpParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,29 +19,17 @@
namespace mindspore {
namespace lite {
STATUS CaffeFlattenParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeFlattenParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeFlattenParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::FlattenT> attr = std::make_unique<schema::FlattenT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Flatten;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Flatten;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_CaffeFlattenParser("Flatten", new CaffeFlattenParser());

View File

@ -28,8 +28,7 @@ class CaffeFlattenParser : public CaffeNodeParser {
CaffeFlattenParser() : CaffeNodeParser("flatten") {}
~CaffeFlattenParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,33 +19,18 @@
namespace mindspore {
namespace lite {
STATUS CaffeInnerProductParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeInnerProductParser";
if (weightVec == nullptr) {
MS_LOG(ERROR) << "weightVec is null";
return RET_NULL_PTR;
}
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeInnerProductParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::FullConnectionT> attr = std::make_unique<schema::FullConnectionT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::InnerProductParameter &innerProductParam = proto.inner_product_param();
if (!innerProductParam.has_num_output()) {
MS_LOG(ERROR) << "InnerProduct Parse num_output for " << proto.name().c_str() << " failed.";
return RET_ERROR;
return nullptr;
}
if (innerProductParam.axis() == 1) {
@ -53,40 +38,17 @@ STATUS CaffeInnerProductParser::Parse(const caffe::LayerParameter &proto, const
attr->useAxis = true;
} else {
MS_LOG(ERROR) << "InnerProduct Parse axis only support default 1, but actually " << innerProductParam.axis();
return RET_ERROR;
return nullptr;
}
if (innerProductParam.bias_term()) {
attr->hasBias = true;
}
attr->activationType = schema::ActivationType_NO_ACTIVATION;
// parse weight
if (weight.blobs_size() == 0) {
MS_LOG(ERROR) << "InnerProduct No filter data in layer " << weight.name().c_str();
return RET_ERROR;
}
auto filter = ConvertWeight(weight.blobs(0));
if (filter == nullptr) {
MS_LOG(ERROR) << "InnerProduct parse weight for layer " << weight.name().c_str() << " failed";
return RET_ERROR;
}
weightVec->push_back(filter);
// parse bias
if (innerProductParam.bias_term() && weight.blobs_size() > 1) {
auto bias = ConvertWeight(weight.blobs(1));
if (bias == nullptr) {
MS_LOG(ERROR) << "InnerProduct parse bias for layer " << weight.name().c_str() << " failed";
return RET_ERROR;
}
weightVec->push_back(bias);
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_FullConnection;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_FullConnection;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeInnerProductParser("InnerProduct", new CaffeInnerProductParser());

View File

@ -28,8 +28,7 @@ class CaffeInnerProductParser : public CaffeNodeParser {
CaffeInnerProductParser() : CaffeNodeParser("innerproduct") {}
~CaffeInnerProductParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -29,9 +29,9 @@ STATUS CaffeInspector::InspectModel(const caffe::NetParameter &proto) {
ParseInput();
SetTopsAndBottoms();
SetLayerTopsAndBottoms();
FindInputAndOutput();
FindGraphInputsAndOutputs();
return RET_OK;
}
@ -46,7 +46,7 @@ STATUS CaffeInspector::ParseInput() {
return RET_OK;
}
STATUS CaffeInspector::FindInputAndOutput() {
STATUS CaffeInspector::FindGraphInputsAndOutputs() {
for (const auto &iter : layerBottoms) {
if (layerTops.find(iter) == layerTops.end()) {
graphInput.insert(iter);
@ -60,7 +60,7 @@ STATUS CaffeInspector::FindInputAndOutput() {
return RET_OK;
}
STATUS CaffeInspector::SetTopsAndBottoms() {
STATUS CaffeInspector::SetLayerTopsAndBottoms() {
for (int32_t i = 0; i < net.layer_size(); i++) {
auto &layer = const_cast<caffe::LayerParameter &>(net.layer(i));
if (layer.top_size() == 1 && layer.bottom_size() == 1 && layer.top(0) == layer.bottom(0)) {

View File

@ -33,8 +33,8 @@ class CaffeInspector {
STATUS InspectModel(const caffe::NetParameter &proto);
STATUS ParseInput();
STATUS FindInputAndOutput();
STATUS SetTopsAndBottoms();
STATUS FindGraphInputsAndOutputs();
STATUS SetLayerTopsAndBottoms();
std::set<std::string> GetGraphInput() { return graphInput; }
std::set<std::string> GetGraphOutput() { return graphOutput; }

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeInterpParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeInterpParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeInterpParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ResizeT> attr = std::make_unique<schema::ResizeT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::InterpParameter &interpParam = proto.interp_param();
@ -43,7 +32,7 @@ STATUS CaffeInterpParser::Parse(const caffe::LayerParameter &proto, const caffe:
int64_t height = interpParam.height();
if (height < 0) {
MS_LOG(ERROR) << "Interp height must be > 0";
return RET_ERROR;
return nullptr;
}
attr->newHeight = height;
}
@ -52,17 +41,16 @@ STATUS CaffeInterpParser::Parse(const caffe::LayerParameter &proto, const caffe:
int64_t width = interpParam.width();
if (width < 0) {
MS_LOG(ERROR) << "Interp width must be > 0";
return RET_ERROR;
return nullptr;
}
attr->newWidth = width;
}
attr->alignCorners = true;
attr->method = schema::ResizeMethod_LINEAR;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Resize;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Resize;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeInterpParser("Interp", new CaffeInterpParser());

