forked from mindspore-Ecosystem/mindspore
!10384 [MSLITE] simplify base op
From: @ling_qiao_min Reviewed-by: @zhanghaibo5,@zhang_xue_tong Signed-off-by:
This commit is contained in:
commit
be56c201ef
|
@ -24,6 +24,7 @@ typedef struct BatchToSpaceParameter {
|
||||||
OpParameter op_parameter_;
|
OpParameter op_parameter_;
|
||||||
int32_t block_shape_[BATCH_TO_SPACE_BLOCK_SHAPE_SIZE];
|
int32_t block_shape_[BATCH_TO_SPACE_BLOCK_SHAPE_SIZE];
|
||||||
int32_t crops_[BATCH_TO_SPACE_CROPS_SIZE];
|
int32_t crops_[BATCH_TO_SPACE_CROPS_SIZE];
|
||||||
|
bool no_crop_;
|
||||||
} BatchToSpaceParameter;
|
} BatchToSpaceParameter;
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
|
|
|
@ -227,6 +227,27 @@ class LiteKernelUtil {
|
||||||
|
|
||||||
static int SetInput(LiteKernel &kernelMod, const std::vector<lite::Tensor *> &inputs);
|
static int SetInput(LiteKernel &kernelMod, const std::vector<lite::Tensor *> &inputs);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template <class T>
|
||||||
|
kernel::LiteKernel *CPUKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||||
|
const std::vector<lite::Tensor *> &outputs, OpParameter *parameter,
|
||||||
|
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||||
|
const mindspore::lite::PrimitiveC *primitive) {
|
||||||
|
auto *kernel = new (std::nothrow) T(parameter, inputs, outputs, ctx, primitive);
|
||||||
|
if (kernel == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "kernel: " << parameter->name_ << "is nullptr.";
|
||||||
|
free(parameter);
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto ret = kernel->Init();
|
||||||
|
if (ret != lite::RET_OK) {
|
||||||
|
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_;
|
||||||
|
delete kernel;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
return kernel;
|
||||||
|
}
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_LITE_KERNEL_H_
|
#endif // MINDSPORE_LITE_SRC_LITE_KERNEL_H_
|
||||||
|
|
|
@ -51,8 +51,12 @@ OpParameter *PopulateBatchToSpaceParameter(const mindspore::lite::PrimitiveC *pr
|
||||||
batch_space_param->block_shape_[i] = block_shape[i];
|
batch_space_param->block_shape_[i] = block_shape[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
batch_space_param->no_crop_ = true;
|
||||||
for (int i = 0; i < BATCH_TO_SPACE_CROPS_SIZE; ++i) {
|
for (int i = 0; i < BATCH_TO_SPACE_CROPS_SIZE; ++i) {
|
||||||
batch_space_param->crops_[i] = crops[i];
|
batch_space_param->crops_[i] = crops[i];
|
||||||
|
if (batch_space_param->crops_[i] != 0) {
|
||||||
|
batch_space_param->no_crop_ = false;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return reinterpret_cast<OpParameter *>(batch_space_param);
|
return reinterpret_cast<OpParameter *>(batch_space_param);
|
||||||
}
|
}
|
||||||
|
|
|
@ -24,7 +24,6 @@ using mindspore::lite::RET_OK;
|
||||||
using mindspore::schema::PrimitiveType_Assert;
|
using mindspore::schema::PrimitiveType_Assert;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
int AssertCPUKernel::Init() { return RET_OK; }
|
int AssertCPUKernel::Init() { return RET_OK; }
|
||||||
|
|
||||||
int AssertCPUKernel::ReSize() { return RET_OK; }
|
int AssertCPUKernel::ReSize() { return RET_OK; }
|
||||||
|
@ -41,37 +40,6 @@ int AssertCPUKernel::Run() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuAssertKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Assert, CPUKernelCreator<AssertCPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *parameter,
|
REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Assert, CPUKernelCreator<AssertCPUKernel>)
|
||||||
const lite::InnerContext *ctx, const KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "parameter is nullptr";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (ctx == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "ctx is nullptr";
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == PrimitiveType_Assert);
|
|
||||||
auto *kernel = new (std::nothrow) AssertCPUKernel(parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Create kernel failed, name: " << parameter->name_;
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
|
||||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Assert, CpuAssertKernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Assert, CpuAssertKernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -20,27 +20,17 @@
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
typedef struct AssertParameter {
|
|
||||||
OpParameter op_parameter_;
|
|
||||||
} AssertParameter;
|
|
||||||
|
|
||||||
class AssertCPUKernel : public LiteKernel {
|
class AssertCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
AssertCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
AssertCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||||
assert_param_ = reinterpret_cast<AssertParameter *>(op_parameter_);
|
|
||||||
}
|
|
||||||
~AssertCPUKernel() override {}
|
~AssertCPUKernel() override {}
|
||||||
|
|
||||||
int Init() override;
|
int Init() override;
|
||||||
int ReSize() override;
|
int ReSize() override;
|
||||||
int Run() override;
|
int Run() override;
|
||||||
|
|
||||||
private:
|
|
||||||
AssertParameter *assert_param_ = nullptr;
|
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
|
|
|
@ -1,83 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/batch_to_space_base.h"
|
|
||||||
#include "nnacl/batch_to_space.h"
|
|
||||||
#include "src/runtime/kernel/arm/fp32/batch_to_space_fp32.h"
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_FORMAT_ERR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_BatchToSpace;
|
|
||||||
using mindspore::schema::PrimitiveType_BatchToSpaceND;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
int BatchToSpaceBaseCPUKernel::Init() {
|
|
||||||
if (in_tensors_.at(0)->format() != schema::Format::Format_NHWC) {
|
|
||||||
MS_LOG(ERROR) << "batch_to_space only support NHWC now!";
|
|
||||||
return RET_FORMAT_ERR;
|
|
||||||
}
|
|
||||||
BatchToSpaceParameter *param = reinterpret_cast<BatchToSpaceParameter *>(this->op_parameter_);
|
|
||||||
for (int i = 0; i < BATCH_TO_SPACE_CROPS_SIZE; ++i) {
|
|
||||||
if (param->crops_[i] != 0) {
|
|
||||||
no_crop_ = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
int BatchToSpaceBaseCPUKernel::ReSize() {
|
|
||||||
auto shape = in_tensors_.at(0)->shape();
|
|
||||||
if (shape.size() != 4) {
|
|
||||||
MS_LOG(ERROR) << "Unsupport shape size: " << shape.size();
|
|
||||||
return RET_ERROR;
|
|
||||||
}
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuBatchToSpaceFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
|
||||||
OpParameter *op_parameter, const lite::InnerContext *ctx,
|
|
||||||
const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (op_parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input op_parameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) BatchToSpaceCPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new BatchToSpaceCPUKernel fail!";
|
|
||||||
free(op_parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_BatchToSpace, CpuBatchToSpaceFp32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_BatchToSpaceND, CpuBatchToSpaceFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,47 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_BATCH_TO_SPACE_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_BATCH_TO_SPACE_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "nnacl/concat_parameter.h"
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class BatchToSpaceBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
BatchToSpaceBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
|
||||||
|
|
||||||
virtual ~BatchToSpaceBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
|
|
||||||
int ReSize() override;
|
|
||||||
|
|
||||||
int Run() override { return 0; }
|
|
||||||
|
|
||||||
bool IsNoCrop() const { return no_crop_; }
|
|
||||||
|
|
||||||
private:
|
|
||||||
bool no_crop_ = false;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_BATCH_TO_SPACE_BASE_H_
|
|
|
@ -1,90 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/concat_base.h"
|
|
||||||
#include <vector>
|
|
||||||
#include "src/runtime/kernel/arm/fp32/concat_fp32.h"
|
|
||||||
#include "nnacl/fp32/concat_fp32.h"
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_Concat;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
int ConcatBaseCPUKernel::Init() { return RET_OK; }
|
|
||||||
|
|
||||||
int ConcatBaseCPUKernel::ReSize() {
|
|
||||||
concat_param_->axis_ =
|
|
||||||
concat_param_->axis_ >= 0 ? concat_param_->axis_ : in_tensors_.front()->shape().size() + concat_param_->axis_;
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuConcatInt32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Concat);
|
|
||||||
auto *kernel = new (std::nothrow) ConcatCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new ConcatCPUKernel fail!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuConcatFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Concat);
|
|
||||||
auto *kernel = new (std::nothrow) ConcatCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new ConcatCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Concat, CpuConcatInt32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Concat, CpuConcatFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,52 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_CONCAT_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_CONCAT_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "nnacl/concat_parameter.h"
