forked from mindspore-Ecosystem/mindspore
!10076 add MaxPool2D/1D unify_mindir
From: @yuchaojie Reviewed-by: @kisnwang,@zhoufeng54 Signed-off-by: @zhoufeng54
This commit is contained in:
commit
be57909336
|
@ -73,8 +73,6 @@ const AnfNodePtr MaxPoolWithArgmaxUnifyMindIR::Process(const FuncGraphPtr &graph
|
|||
auto shapes = {output_shape, argmax_shape};
|
||||
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, maxpool_with_argmax.get());
|
||||
|
||||
auto manager = graph->manager();
|
||||
MS_EXCEPTION_IF_NULL(manager);
|
||||
return maxpool_with_argmax;
|
||||
}
|
||||
|
||||
|
@ -107,8 +105,6 @@ const AnfNodePtr MaxPoolGradWithArgmaxUnifyMindIR::Process(const FuncGraphPtr &g
|
|||
argmax_shape[2] = ksize[1] * ksize[2];
|
||||
AnfAlgo::SetOutputInferTypeAndShape({argmax_dtype}, {argmax_shape}, tuple_getitem0_anf.get());
|
||||
|
||||
auto manager = graph->manager();
|
||||
MS_EXCEPTION_IF_NULL(manager);
|
||||
return maxpool_grad_with_argmax;
|
||||
}
|
||||
} // namespace opt
|
||||
|
|
|
@ -439,6 +439,7 @@ void AscendSession::UnifyMindIR(const KernelGraphPtr &graph) {
|
|||
}
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto unify_mindir_pm = std::make_shared<opt::PassManager>("unify_mindir_pm");
|
||||
unify_mindir_pm->AddPass(std::make_shared<opt::MaxPool2MaxPoolWithArgmax>());
|
||||
unify_mindir_pm->AddPass(std::make_shared<opt::MaxPoolWithArgmaxUnifyMindIR>());
|
||||
unify_mindir_pm->AddPass(std::make_shared<opt::MaxPoolGradWithArgmaxUnifyMindIR>());
|
||||
unify_mindir_pm->AddPass(std::make_shared<opt::Conv2DUnifyMindIR>());
|
||||
|
|
|
@ -124,16 +124,9 @@ class MaxPool2d(_PoolNd):
|
|||
strides=self.stride,
|
||||
padding=self.pad_mode,
|
||||
data_format=self.format)
|
||||
self.max_pool_with_arg_max = P.MaxPoolWithArgmax(ksize=self.kernel_size,
|
||||
strides=self.stride,
|
||||
padding=self.pad_mode)
|
||||
self.is_tbe = context.get_context("device_target") == "Ascend"
|
||||
|
||||
def construct(self, x):
|
||||
if self.is_tbe and self.training:
|
||||
out = self.max_pool_with_arg_max(x)[0]
|
||||
else:
|
||||
out = self.max_pool(x)
|
||||
out = self.max_pool(x)
|
||||
return out
|
||||
|
||||
|
||||
|
@ -198,22 +191,15 @@ class MaxPool1d(_PoolNd):
|
|||
self.max_pool = P.MaxPool(ksize=self.kernel_size,
|
||||
strides=self.stride,
|
||||
padding=self.pad_mode)
|
||||
self.max_pool_with_arg_max = P.MaxPoolWithArgmax(ksize=self.kernel_size,
|
||||
strides=self.stride,
|
||||
padding=self.pad_mode)
|
||||
self.shape = F.shape
|
||||
self.reduce_mean = P.ReduceMean(keep_dims=True)
|
||||
self.expand = P.ExpandDims()
|
||||
self.squeeze = P.Squeeze(2)
|
||||
self.is_tbe = context.get_context("device_target") == "Ascend"
|
||||
|
||||
def construct(self, x):
|
||||
_shape_check(self.shape(x))
|
||||
x = self.expand(x, 2)
|
||||
if self.is_tbe and self.training:
|
||||
output = self.max_pool_with_arg_max(x)[0]
|
||||
else:
|
||||
output = self.max_pool(x)
|
||||
output = self.max_pool(x)
|
||||
output = self.squeeze(output)
|
||||
return output
|
||||
|
||||
|
|
Loading…
Reference in New Issue