View File

@ -28,8 +28,7 @@ class CaffeInterpParser : public CaffeNodeParser {
CaffeInterpParser() : CaffeNodeParser("Interp") {}
~CaffeInterpParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -13,299 +13,419 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/caffe/caffe_model_parser.h"
#include <vector>
#include <iostream>
#include <utility>
#include <map>
#include <algorithm>
#include "tools/converter/parser/caffe/caffe_node_parser_registry.h"
#include "tools/converter/parser/caffe/caffe_inspector.h"
#include "tools/common/graph_util.h"
#include "tools/common/protobuf_utils.h"
#include "src/param_value_lite.h"
namespace mindspore {
namespace lite {
CaffeModelParser::CaffeModelParser() {}
namespace mindspore::lite {
CaffeModelParser::CaffeModelParser() = default;
CaffeModelParser::~CaffeModelParser() {}
CaffeModelParser::~CaffeModelParser() = default;
const std::set<std::string> CaffeModelParser::skipedLayerType = {"Dropout"};
FuncGraphPtr CaffeModelParser::Parse(const std::string &model_file, const std::string &weight_file,
const QuantType &quant_type) {
STATUS status = InitOriginModel(model_file, weight_file);
if (status != RET_OK) {
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
func_graph_ptr_ = std::make_shared<FuncGraph>();
status = ConvertGraphInputs();
if (status != RET_OK) {
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
schema::MetaGraphT *CaffeModelParser::ParseToFb(const std::string &model_file, const std::string &weight_file,
const QuantType &quant_type) {
status = ConvertLayers();
if (status != RET_OK) {
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
status = ConvertGraphOutputs();
if (status != RET_OK) {
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
return func_graph_ptr_;
}
STATUS CaffeModelParser::ConvertLayers() {
STATUS status = RET_OK;
std::map<std::string, caffe::LayerParameter> weight_layers;
for (int i = 0; i < caffe_weight_.layer_size(); i++) {
auto weight_layer = caffe_weight_.layer(i);
weight_layers[weight_layer.name()] = weight_layer;
}
for (int i = 0; i < caffe_model_.layer_size(); i++) {
auto layer = caffe_model_.layer(i);
caffe::LayerParameter weight;
if (weight_layers.find(layer.name()) != weight_layers.end()) {
weight = weight_layers.find(layer.name())->second;
}
if (IsSkipedLayer(layer)) {
continue;
}
// parse primitive
auto node_parser = CaffeNodeParserRegistry::GetInstance()->GetNodeParser(layer.type());
if (node_parser == nullptr) {
NoSupportOp::GetInstance()->InsertOp(layer.type());
status = (status == RET_OK ? RET_NOT_FIND_OP : status);
continue;
}
if (status != RET_OK) {
continue;
}
auto primitive_c = node_parser->ParseLitePrimitive(layer, weight);
if (primitive_c == nullptr) {
MS_LOG(ERROR) << "parse node " << layer.name() << " failed.";
continue;
}
// build inputs
std::vector<AnfNodePtr> input_nodes;
status = ConvertBottom(layer, &input_nodes);
if (status != RET_OK) {
MS_LOG(ERROR) << "Convert layer bottom for " << layer.name() << " failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return status;
}
// build weights
std::vector<ParameterPtr> const_parameters;
status = ConvertBlobs(weight, &const_parameters);
if (status != RET_OK) {
MS_LOG(ERROR) << "Convert blobs for " << layer.name() << " failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return status;
}
// build cnode
std::vector<AnfNodePtr> op_inputs = {NewValueNode(std::shared_ptr<lite::PrimitiveC>(primitive_c))};
op_inputs.insert(op_inputs.end(), input_nodes.begin(), input_nodes.end());
op_inputs.insert(op_inputs.end(), const_parameters.begin(), const_parameters.end());
auto new_cnode = func_graph_ptr_->NewCNode(op_inputs);
new_cnode->set_fullname_with_scope(layer.name());
// convert outputs
status = ConvertTop(layer, new_cnode);
if (status != RET_OK) {
MS_LOG(ERROR) << "Convert outputs for " << layer.name() << " failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return status;
}
status = ConvertLayerQuantParams(layer, weight, primitive_c);
if (status != RET_OK) {
MS_LOG(ERROR) << "Convert quant params for " << layer.name() << " failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return status;
}
}
return status;
}
STATUS CaffeModelParser::InitOriginModel(const std::string &model_file, const std::string &weight_file) {
int status = ValidateFileStr(model_file, ".prototxt");
if (status != RET_OK) {
MS_LOG(ERROR) << "INPUT ILLEGAL: modelFile must be *.prototxt";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
return RET_INPUT_PARAM_INVALID;
}
if (weight_file.empty()) {
MS_LOG(ERROR) << "INPUT MISSING: weightFile is necessary";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_GRAPH_FILE_ERR);
return nullptr;
return RET_INPUT_PARAM_INVALID;
}
status = ValidateFileStr(weight_file, ".caffemodel");
if (status != RET_OK) {
MS_LOG(ERROR) << "INPUT ILLEGAL: weightFile must be *.caffemodel";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
return RET_INPUT_PARAM_INVALID;
}
auto metaGraph = std::make_unique<schema::MetaGraphT>();
TensorCache tensorCache;
caffe::NetParameter proto;
status = ReadProtoFromText((const char *)model_file.c_str(), &proto);
status = ReadProtoFromText((const char *)model_file.c_str(), &caffe_model_);
if (status != RET_OK) {
MS_LOG(ERROR) << "Read prototxt file failed, model path: " << model_file;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
return RET_ERROR;
}
metaGraph->name = proto.name();
caffe::NetParameter weight;
status = ReadProtoFromBinaryFile((const char *)weight_file.c_str(), &weight);
status = ReadProtoFromBinaryFile((const char *)weight_file.c_str(), &caffe_weight_);
if (status != RET_OK) {
MS_LOG(ERROR) << "Read caffemodel file failed, model path: " << weight_file;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
status = GetModelInput(proto, &tensorCache);
if (status != RET_OK) {
MS_LOG(ERROR) << "GetModelInput failed " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
NoSupportOp::GetInstance()->SetFmkType("CAFFE");
status = ParseLayer(proto, weight, &tensorCache, metaGraph.get(), quant_type);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseLayer failed " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
for (auto &tensor : tensorCache.GetCachedTensor()) {
delete tensor;
}
return nullptr;
}
status = SetGraphTensorIndex(proto, &tensorCache, metaGraph.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "Set inputTensor index and outputTensor index for graph failed!";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
metaGraph->name = GetModelName(model_file);
SetAllTensors(tensorCache, metaGraph.get());
return metaGraph.release();
}
STATUS CaffeModelParser::SetOpInputIdx(const caffe::LayerParameter &layer, schema::CNodeT *op,
TensorCache *tensorCache) {
for (int i = 0; i < layer.bottom_size(); i++) {
int index = -1;
if (splitLayer.find(layer.bottom(i)) != splitLayer.end()) {
index = tensorCache->FindTensor(splitLayer.find(layer.bottom(i))->second);
} else {
index = tensorCache->FindTensor(layer.bottom(i));
}
if (index >= 0) {
op->inputIndex.emplace_back(index);
} else {
MS_LOG(ERROR) << "Can't find input layer for " << layer.name().c_str();
return RET_ERROR;
}
return RET_ERROR;
}
return RET_OK;
}
STATUS CaffeModelParser::SetOpOutputIdx(const caffe::LayerParameter &layer, schema::CNodeT *op,
TensorCache *tensorCache) {
for (int i = 0; i < layer.top_size(); i++) {
std::unique_ptr<schema::TensorT> msTensor = std::make_unique<schema::TensorT>();