|
|
||||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class ConcatBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
ConcatBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {
|
|
||||||
concat_param_ = reinterpret_cast<ConcatParameter *>(op_parameter_);
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual ~ConcatBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
|
|
||||||
int ReSize() override;
|
|
||||||
|
|
||||||
int Run() override { return 0; }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
const InnerContext *ctx_ = nullptr;
|
|
||||||
int thread_count_ = 1;
|
|
||||||
ConcatParameter *concat_param_ = nullptr;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_CONCAT_BASE_H_
|
|
|
@ -31,30 +31,25 @@ int CropBaseCPUKernel::Init() { return RET_OK; }
|
||||||
|
|
||||||
int CropBaseCPUKernel::ReSize() {
|
int CropBaseCPUKernel::ReSize() {
|
||||||
auto *input_tensor = in_tensors_.at(kInputIndex);
|
auto *input_tensor = in_tensors_.at(kInputIndex);
|
||||||
|
auto *out_tensor = out_tensors_.at(kOutputIndex);
|
||||||
auto input_shape = input_tensor->shape();
|
auto input_shape = input_tensor->shape();
|
||||||
|
auto output_shape = out_tensor->shape();
|
||||||
size_t input_dim = input_shape.size();
|
size_t input_dim = input_shape.size();
|
||||||
|
size_t output_dim = output_shape.size();
|
||||||
|
|
||||||
crop_para_->in_shape_ = reinterpret_cast<int *>(malloc(input_dim * sizeof(int)));
|
crop_para_->in_shape_ = reinterpret_cast<int *>(malloc(input_dim * sizeof(int)));
|
||||||
if (crop_para_->in_shape_ == nullptr) {
|
if (crop_para_->in_shape_ == nullptr) {
|
||||||
MS_LOG(ERROR) << "in_shape_ is nullptr";
|
MS_LOG(ERROR) << "in_shape_ is nullptr";
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
|
memcpy(crop_para_->in_shape_, input_shape.data(), sizeof(int) * input_dim);
|
||||||
memcpy(reinterpret_cast<void *>(const_cast<int *>(crop_para_->in_shape_)), input_shape.data(),
|
|
||||||
sizeof(int) * input_dim);
|
|
||||||
|
|
||||||
auto *out_tensor = out_tensors_.at(kOutputIndex);
|
|
||||||
auto output_shape = out_tensor->shape();
|
|
||||||
size_t output_dim = output_shape.size();
|
|
||||||
|
|
||||||
crop_para_->out_shape_ = reinterpret_cast<int *>(malloc(output_dim * sizeof(int)));
|
crop_para_->out_shape_ = reinterpret_cast<int *>(malloc(output_dim * sizeof(int)));
|
||||||
if (crop_para_->out_shape_ == nullptr) {
|
if (crop_para_->out_shape_ == nullptr) {
|
||||||
MS_LOG(ERROR) << "out_shape_ is nullptr";
|
MS_LOG(ERROR) << "out_shape_ is nullptr";
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
|
memcpy(crop_para_->out_shape_, output_shape.data(), sizeof(int) * output_dim);
|
||||||
memcpy(reinterpret_cast<void *>(const_cast<int *>(crop_para_->out_shape_)), output_shape.data(),
|
|
||||||
sizeof(int) * output_dim);
|
|
||||||
|
|
||||||
MS_ASSERT(input_dim <= CROP_OFFSET_MAX_SIZE);
|
MS_ASSERT(input_dim <= CROP_OFFSET_MAX_SIZE);
|
||||||
crop_para_->input_dim_ = input_dim;
|
crop_para_->input_dim_ = input_dim;
|
||||||
|
@ -81,56 +76,4 @@ void CropBaseCPUKernel::PadOffset(int input_dim, CropParameter *crop_para) {
|
||||||
crop_para->in_offset_[i] = crop_offset;
|
crop_para->in_offset_[i] = crop_offset;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuCropInt32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Crop);
|
|
||||||
auto *kernel = new (std::nothrow) CropCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new CropCPUKernel fail!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuCropFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Crop);
|
|
||||||
auto *kernel = new (std::nothrow) CropCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new CropCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Crop, CpuCropInt32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Crop, CpuCropFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -21,15 +21,13 @@
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "nnacl/crop_parameter.h"
|
#include "nnacl/crop_parameter.h"
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class CropBaseCPUKernel : public LiteKernel {
|
class CropBaseCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
CropBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
CropBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const mindspore::lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