op->outputIndex.emplace_back(tensorCache->AddTensor(layer.top(i), msTensor.release(), OP_OUTPUT));
}
return RET_OK;
}
STATUS CaffeModelParser::SetWeightTensor(const std::vector<schema::TensorT *> &weightVec, schema::CNodeT *op,
TensorCache *tensorCache) {
for (auto iter : weightVec) {
op->inputIndex.emplace_back(tensorCache->AddTensor("Weight", iter, CONST));
}
return RET_OK;
}
STATUS CaffeModelParser::SetAllTensors(const TensorCache &tensorCache, schema::MetaGraphT *subGraphDef) {
std::vector<schema::TensorT *> tensors = tensorCache.GetCachedTensor();
for (auto iter : tensors) {
std::unique_ptr<schema::TensorT> temp(iter);
subGraphDef->allTensors.emplace_back(move(temp));
}
return RET_OK;
}
STATUS CaffeModelParser::SetGraphTensorIndex(const caffe::NetParameter &proto, TensorCache *tensorCache,
schema::MetaGraphT *subGraphDef) {
CaffeInspector caffeInspector;
caffeInspector.InspectModel(proto);
for (auto iter : caffeInspector.GetGraphInput()) {
int index = tensorCache->FindTensor(iter);
if (index >= 0) {
subGraphDef->inputIndex.emplace_back(index);
} else {
MS_LOG(ERROR) << "Can't find input tensor layer for graph.";
return RET_ERROR;
}
}
for (auto iter : caffeInspector.GetGraphOutput()) {
int index = -1;
if (splitLayer.find(iter) != splitLayer.end()) {
index = tensorCache->FindTensor(splitLayer.find(iter)->second);
} else {
index = tensorCache->FindTensor(iter);
}
if (index >= 0) {
subGraphDef->outputIndex.emplace_back(index);
} else {
MS_LOG(ERROR) << "Can't find output tensor layer for graph.";
return RET_ERROR;
}
}
return RET_OK;
}
STATUS CaffeModelParser::ParseLayer(const caffe::NetParameter &proto, const caffe::NetParameter &weight,
TensorCache *tensorCache, schema::MetaGraphT *subGraphDef,
const QuantType &quantType) {
static bool interrupt = false;
int status = RET_OK;
for (int i = 0; i < proto.layer_size(); i++) {
auto layer = proto.layer(i);
caffe::LayerParameter layerP;
for (int j = 0; j < weight.layer_size(); j++) {
auto tempLayer = weight.layer(j);
if (tempLayer.name() == layer.name()) {
layerP = tempLayer;
break;
}
}
STATUS CaffeModelParser::ConvertGraphInputs() {
for (int i = 0; i < caffe_model_.layer_size(); i++) {
auto layer = caffe_model_.layer(i);
if (layer.type() == "Input") {
std::unique_ptr<schema::TensorT> msTensor = std::make_unique<schema::TensorT>();
auto parameter = func_graph_ptr_->add_parameter();
std::vector<int64_t> shape;
for (int j = 0; j < layer.input_param().shape(0).dim_size(); j++) {
msTensor->dims.push_back(layer.input_param().shape(0).dim(j));
shape.push_back(layer.input_param().shape(0).dim(j));
}
msTensor->nodeType = schema::NodeType::NodeType_ValueNode;
msTensor->refCount = 1;
msTensor->dataType = kNumberTypeFloat32;
tensorCache->AddTensor(layer.top(0), msTensor.release(), GRAPH_INPUT);
} else {
if (skipedLayerType.find(layer.type()) != skipedLayerType.end()) {
MS_LOG(INFO) << "Skip layer " << layer.name();
continue;
}
// here we only process the bn with phase
if (layer.type() == "BatchNorm" && layer.include_size() == 1) {
if (layer.include(0).phase() == caffe::TRAIN) {
MS_LOG(INFO) << "Skip layer " << layer.name();
continue;
}
}
std::unique_ptr<schema::CNodeT> op = std::make_unique<schema::CNodeT>();
op->name = layer.name();
op->quantType = quantType;
if (layer.type() == "Split") {
for (int j = 0; j < layer.top_size(); ++j) {
splitLayer.emplace(layer.top(j), layer.bottom(0));
}
continue;
}
auto nodeParser = CaffeNodeParserRegistry::GetInstance()->GetNodeParser(layer.type().c_str());
if (nodeParser == nullptr || interrupt) {
interrupt = true;
if (nodeParser == nullptr) {
NoSupportOp::GetInstance()->InsertOp(layer.type());
status = (status == RET_OK ? RET_NOT_FIND_OP : status);
}
continue;
}
std::vector<schema::TensorT *> weightVec;
auto status_node = nodeParser->Parse(layer, layerP, op.get(), &weightVec);
if (status_node != RET_OK) {
interrupt = true;
if (status_node == RET_NOT_FIND_OP) {
NoSupportOp::GetInstance()->InsertOp(layer.type());
} else {
MS_LOG(ERROR) << "Parse weight for " << layer.name() << " Failed!";
}
status = (status == RET_OK ? status_node : status);
continue;
}
status_node = SetOpInputIdx(layer, op.get(), tensorCache);
if (status_node != RET_OK) {
MS_LOG(ERROR) << "Set Op " << layer.name() << " Input Index Failed!";
status = (status == RET_OK ? status_node : status);
}
SetWeightTensor(weightVec, op.get(), tensorCache);
status_node = SetOpOutputIdx(layer, op.get(), tensorCache);
if (status_node != RET_OK) {
interrupt = true;
MS_LOG(ERROR) << "Set Op " << layer.name() << " Output Index Failed!";
status = (status == RET_OK ? status_node : status);
continue;
}
// op->fmkType = FmkType_CAFFE;
subGraphDef->nodes.emplace_back(move(op));
auto type_ptr = TypeIdToType(TypeId::kNumberTypeFloat32);
auto abstract_tensor = std::make_shared<abstract::AbstractTensor>(type_ptr, shape);
parameter->set_abstract(abstract_tensor);
parameter->set_name("graph-input-" + std::to_string(i));
nodes_.insert(std::pair(layer.top(0), parameter));
return RET_OK;
}
}
return status;
}
STATUS CaffeModelParser::GetModelInput(const caffe::NetParameter &proto, TensorCache *tensorCache) {
for (int i = 0; i < proto.input_size(); i++) {
if (proto.input_dim_size() <= 0) {
continue;
}
std::unique_ptr<schema::TensorT> msTensor = std::make_unique<schema::TensorT>();
if (proto.input_dim_size() > 4) {
int step = proto.input_dim_size() / proto.input_size();
for (int j = i * step; j < (i + 1) * step; j++) {
msTensor->dims.push_back(proto.input_dim(j));
if (caffe_model_.input_dim_size() > 0) {
for (int i = 0; i < caffe_model_.input_size(); i++) {
std::vector<int64_t> shape;
if (caffe_model_.input_dim_size() > 4) {
int step = caffe_model_.input_dim_size() / caffe_model_.input_size();
for (int j = i * step; j < (i + 1) * step; j++) {
shape.push_back(caffe_model_.input_dim(j));
}
} else {
for (int j = 0; j < caffe_model_.input_dim_size(); j++) {
shape.push_back(caffe_model_.input_dim(j));
}
}
} else {
for (int j = 0; j < proto.input_dim_size(); j++) {
msTensor->dims.push_back(proto.input_dim(j));
auto parameter = func_graph_ptr_->add_parameter();
auto type_ptr = TypeIdToType(TypeId::kNumberTypeFloat32);
auto abstract_tensor = std::make_shared<abstract::AbstractTensor>(type_ptr, shape);
parameter->set_abstract(abstract_tensor);
parameter->set_name("graph-input-" + caffe_model_.input(i));
nodes_.insert(std::pair(caffe_model_.input(i), parameter));
}
} else {
for (int i = 0; i < caffe_model_.input_shape_size(); i++) {
auto shape = caffe_model_.input_shape(i);
std::vector<int64_t> shape_vector;
for (int j = 0; j < shape.dim_size(); j++) {
shape_vector.push_back(shape.dim(j));
}
auto parameter = func_graph_ptr_->add_parameter();
auto type_ptr = TypeIdToType(TypeId::kNumberTypeFloat32);
auto abstract_tensor = std::make_shared<abstract::AbstractTensor>(type_ptr, shape_vector);
parameter->set_abstract(abstract_tensor);
parameter->set_name("graph-input-" + caffe_model_.input(i));
nodes_.insert(std::pair(caffe_model_.input(i), parameter));
}
msTensor->refCount = schema::NodeType::NodeType_ValueNode;
msTensor->dataType = kNumberTypeFloat32;
tensorCache->AddTensor(proto.input(i), msTensor.release(), GRAPH_INPUT);
}
for (int i = 0; i < proto.input_shape_size(); i++) {
auto shape = proto.input_shape(i);
std::unique_ptr<schema::TensorT> msTensor = std::make_unique<schema::TensorT>();
for (int j = 0; j < shape.dim_size(); j++) {
msTensor->dims.push_back(shape.dim(j));
}
msTensor->refCount = schema::NodeType::NodeType_ValueNode;
msTensor->dataType = kNumberTypeFloat32;
tensorCache->AddTensor(proto.input(i), msTensor.release(), GRAPH_INPUT);
}
return RET_OK;
}
} // namespace lite
} // namespace mindspore
STATUS CaffeModelParser::ConvertGraphOutputs() {
CaffeInspector caffeInspector;
caffeInspector.InspectModel(caffe_model_);
if (caffeInspector.GetGraphOutput().size() > 1) {
std::vector<AnfNodePtr> make_tuple_inputs;
auto make_tuple_prim_ptr = GetMakeTuplePrim();
if (make_tuple_prim_ptr == nullptr) {
MS_LOG(ERROR) << "GetMakeTuplePrim return nullptr";
return RET_NULL_PTR;
}
auto make_tuple_prim = NewValueNode(make_tuple_prim_ptr);
make_tuple_inputs.emplace_back(make_tuple_prim);
for (const auto &output_node : caffeInspector.GetGraphOutput()) {
if (nodes_.find(output_node) == nodes_.end()) {
MS_LOG(ERROR) << "Can't find input node.";
return RET_NOT_FIND_OP;
}
auto cnode = nodes_.find(output_node)->second;
make_tuple_inputs.emplace_back(cnode);
}
auto make_tuple_cnode = func_graph_ptr_->NewCNode(make_tuple_inputs);
make_tuple_cnode->set_fullname_with_scope("return tuple");
std::vector<AnfNodePtr> op_inputs;
auto return_prim_ptr = GetReturnPrim();
if (return_prim_ptr == nullptr) {
MS_LOG(ERROR) << "GetReturnPrim return nullptr";
return RET_NULL_PTR;
}
auto value_node = NewValueNode(return_prim_ptr);
op_inputs.emplace_back(value_node);
op_inputs.emplace_back(make_tuple_cnode);
auto cnode = func_graph_ptr_->NewCNode(op_inputs);
cnode->set_fullname_with_scope("return");
func_graph_ptr_->set_return(cnode);
} else {
auto returnPrim = GetReturnPrim();
if (returnPrim == nullptr) {
MS_LOG(ERROR) << "GetReturnPrim return nullptr";
return RET_NULL_PTR;
}
auto valueNode = NewValueNode(returnPrim);
std::vector<AnfNodePtr> opInputs{valueNode};
if (nodes_.find(*caffeInspector.GetGraphOutput().begin()) == nodes_.end()) {
MS_LOG(ERROR) << "Can't find input node.";
return RET_NOT_FIND_OP;
}
auto cnode = nodes_.find(*caffeInspector.GetGraphOutput().begin())->second;
if (nullptr == cnode) {
MS_LOG(ERROR) << "Can't find input node.";
return RET_NOT_FIND_OP;
}
opInputs.emplace_back(cnode);
auto returnCnode = func_graph_ptr_->NewCNode(opInputs);
returnCnode->set_fullname_with_scope("return");
func_graph_ptr_->set_return(returnCnode);
}
return RET_OK;
}
STATUS CaffeModelParser::ConvertLayerQuantParams(const caffe::LayerParameter &layer,
const caffe::LayerParameter &weight, lite::PrimitiveC *primitive_c) {
if (primitive_c == nullptr) {
MS_LOG(ERROR) << "primitive_c is null, get quant params failed.";
return RET_NULL_PTR;
}
for (auto input_idx : layer.bottom()) {
std::vector<schema::QuantParamT> notinited_quant_params(1);
primitive_c->AddInputQuantParam(notinited_quant_params);
}
for (auto input_idx : weight.blobs()) {
std::vector<schema::QuantParamT> notinited_quant_params(1);
primitive_c->AddInputQuantParam(notinited_quant_params);
}
for (auto output_idx : layer.top()) {
std::vector<schema::QuantParamT> notinited_quant_params(1);
primitive_c->AddOutputQuantParam(notinited_quant_params);
}
return RET_OK;
}
STATUS CaffeModelParser::ConvertBlobs(const caffe::LayerParameter &layer, std::vector<ParameterPtr> *const_parameters) {
if (const_parameters == nullptr) {
MS_LOG(ERROR) << "const parameters are null";
return RET_NULL_PTR;
}
// Layer must have Filter
if (layer.blobs_size() == 0) {
MS_LOG(INFO) << "No filter data in layer " << layer.name().c_str();
return RET_OK;
}
for (int i = 0; i < layer.blobs_size(); i++) {
std::vector<int32_t> shape;
ConvertShape(layer.blobs(i), &shape);
// cal Weight num
auto parameter = func_graph_ptr_->add_parameter();
auto type_ptr = TypeIdToType(TypeId::kNumberTypeFloat32);
std::vector<int64_t> shape_vector;
(void)std::transform(shape.begin(), shape.end(), std::back_inserter(shape_vector),
[](const int32_t &value) { return static_cast<int64_t>(value); });
auto abstract_tensor = std::make_shared<abstract::AbstractTensor>(type_ptr, shape_vector);
parameter->set_abstract(abstract_tensor);
if (layer.type() == "Convolution" || layer.type() == "Deconvolution") {
if (i == 0) {
parameter->set_name(layer.name() + "/weight");
} else if (i == 1) {
parameter->set_name(layer.name() + "/bias");
}
} else {
parameter->set_name(layer.name() + "/input-" + std::to_string(i + layer.top_size()));
}
ParamValueLitePtr param_value = std::make_shared<ParamValueLite>();
MS_ASSERT(param_value != nullptr);
param_value->set_tensor_shape(shape);
param_value->set_tensor_type(TypeId::kNumberTypeFloat32);
param_value->set_format(schema::Format::Format_NCHW);
int count = 0;
if (layer.blobs(i).double_data_size() > 0) {
count = layer.blobs(i).double_data_size();
auto buf = std::make_unique<float[]>(count);
for (int j = 0; j < count; ++j) {
buf[j] = layer.blobs(j).double_data(j);
}
param_value->set_tensor_addr(buf.release());
} else {
count = layer.blobs(i).data_size();
auto buf = std::make_unique<float[]>(count);
const float *data_ptr = layer.blobs(i).data().data();
if (EOK != ::memcpy_s(buf.get(), count * sizeof(float), data_ptr, count * sizeof(float))) {
MS_LOG(ERROR) << "memcpy_s failed.";
return RET_ERROR;
}
param_value->set_tensor_addr(buf.release());
}
param_value->set_tensor_size(count * sizeof(float));
parameter->set_default_param(param_value);
const_parameters->emplace_back(parameter);
}
return RET_OK;
}
STATUS CaffeModelParser::ConvertBottom(const caffe::LayerParameter &layer, std::vector<AnfNodePtr> *input_nodes) {
if (input_nodes == nullptr) {
MS_LOG(ERROR) << "input_nodes is null";
return RET_NULL_PTR;
}
for (int i = 0; i < layer.bottom_size(); i++) {
if (nodes_.find(layer.bottom(i)) == nodes_.end()) {
MS_LOG(ERROR) << "layer bottom " << layer.bottom(i) << " is not found";
return RET_NOT_FIND_OP;
}
input_nodes->emplace_back(nodes_.find(layer.bottom(i))->second);
}
return RET_OK;
}
STATUS CaffeModelParser::ConvertTop(const caffe::LayerParameter &layer, const CNodePtr &cnode) {
auto type_ptr = TypeIdToType(TypeId::kNumberTypeFloat32);
std::vector<int64_t> shape_vector;
if (layer.top_size() == 1) {
cnode->set_abstract(std::make_shared<abstract::AbstractTensor>(type_ptr, shape_vector));
nodes_[layer.top(0)] = cnode;
return RET_OK;
}
AbstractBasePtrList abstract_list;
for (int i = 0; i < layer.top_size(); i++) {
abstract_list.emplace_back(std::make_shared<abstract::AbstractTensor>(type_ptr, shape_vector));
auto tuple_get_item_prim_ptr = GetTupleGetItemPrim();
if (tuple_get_item_prim_ptr == nullptr) {
MS_LOG(ERROR) << "GetTupleGetItemPrim return nullptr";
return RET_NULL_PTR;
}
auto tuple_get_item_prim = NewValueNode(tuple_get_item_prim_ptr);
auto get_item_value = NewValueNode(MakeValue<int>(i));
std::vector<AnfNodePtr> inputs{tuple_get_item_prim, cnode, get_item_value};
CNodePtr get_item_cnode = func_graph_ptr_->NewCNode(inputs);
get_item_cnode->set_fullname_with_scope(layer.top(i));
nodes_[layer.top(i)] = get_item_cnode;
}
cnode->set_abstract(std::make_shared<abstract::AbstractTuple>(abstract_list));
return RET_OK;
}
bool CaffeModelParser::IsSkipedLayer(const caffe::LayerParameter &layer) {
if (layer.type() == "Input" || layer.type() == "Dropout") {
return true;
}
return layer.include_size() == 1 && layer.include(0).phase() == caffe::TRAIN;
}
MetaGraphT *CaffeModelParser::ParseToFb(const std::string &model_file, const std::string &weight_file,
const QuantType &quant_type) {
return nullptr;
}
} // namespace mindspore::lite