crop_para_ = reinterpret_cast<CropParameter *>(op_parameter_);
|
crop_para_ = reinterpret_cast<CropParameter *>(op_parameter_);
|
||||||
crop_para_->thread_count_ = op_parameter_->thread_num_;
|
crop_para_->thread_count_ = op_parameter_->thread_num_;
|
||||||
}
|
}
|
||||||
|
@ -50,7 +48,6 @@ class CropBaseCPUKernel : public LiteKernel {
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
CropParameter *crop_para_;
|
CropParameter *crop_para_;
|
||||||
int thread_count_;
|
|
||||||
void PadOffset(int input_dim, CropParameter *crop_para);
|
void PadOffset(int input_dim, CropParameter *crop_para);
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -30,15 +30,12 @@ using mindspore::lite::RET_PARAM_INVALID;
|
||||||
using mindspore::schema::PrimitiveType_DepthToSpace;
|
using mindspore::schema::PrimitiveType_DepthToSpace;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
int DepthToSpaceBaseCPUKernel::Init() { return RET_OK; }
|
|
||||||
|
|
||||||
int DepthToSpaceBaseCPUKernel::ReSize() {
|
int DepthToSpaceBaseCPUKernel::ReSize() {
|
||||||
if (in_tensors_.at(0)->format() != schema::Format::Format_NHWC) {
|
if (in_tensors_.at(0)->format() != schema::Format::Format_NHWC) {
|
||||||
MS_LOG(ERROR) << "depth_to_space only support NHWC now!";
|
MS_LOG(ERROR) << "depth_to_space only support NHWC now!";
|
||||||
return RET_FORMAT_ERR;
|
return RET_FORMAT_ERR;
|
||||||
}
|
}
|
||||||
DepthToSpaceParameter *param = reinterpret_cast<DepthToSpaceParameter *>(op_parameter_);
|
if (param_->block_size_ <= 0) {
|
||||||
if (param->block_size_ <= 0) {
|
|
||||||
MS_LOG(ERROR) << "Input block_size should > 0!";
|
MS_LOG(ERROR) << "Input block_size should > 0!";
|
||||||
return RET_PARAM_INVALID;
|
return RET_PARAM_INVALID;
|
||||||
}
|
}
|
||||||
|
@ -49,43 +46,14 @@ int DepthToSpaceBaseCPUKernel::ReSize() {
|
||||||
}
|
}
|
||||||
int32_t in_strides[DIMENSION_4D];
|
int32_t in_strides[DIMENSION_4D];
|
||||||
ComputeStrides(const_cast<int *>(in_tensors_.at(0)->shape().data()), in_strides, shape_size);
|
ComputeStrides(const_cast<int *>(in_tensors_.at(0)->shape().data()), in_strides, shape_size);
|
||||||
param->in_stride_dim0_ = in_strides[0];
|
param_->in_stride_dim0_ = in_strides[0];
|
||||||
param->in_stride_dim1_ = in_strides[1];
|
param_->in_stride_dim1_ = in_strides[1];
|
||||||
param->in_stride_dim2_ = in_strides[2];
|
param_->in_stride_dim2_ = in_strides[2];
|
||||||
int32_t out_strides[DIMENSION_4D];
|
int32_t out_strides[DIMENSION_4D];
|
||||||
ComputeStrides(const_cast<int *>(out_tensors_.at(0)->shape().data()), out_strides, shape_size);
|
ComputeStrides(const_cast<int *>(out_tensors_.at(0)->shape().data()), out_strides, shape_size);
|
||||||
param->out_stride_dim0_ = out_strides[0];
|
param_->out_stride_dim0_ = out_strides[0];
|
||||||
param->out_stride_dim1_ = out_strides[1];
|
param_->out_stride_dim1_ = out_strides[1];
|
||||||
param->out_stride_dim2_ = out_strides[2];
|
param_->out_stride_dim2_ = out_strides[2];
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuDepthToSpaceFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
|
||||||
OpParameter *op_parameter, const lite::InnerContext *ctx,
|
|
||||||
const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_DepthToSpace);
|
|
||||||
if (op_parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input op_parameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) DepthToSpaceCPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new DepthToSpaceCPUKernel fail!";
|
|
||||||
free(op_parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_DepthToSpace, CpuDepthToSpaceFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -18,8 +18,10 @@
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_DEPTH_TO_SPACE_BASE_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_DEPTH_TO_SPACE_BASE_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include "include/errorcode.h"
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "nnacl/depth_to_space.h"
|
#include "nnacl/depth_to_space.h"
|
||||||
|
#include "nnacl/depth_to_space_parameter.h"
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class DepthToSpaceBaseCPUKernel : public LiteKernel {
|
class DepthToSpaceBaseCPUKernel : public LiteKernel {
|
||||||
|
@ -27,15 +29,16 @@ class DepthToSpaceBaseCPUKernel : public LiteKernel {
|
||||||
DepthToSpaceBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
DepthToSpaceBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
|
param_ = reinterpret_cast<DepthToSpaceParameter *>(op_parameter_);
|
||||||
|
}
|
||||||
virtual ~DepthToSpaceBaseCPUKernel() = default;
|
virtual ~DepthToSpaceBaseCPUKernel() = default;