View File

@ -13,7 +13,6 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_MODEL_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_MODEL_PARSER_H_
@ -24,41 +23,45 @@
#include <unordered_map>
#include "tools/converter/model_parser.h"
#include "proto/caffe.pb.h"
#include "tools/common/tensor_util.h"
namespace mindspore {
namespace lite {
namespace mindspore::lite {
class CaffeModelParser : public ModelParser {
public:
CaffeModelParser();
virtual ~CaffeModelParser();
~CaffeModelParser() override;
FuncGraphPtr Parse(const std::string &model_file, const std::string &weight_file,
const QuantType &quant_type) override;
MetaGraphT *ParseToFb(const std::string &model_file, const std::string &weight_file,
const QuantType &quant_type) override;
private:
schema::MetaGraphT *ParseToFb(const std::string &model_file, const std::string &weight_file,
const QuantType &quant_type = QuantType_QUANT_NONE) override;
STATUS InitOriginModel(const std::string &model_file, const std::string &weight_file);
STATUS SetOpInputIdx(const caffe::LayerParameter &layer, schema::CNodeT *op, TensorCache *tensorCache);
STATUS ConvertGraphInputs();
STATUS SetOpOutputIdx(const caffe::LayerParameter &layer, schema::CNodeT *op, TensorCache *tensorCache);
STATUS ConvertGraphOutputs();
STATUS SetWeightTensor(const std::vector<schema::TensorT *> &weightVec, schema::CNodeT *op, TensorCache *tensorCache);
STATUS ConvertLayers();
STATUS SetAllTensors(const TensorCache &tensorCache, schema::MetaGraphT *subGraphDef);
STATUS ConvertLayerQuantParams(const caffe::LayerParameter &layer, const caffe::LayerParameter &weight,
lite::PrimitiveC *primitive_c);
STATUS SetGraphTensorIndex(const caffe::NetParameter &proto, TensorCache *tensorCache,
schema::MetaGraphT *subGraphDef);
STATUS ConvertBlobs(const caffe::LayerParameter &layer, std::vector<ParameterPtr> *const_parameters);
STATUS ParseLayer(const caffe::NetParameter &proto, const caffe::NetParameter &weight, TensorCache *tensorCache,
schema::MetaGraphT *subGraphDef, const QuantType &quantType);
STATUS ConvertBottom(const caffe::LayerParameter &layer, std::vector<AnfNodePtr> *input_nodes);
STATUS GetModelInput(const caffe::NetParameter &proto, TensorCache *tensorCache);
STATUS ConvertTop(const caffe::LayerParameter &layer, const CNodePtr &cnode);
static const std::set<std::string> skipedLayerType;
bool IsSkipedLayer(const caffe::LayerParameter &layer);
std::unordered_map<std::string, std::string> splitLayer;
caffe::NetParameter caffe_model_;
caffe::NetParameter caffe_weight_;
std::unordered_map<std::string, AnfNodePtr> nodes_;
FuncGraphPtr func_graph_ptr_;
};
} // namespace lite
} // namespace mindspore
} // namespace mindspore::lite
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_MODEL_PARSER_H_

View File

@ -19,6 +19,8 @@
#include <string>
#include <vector>
#include "src/ops/primitive_c.h"
#include "c_ops/primitive_c.h"
#include "google/protobuf/message.h"
#include "schema/inner/model_generated.h"
#include "proto/caffe.pb.h"
@ -34,8 +36,10 @@ class CaffeNodeParser {
virtual ~CaffeNodeParser() {}
virtual int Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) = 0;
virtual lite::PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
return nullptr;
}
protected:
const std::string name;

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffePermuteParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffePermuteParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffePermuteParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::TransposeT> attr = std::make_unique<schema::TransposeT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::PermuteParameter &permuteParam = proto.permute_param();
@ -45,11 +34,10 @@ STATUS CaffePermuteParser::Parse(const caffe::LayerParameter &proto, const caffe
attr->perm[i] = (int32_t)permuteParam.order()[i];
}
attr->conjugate = false;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Transpose;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Transpose;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffePermuteParser("Permute", new CaffePermuteParser());

View File

@ -28,8 +28,7 @@ class CaffePermuteParser : public CaffeNodeParser {
CaffePermuteParser() : CaffeNodeParser("Permute") {}
~CaffePermuteParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,67 +19,6 @@
namespace mindspore {
namespace lite {
STATUS CaffePoolingParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffePoolingParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
std::unique_ptr<schema::PoolingT> attr = std::make_unique<schema::PoolingT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
attr->format = schema::Format::Format_NCHW;
const caffe::PoolingParameter &poolingParam = proto.pooling_param();
auto status = ParsePads(poolingParam, attr.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParsePads for " << proto.name().c_str() << " failed";
return RET_ERROR;
}
status = ParseStrides(poolingParam, attr.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseStrides for " << proto.name().c_str() << " failed";
return RET_ERROR;
}
status = ParseWindows(poolingParam, attr.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseWindows for " << proto.name().c_str() << " failed";
return RET_ERROR;
}
status = ParsePoolingMode(poolingParam, attr.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParsePoolingMode for " << proto.name().c_str() << " failed";
return RET_ERROR;
}
attr->roundMode = schema::RoundMode_CEIL;
if (poolingParam.has_round_mode()) {
if (poolingParam.round_mode() == caffe::PoolingParameter_RoundMode_FLOOR) {
attr->roundMode = schema::RoundMode_FLOOR;
} else if (poolingParam.round_mode() == caffe::PoolingParameter_RoundMode_CEIL) {
attr->roundMode = schema::RoundMode_CEIL;
}
}
attr->padMode = schema::PadMode_CAFFE;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Pooling;
op->primitive->value.value = attr.release();
return RET_OK;
}
STATUS CaffePoolingParser::ParsePads(const caffe::PoolingParameter &poolingParam, schema::PoolingT *attr) {
if (poolingParam.has_pad_h() && poolingParam.has_pad_w()) {
@ -156,6 +95,55 @@ STATUS CaffePoolingParser::ParsePoolingMode(const caffe::PoolingParameter &pooli
}
return RET_OK;
}
PrimitiveC *CaffePoolingParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::PoolingT> attr = std::make_unique<schema::PoolingT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return nullptr;
}
attr->format = schema::Format::Format_NCHW;
const caffe::PoolingParameter &poolingParam = proto.pooling_param();
auto status = ParsePads(poolingParam, attr.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParsePads for " << proto.name().c_str() << " failed";
return nullptr;
}
status = ParseStrides(poolingParam, attr.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseStrides for " << proto.name().c_str() << " failed";
return nullptr;
}
status = ParseWindows(poolingParam, attr.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseWindows for " << proto.name().c_str() << " failed";
return nullptr;
}
status = ParsePoolingMode(poolingParam, attr.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParsePoolingMode for " << proto.name().c_str() << " failed";
return nullptr;
}
attr->roundMode = schema::RoundMode_CEIL;
if (poolingParam.has_round_mode()) {
if (poolingParam.round_mode() == caffe::PoolingParameter_RoundMode_FLOOR) {
attr->roundMode = schema::RoundMode_FLOOR;
} else if (poolingParam.round_mode() == caffe::PoolingParameter_RoundMode_CEIL) {
attr->roundMode = schema::RoundMode_CEIL;
}
}
attr->padMode = schema::PadMode_CAFFE;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Pooling;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffePoolingParser("Pooling", new CaffePoolingParser());
} // namespace lite

View File

@ -28,8 +28,7 @@ class CaffePoolingParser : public CaffeNodeParser {
CaffePoolingParser() : CaffeNodeParser("pooling") {}
~CaffePoolingParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
static STATUS ParsePads(const caffe::PoolingParameter &poolingParam, schema::PoolingT *attr);

View File

@ -20,23 +20,12 @@
namespace mindspore {
namespace lite {
STATUS CaffePowerParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffePowerParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffePowerParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::PowerT> attr = std::make_unique<schema::PowerT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::PowerParameter &powerParam = proto.power_param();
@ -50,10 +39,10 @@ STATUS CaffePowerParser::Parse(const caffe::LayerParameter &proto, const caffe::
attr->shift = 0.0;
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Power;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Power;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffePowerParser("Power", new CaffePowerParser());

View File

@ -28,8 +28,7 @@ class CaffePowerParser : public CaffeNodeParser {
CaffePowerParser() : CaffeNodeParser("power") {}
~CaffePowerParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,27 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffePReluParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffePReluParser";
if (weightVec == nullptr) {
MS_LOG(ERROR) << "weightVec is null";
return RET_NULL_PTR;
}
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffePReluParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::PReLUT> attr = std::make_unique<schema::PReLUT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::PReLUParameter &pReluParam = proto.prelu_param();
@ -48,22 +33,10 @@ STATUS CaffePReluParser::Parse(const caffe::LayerParameter &proto, const caffe::
} else {
attr->channelShared = false;
}
if (weight.blobs_size() == 0) {
MS_LOG(ERROR) << "PRelu No blobs data in layer " << proto.name().c_str();
return RET_ERROR;
}
auto slope = ConvertWeight(weight.blobs(0));
if (slope == nullptr) {
MS_LOG(ERROR) << "CaffePRelu convert slope for layer " << weight.name().c_str() << " failed.";
return RET_ERROR;
}
weightVec->push_back(slope);
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_PReLU;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_PReLU;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffePReluParser("PReLU", new CaffePReluParser());

View File

@ -28,8 +28,7 @@ class CaffePReluParser : public CaffeNodeParser {
CaffePReluParser() : CaffeNodeParser("pRelu") {}
~CaffePReluParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -20,64 +20,25 @@
namespace mindspore {
namespace lite {
STATUS CaffeReduceParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeReduceParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
std::unique_ptr<schema::ReduceT> attr = std::make_unique<schema::ReduceT>();
PrimitiveC *CaffeReduceParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::PReLUT> attr = std::make_unique<schema::PReLUT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::ReductionParameter &reduce_param = proto.reduction_param();
if (reduce_param.has_operation()) {
switch (reduce_param.operation()) {
case caffe::ReductionParameter_ReductionOp_MEAN:
attr->mode = schema::ReduceMode_ReduceMean;
break;
case caffe::ReductionParameter_ReductionOp_SUM:
attr->mode = schema::ReduceMode_ReduceSum;
break;
case caffe::ReductionParameter_ReductionOp_SUMSQ:
attr->mode = schema::ReduceMode_ReduceSumSquare;
break;
case caffe::ReductionParameter_ReductionOp_ASUM:
attr->mode = schema::ReduceMode_ReduceASum;
break;
default:
MS_LOG(ERROR) << "reduce parse params fail, unsupported opration: " << reduce_param.operation();
return RET_ERROR;
}
const caffe::PReLUParameter &pReluParam = proto.prelu_param();
if (pReluParam.has_channel_shared()) {
attr->channelShared = pReluParam.channel_shared();
} else {
attr->mode = schema::ReduceMode_ReduceSum;
attr->channelShared = false;
}
if (reduce_param.has_axis()) {
attr->axes = std::vector(1, reduce_param.axis());
} else {
attr->axes = std::vector(1, 0);
}
if (reduce_param.has_coeff()) {
attr->coeff = reduce_param.coeff();
} else {
attr->coeff = 1.0;
}
attr->reduceToEnd = true;
attr->keepDims = false;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Reduce;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Reduce;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeReduceParser("Reduction", new CaffeReduceParser());