|
||||||
|
int Init() override { return lite::RET_OK; }
|
||||||
int Init() override;
|
|
||||||
|
|
||||||
int ReSize() override;
|
int ReSize() override;
|
||||||
|
int Run() override { return lite::RET_OK; }
|
||||||
|
|
||||||
int Run() override { return 0; }
|
protected:
|
||||||
|
DepthToSpaceParameter *param_ = nullptr;
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_DEPTH_TO_SPACE_BASE_H_
|
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_DEPTH_TO_SPACE_BASE_H_
|
||||||
|
|
|
@ -26,7 +26,6 @@ using mindspore::lite::RET_OK;
|
||||||
using mindspore::schema::PrimitiveType_DetectionPostProcess;
|
using mindspore::schema::PrimitiveType_DetectionPostProcess;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
void PartialArgSort(const float *scores, int *indexes, int num_to_sort, int num_values) {
|
void PartialArgSort(const float *scores, int *indexes, int num_to_sort, int num_values) {
|
||||||
std::partial_sort(indexes, indexes + num_to_sort, indexes + num_values, [&scores](const int i, const int j) {
|
std::partial_sort(indexes, indexes + num_to_sort, indexes + num_values, [&scores](const int i, const int j) {
|
||||||
if (scores[i] == scores[j]) {
|
if (scores[i] == scores[j]) {
|
||||||
|
@ -151,10 +150,10 @@ int DetectionPostProcessBaseCPUKernel::Run() {
|
||||||
if (status != RET_OK) {
|
if (status != RET_OK) {
|
||||||
return status;
|
return status;
|
||||||
}
|
}
|
||||||
auto output_boxes = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
|
auto output_boxes = reinterpret_cast<float *>(out_tensors_.at(0)->data_c());
|
||||||
auto output_classes = reinterpret_cast<float *>(out_tensors_.at(1)->MutableData());
|
auto output_classes = reinterpret_cast<float *>(out_tensors_.at(1)->data_c());
|
||||||
auto output_scores = reinterpret_cast<float *>(out_tensors_.at(2)->MutableData());
|
auto output_scores = reinterpret_cast<float *>(out_tensors_.at(2)->data_c());
|
||||||
auto output_num = reinterpret_cast<float *>(out_tensors_.at(3)->MutableData());
|
auto output_num = reinterpret_cast<float *>(out_tensors_.at(3)->data_c());
|
||||||
|
|
||||||
num_boxes_ = in_tensors_.at(0)->shape().at(1);
|
num_boxes_ = in_tensors_.at(0)->shape().at(1);
|
||||||
num_classes_with_bg_ = in_tensors_.at(1)->shape().at(2);
|
num_classes_with_bg_ = in_tensors_.at(1)->shape().at(2);
|
||||||
|
@ -256,5 +255,5 @@ int DetectionPostProcessBaseCPUKernel::Run() {
|
||||||
}
|
}
|
||||||
FreeAllocatedBuffer();
|
FreeAllocatedBuffer();
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
} // namespace mindspore::kernel
|
}
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -1,88 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/fullconnection_base.h"
|
|
||||||
#include "src/runtime/kernel/arm/fp32/fullconnection_fp32.h"
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
#include "src/runtime/kernel/arm/base/dequant.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_FullConnection;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
int FullconnectionBaseCPUKernel::Init() {
|
|
||||||
fc_param_->op_parameter_.thread_num_ = thread_count_;
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuFullConnectionFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
|
||||||
OpParameter *opParameter, const lite::InnerContext *ctx,
|
|
||||||
const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(opParameter != nullptr);
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_FullConnection);
|
|
||||||
auto *weight_tensor = inputs.at(kWeightIndex);
|
|
||||||
// data of second tensor of fc may be nullptr
|
|
||||||
auto *restore_data = weight_tensor->data_c();
|
|
||||||
auto restore_type = weight_tensor->data_type();
|
|
||||||
bool dequant_flag =
|
|
||||||
!weight_tensor->quant_params().empty() && weight_tensor->quant_params().front().inited && restore_data != nullptr;
|
|
||||||
if (dequant_flag) {
|
|
||||||
auto *dequant_weight = kernel::DequantUtil::DequantWeight(weight_tensor);
|
|
||||||
if (dequant_weight == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "dequant data is nullptr.";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
weight_tensor->set_data(dequant_weight);
|
|
||||||
}
|
|
||||||
auto kernel = new (std::nothrow) FullconnectionCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (!kernel) {
|
|
||||||
MS_LOG(ERROR) << "kernel is nullptr.";
|
|
||||||
if (dequant_flag) {
|
|
||||||
weight_tensor->FreeData();
|
|
||||||
weight_tensor->set_data(restore_data);
|
|
||||||
weight_tensor->set_data_type(restore_type);
|
|
||||||
}
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
if (dequant_flag) {
|
|
||||||
weight_tensor->FreeData();
|
|
||||||
weight_tensor->set_data(restore_data);
|
|
||||||
weight_tensor->set_data_type(restore_type);
|
|
||||||
}
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (dequant_flag) {
|
|
||||||
weight_tensor->FreeData();
|
|
||||||
weight_tensor->set_data(restore_data);
|
|
||||||
weight_tensor->set_data_type(restore_type);
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_FullConnection, CpuFullConnectionFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,50 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_FULLCONNECTION_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_FULLCONNECTION_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
#include "nnacl/matmul_parameter.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class FullconnectionBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
FullconnectionBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {
|
|
||||||
fc_param_ = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
|
||||||
}
|
|
||||||
~FullconnectionBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
int ReSize() override { return 0; }
|
|
||||||
int Run() override { return 0; }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
MatMulParameter *fc_param_ = nullptr;
|
|
||||||
int thread_stride_ = 0;
|
|
||||||
const InnerContext *ctx_ = nullptr;
|
|
||||||
int thread_count_ = 1;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_FULLCONNECTION_BASE_H_
|
|
|
@ -1,59 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/gelu_base.h"
|
|
||||||
#include <vector>
|
|
||||||
#include "src/runtime/kernel/arm/fp32/gelu_fp32.h"
|
|
||||||
#include "nnacl/fp32/gelu_fp32.h"
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
// using mindspore::schema::PrimitiveType_GeLU;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
int GeLUBaseCPUKernel::Init() { return RET_OK; }
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuGeLUFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
// MS_ASSERT(desc.type == schema::PrimitiveType_GeLU);
|
|
||||||
auto *kernel = new (std::nothrow) GeLUCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new GeLUCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
// REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_GeLU, CpuGeLUFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,50 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_GELU_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_GELU_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "nnacl/gelu_parameter.h"
|
|
||||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class GeLUBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
GeLUBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {
|
|
||||||
gelu_param_ = reinterpret_cast<GeLUParameter *>(op_parameter_);
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual ~GeLUBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
|
|
||||||
int Run() override { return 0; }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
const InnerContext *ctx_ = nullptr;
|
|
||||||
int thread_count_ = 1;
|
|
||||||
GeLUParameter *gelu_param_ = nullptr;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_GELU_BASE_H_
|
|
|
@ -21,7 +21,6 @@
|
||||||
#include <arm_neon.h>
|
#include <arm_neon.h>
|
||||||
#endif
|
#endif
|
||||||
#include "nnacl/pack.h"
|
#include "nnacl/pack.h"
|
||||||
|
|
||||||
#include "schema/ops_generated.h"
|
#include "schema/ops_generated.h"
|
||||||
#include "src/tensor.h"
|
#include "src/tensor.h"
|
||||||
|
|
||||||
|
|
|
@ -1,31 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/leaky_relu_base.h"
|
|
||||||
#include <vector>
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_LeakyReLU;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
int LeakyReluBaseCPUKernel::Init() { return RET_OK; }
|
|
||||||
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,44 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_LEAKY_RELU_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_LEAKY_RELU_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class LeakyReluBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
LeakyReluBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
|
||||||
|
|
||||||
~LeakyReluBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
|
|
||||||
int ReSize() override { return 0; }
|
|
||||||
|
|
||||||
int Run() override { return 0; }
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_LEAKY_RELU_BASE_H_
|
|
|
@ -1,56 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/matmul_base.h"
|
|
||||||