View File

@ -28,8 +28,7 @@ class CaffeReduceParser : public CaffeNodeParser {
CaffeReduceParser() : CaffeNodeParser("reduce") {}
~CaffeReduceParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeRelu6Parser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeRelu6Parser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeRelu6Parser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ActivationT> attr(new schema::ActivationT());
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
attr->type = schema::ActivationType_RELU6;
@ -46,11 +35,10 @@ STATUS CaffeRelu6Parser::Parse(const caffe::LayerParameter &proto, const caffe::
attr->alpha = negative_slope;
}
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Activation;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Activation;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeRelu6Parser("ReLU6", new CaffeRelu6Parser());

View File

@ -27,8 +27,7 @@ class CaffeRelu6Parser : public CaffeNodeParser {
CaffeRelu6Parser() : CaffeNodeParser("relu6") {}
~CaffeRelu6Parser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeReluParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeReluParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeReluParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ActivationT> attr = std::make_unique<schema::ActivationT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
attr->type = schema::ActivationType_RELU;
@ -46,11 +35,10 @@ STATUS CaffeReluParser::Parse(const caffe::LayerParameter &proto, const caffe::L
attr->alpha = negative_slope;
}
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Activation;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Activation;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeReluParser("ReLU", new CaffeReluParser());

View File

@ -28,8 +28,7 @@ class CaffeReluParser : public CaffeNodeParser {
CaffeReluParser() : CaffeNodeParser("relu") {}
~CaffeReluParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeReshapeParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeReshapeParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeReshapeParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ReshapeT> attr = std::make_unique<schema::ReshapeT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
attr->format = schema::Format::Format_NCHW;
@ -43,18 +32,17 @@ STATUS CaffeReshapeParser::Parse(const caffe::LayerParameter &proto, const caffe
const caffe::ReshapeParameter &reshapeParam = proto.reshape_param();
if (!reshapeParam.has_shape()) {
MS_LOG(ERROR) << "Reshape has no shape info, ret fail";
return RET_ERROR;
return nullptr;
}
const caffe::BlobShape &blob_shape = reshapeParam.shape();
for (int i = 0; i < blob_shape.dim_size(); i++) {
attr->shape.push_back(blob_shape.dim(i));
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Reshape;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Reshape;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeReshapeParser("Reshape", new CaffeReshapeParser());

View File

@ -28,8 +28,7 @@ class CaffeReshapeParser : public CaffeNodeParser {
CaffeReshapeParser() : CaffeNodeParser("reshape") {}
~CaffeReshapeParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,33 +19,18 @@
namespace mindspore {
namespace lite {
STATUS CaffeScaleParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeScaleParser";
if (weightVec == nullptr) {
MS_LOG(ERROR) << "weightVec is null";
return RET_NULL_PTR;
}
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeScaleParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ScaleT> attr = std::make_unique<schema::ScaleT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
if (weight.blobs_size() + weight.bottom_size() < 2) {
MS_LOG(ERROR) << "Scale bottom size:" << weight.bottom_size() << ", blobs size:" << weight.blobs_size()
<< " invalid in layer " << weight.name().c_str();
return RET_ERROR;
return nullptr;
}
const caffe::ScaleParameter &scaleParam = weight.scale_param();
@ -53,43 +38,14 @@ STATUS CaffeScaleParser::Parse(const caffe::LayerParameter &proto, const caffe::
uint32_t axis_index = 1;
if (GetAxisIndex(scaleParam.axis(), &axis_index)) {
MS_LOG(ERROR) << "scale get axis failed for layer " << weight.name().c_str();
return RET_ERROR;
return nullptr;
}
}
attr->axis = 1;
// parse scale
if (weight.blobs().size() == 1) {
auto scale = ConvertWeight(weight.blobs(0));
if (scale == nullptr) {
MS_LOG(ERROR) << "Scale Convert blobs(0) for layer " << weight.name().c_str() << " failed.";
return RET_ERROR;
}
weightVec->push_back(scale);
} else if (weight.blobs().size() >= 2) {
auto scale = ConvertWeight(weight.blobs(0));
if (scale == nullptr) {
MS_LOG(ERROR) << "Scale Convert blobs(0) for layer " << weight.name().c_str() << " failed.";
return RET_ERROR;
}
weightVec->push_back(scale);
// parse bias
bool scaleBias = scaleParam.bias_term();
if (scaleBias) {
auto bias = ConvertWeight(weight.blobs_size() > 1 ? weight.blobs(1) : weight.blobs(0));
if (bias == nullptr) {
MS_LOG(ERROR) << "Scale Convert blobs(1) for layer " << weight.name().c_str() << " failed.";
return RET_ERROR;
}
weightVec->push_back(bias);
}
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Scale;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Scale;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
STATUS CaffeScaleParser::GetAxisIndex(const int32_t &axis, uint32_t *axis_index) {

View File

@ -28,8 +28,7 @@ class CaffeScaleParser : public CaffeNodeParser {
CaffeScaleParser() : CaffeNodeParser("scale") {}
~CaffeScaleParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
static STATUS GetAxisIndex(const int32_t &axis, uint32_t *axis_index);
};

View File

@ -19,31 +19,19 @@
namespace mindspore {
namespace lite {
STATUS CaffeSigmoidParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeSigmoidParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeSigmoidParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ActivationT> attr = std::make_unique<schema::ActivationT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
attr->type = schema::ActivationType_SIGMOID;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Activation;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Activation;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeSigmoidParser("Sigmoid", new CaffeSigmoidParser());

View File

@ -28,8 +28,7 @@ class CaffeSigmoidParser : public CaffeNodeParser {
CaffeSigmoidParser() : CaffeNodeParser("sigmoid") {}
~CaffeSigmoidParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeSliceParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeSliceParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeSliceParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::SplitT> attr = std::make_unique<schema::SplitT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::SliceParameter &slice_param = proto.slice_param();
@ -60,11 +49,10 @@ STATUS CaffeSliceParser::Parse(const caffe::LayerParameter &proto, const caffe::
} else if (slice_param.has_slice_dim()) {
attr->splitDim = slice_param.slice_dim();
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Split;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Split;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeSliceParser("Slice", new CaffeSliceParser());