#include "src/runtime/kernel/arm/fp32/matmul_fp32.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_MatMul;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
kernel::LiteKernel *CpuMatmulKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(opParameter != nullptr);
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Concat);
|
|
||||||
|
|
||||||
auto input_tensor = inputs.at(kInputIndex);
|
|
||||||
auto data_type = input_tensor->data_type();
|
|
||||||
kernel::LiteKernel *kernel = nullptr;
|
|
||||||
if (data_type == kNumberTypeFloat32) {
|
|
||||||
kernel = new (std::nothrow) MatmulCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
}
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "kernel is nullptr.";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_MatMul, CpuMatmulKernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,50 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_MATMUL_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_MATMUL_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
#include "nnacl/matmul_parameter.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class MatmulBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
MatmulBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {
|
|
||||||
params_ = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
|
||||||
}
|
|
||||||
~MatmulBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override { return 0; }
|
|
||||||
int ReSize() override { return 0; }
|
|
||||||
int Run() override { return 0; }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
MatMulParameter *params_ = nullptr;
|
|
||||||
int thread_stride_ = 0;
|
|
||||||
const InnerContext *ctx_ = nullptr;
|
|
||||||
int thread_count_ = 0;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_MATMUL_BASE_H_
|
|
|
@ -25,7 +25,6 @@ using mindspore::lite::RET_OK;
|
||||||
using mindspore::schema::PrimitiveType_Merge;
|
using mindspore::schema::PrimitiveType_Merge;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
int MergeCPUKernel::FreeInWorkTensor() const {
|
int MergeCPUKernel::FreeInWorkTensor() const {
|
||||||
for (auto &in_tensor : this->in_tensors_) {
|
for (auto &in_tensor : this->in_tensors_) {
|
||||||
MS_ASSERT(in_tensor != nullptr);
|
MS_ASSERT(in_tensor != nullptr);
|
||||||
|
@ -131,35 +130,7 @@ int MergeCPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuMergeKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Merge, CPUKernelCreator<MergeCPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *parameter,
|
REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Merge, CPUKernelCreator<MergeCPUKernel>)
|
||||||
const lite::InnerContext *ctx, const KernelKey &desc,
|
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Merge, CPUKernelCreator<MergeCPUKernel>)
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "parameter is nullptr";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (desc.type != PrimitiveType_Merge) {
|
|
||||||
MS_LOG(ERROR) << "type in desc is not Merge";
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (ctx == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "ctx is nullptr";
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto *kernel = new (std::nothrow) MergeCPUKernel(parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Create kernel failed, name: " << parameter->name_;
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Merge, CpuMergeKernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Merge, CpuMergeKernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Merge, CpuMergeKernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -20,29 +20,21 @@
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
typedef struct MergeParameter {
|
|
||||||
OpParameter op_parameter_;
|
|
||||||
} MergeParameter;
|
|
||||||
|
|
||||||
class MergeCPUKernel : public LiteKernel {
|
class MergeCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
MergeCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
MergeCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||||
merge_param_ = reinterpret_cast<MergeParameter *>(op_parameter_);
|
|
||||||
}
|
|
||||||
~MergeCPUKernel() override {}
|
~MergeCPUKernel() override {}
|
||||||
int FreeInWorkTensor() const override;
|
|
||||||
bool IsReady(const std::vector<lite::Tensor *> &scope_tensors) override;
|
|
||||||
int Init() override;
|
int Init() override;
|
||||||
int ReSize() override;
|
int ReSize() override;
|
||||||
int Run() override;
|
int Run() override;
|
||||||
bool PartialInputReady(int num_begin, int num_end);
|
int FreeInWorkTensor() const override;
|
||||||
|
bool IsReady(const std::vector<lite::Tensor *> &scope_tensors) override;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