View File

@ -28,8 +28,7 @@ class CaffeSliceParser : public CaffeNodeParser {
CaffeSliceParser() : CaffeNodeParser("slice") {}
~CaffeSliceParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -19,23 +19,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeSoftmaxParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeSoftmaxParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeSoftmaxParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::SoftMaxT> attr = std::make_unique<schema::SoftMaxT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
if (proto.has_softmax_param() && proto.softmax_param().has_axis()) {
@ -46,11 +35,10 @@ STATUS CaffeSoftmaxParser::Parse(const caffe::LayerParameter &proto, const caffe
} else {
attr->axis = 1;
}
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_SoftMax;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_SoftMax;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeSoftmaxParser("Softmax", new CaffeSoftmaxParser());

View File

@ -28,8 +28,7 @@ class CaffeSoftmaxParser : public CaffeNodeParser {
CaffeSoftmaxParser() : CaffeNodeParser("softmax") {}
~CaffeSoftmaxParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -20,30 +20,18 @@
namespace mindspore {
namespace lite {
STATUS CaffeTanhParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeTanhParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeTanhParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::ActivationT> attr(new schema::ActivationT());
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
attr->type = schema::ActivationType_TANH;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Activation;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Activation;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeTanhParser("TanH", new CaffeTanhParser());

View File

@ -28,8 +28,7 @@ class CaffeTanhParser : public CaffeNodeParser {
CaffeTanhParser() : CaffeNodeParser("tanh") {}
~CaffeTanhParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -20,23 +20,12 @@
namespace mindspore {
namespace lite {
STATUS CaffeTileParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight,
schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeTileParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
PrimitiveC *CaffeTileParser::ParseLitePrimitive(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight) {
std::unique_ptr<schema::TileT> attr = std::make_unique<schema::TileT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
return nullptr;
}
const caffe::TileParameter &tile_param = proto.tile_param();
@ -57,10 +46,10 @@ STATUS CaffeTileParser::Parse(const caffe::LayerParameter &proto, const caffe::L
attr->dims = dims;
attr->multiples = multiples;
op->primitive->value.type = schema::PrimitiveType_Tile;
op->primitive->value.value = attr.release();
return RET_OK;
auto primitive = std::make_unique<schema::PrimitiveT>();
primitive->value.type = schema::PrimitiveType_Tile;
primitive->value.value = attr.release();
return PrimitiveC::Create(primitive.release());
}
CaffeNodeRegistrar g_caffeTileParser("Tile", new CaffeTileParser());

View File

@ -28,8 +28,7 @@ class CaffeTileParser : public CaffeNodeParser {
CaffeTileParser() : CaffeNodeParser("tile") {}
~CaffeTileParser() override = default;
STATUS Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
PrimitiveC *ParseLitePrimitive(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -103,7 +103,7 @@ STATUS TfliteModelParser::ConvertOps() {
auto primitiveC = node_parser->ParseLitePrimitive(op, tflite_model_);
if (primitiveC == nullptr) {
MS_LOG(ERROR) << "parse node " << op_type.c_str() << " parser failed";
MS_LOG(ERROR) << "parse node " << op_name << " parser failed";
continue;
}

View File

@ -29,6 +29,7 @@ namespace mindspore::opt {
namespace {
constexpr size_t kCaffeBNMeanIndex = 2;
constexpr size_t kCaffeBNVarIndex = 3;
constexpr size_t kCaffeBNScaleFactorIndex = 4;
constexpr size_t kTFBNScaleIndex = 2;
constexpr size_t kTFBNBiasIndex = 3;
constexpr size_t kTFBNMeanIndex = 4;
@ -95,6 +96,34 @@ void CalTransBias(const AnfNodePtr &bn_mean_node, const AnfNodePtr &bn_bias_node
}
}
}
STATUS CalEstimatedData(const AnfNodePtr &origin_node, const AnfNodePtr &scale_factor_node) {
if (origin_node == nullptr) {
MS_LOG(ERROR) << "origin node is null";
return RET_ERROR;
}
if (scale_factor_node == nullptr) {
MS_LOG(ERROR) << "scale factor node is null";
return RET_ERROR;
}
auto origin_param = origin_node->cast<ParameterPtr>()->default_param();
auto origin_tensor = std::dynamic_pointer_cast<ParamValueLite>(origin_param);
auto origin_data = reinterpret_cast<float *>(origin_tensor->tensor_addr());
auto scale_factor_param = scale_factor_node->cast<ParameterPtr>()->default_param();
auto scale_factor_tensor = std::dynamic_pointer_cast<ParamValueLite>(scale_factor_param);
if (scale_factor_tensor->tensor_shape_size() < 1) {
MS_LOG(ERROR) << "scale factor data size is not equal to 1";
return RET_ERROR;
}
auto scale_factor_data = (reinterpret_cast<float *>(scale_factor_tensor->tensor_addr()))[0];
float scale_factor = scale_factor_data == 0 ? 0 : 1 / scale_factor_data;
for (int i = 0; i < origin_tensor->tensor_shape_size(); i++) {
origin_data[i] = origin_data[i] * scale_factor;
}
return RET_OK;
}
} // namespace
const BaseRef ConvBatchNormFusion::DefinePattern() const {
auto conv_var = std::make_shared<CondVar>(IsConvNode);
@ -106,8 +135,9 @@ const BaseRef ConvBatchNormFusion::DefinePattern() const {
}
// BatchNorm weight Tensor definition:
// caffe
// estimated_mean --0
// estimated_variance --1
// mean --0
// variance --1
// scale_factor --2
// tensorflow
// scale -- 0
// bias --1
@ -127,13 +157,17 @@ void ConvBatchNormFusion::InitTransParam(const CNodePtr &bn_node, int kernel_num
if (GetCNodeType(bn_node) == schema::PrimitiveType_BatchNorm) {
bn_mean_node = bn_node->input(kCaffeBNMeanIndex);
bn_variance_node = bn_node->input(kCaffeBNVarIndex);
if (CheckIfNodeIsParam(bn_mean_node) != lite::RET_OK || CheckIfNodeIsParam(bn_variance_node) != lite::RET_OK) {
AnfNodePtr bn_scale_factor_node = bn_node->input(kCaffeBNScaleFactorIndex);
if (CheckIfNodeIsParam(bn_mean_node) != lite::RET_OK || CheckIfNodeIsParam(bn_variance_node) != lite::RET_OK ||
CheckIfNodeIsParam(bn_scale_factor_node) != lite::RET_OK) {
return;
}
MS_ASSERT(utils::isa<std::shared_ptr<mindspore::lite::BatchNorm>>(primitive_c));
auto primc = utils::cast<std::shared_ptr<mindspore::lite::BatchNorm>>(primitive_c);
MS_ASSERT(primc != nullptr);
eps = primc->GetEpsilon();
CalEstimatedData(bn_mean_node, bn_scale_factor_node);
CalEstimatedData(bn_variance_node, bn_scale_factor_node);
} else if (GetCNodeType(bn_node) == schema::PrimitiveType_FusedBatchNorm) {
bn_scale_node = bn_node->input(kTFBNScaleIndex);
bn_bias_node = bn_node->input(kTFBNBiasIndex);