MergeParameter *merge_param_ = nullptr;
|
bool PartialInputReady(int num_begin, int num_end);
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
|
|
|
@ -1,53 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include <vector>
|
|
||||||
#include "src/runtime/kernel/arm/fp32/pad_fp32.h"
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_Pad;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuPadFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(opParameter != nullptr);
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Pad);
|
|
||||||
auto *kernel = new (std::nothrow) PadCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new PadCPUKernel failed.";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Pad, CpuPadFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -115,31 +115,4 @@ int PoolingBaseCPUKernel::ReSize() {
|
||||||
}
|
}
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuPoolingFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Pooling);
|
|
||||||
auto *kernel = new (std::nothrow) PoolingCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new PoolingCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Pooling, CpuPoolingFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -1,56 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/power_base.h"
|
|
||||||
#include <vector>
|
|
||||||
#include "src/runtime/kernel/arm/fp32/power_fp32.h"
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_Power;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
int PowerBaseCPUKernel::Init() { return RET_OK; }
|
|
||||||
|
|
||||||
int PowerBaseCPUKernel::ReSize() { return RET_OK; }
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuPowerFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(opParameter != nullptr);
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Power);
|
|
||||||
PowerCPUKernel *kernel = new (std::nothrow) PowerCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new PowerCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Power, CpuPowerFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,44 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_POWER_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_POWER_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "nnacl/power_parameter.h"
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class PowerBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
PowerBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
|
||||||
param_ = reinterpret_cast<PowerParameter *>(op_parameter_);
|
|
||||||
}
|
|
||||||
~PowerBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
int ReSize() override;
|
|
||||||
int Run() override { return 0; }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
PowerParameter *param_;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_POWER_BASE_H_
|
|
|
@ -174,35 +174,6 @@ int PriorBoxCPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuPriorBoxKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_PriorBox, CPUKernelCreator<PriorBoxCPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
|
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_PriorBox, CPUKernelCreator<PriorBoxCPUKernel>)
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (op_parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input op_parameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (desc.type != schema::PrimitiveType_PriorBox) {
|
|
||||||
MS_LOG(ERROR) << "PriorBox invalid desc type " << desc.type;
|
|
||||||
free(op_parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) PriorBoxCPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new PriorBoxCPUKernel fail!";
|
|
||||||
free(op_parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_PriorBox, CpuPriorBoxKernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_PriorBox, CpuPriorBoxKernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -212,31 +212,7 @@ int QuantDTypeCastCPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuQuantDTypeCastFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeUInt8, PrimitiveType_QuantDTypeCast, CPUKernelCreator<QuantDTypeCastCPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_QuantDTypeCast, CPUKernelCreator<QuantDTypeCastCPUKernel>)
|
||||||
OpParameter *opParameter, const lite::InnerContext *ctx,
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_QuantDTypeCast, CPUKernelCreator<QuantDTypeCastCPUKernel>)
|
||||||
const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) QuantDTypeCastCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new QuantDTypeCastCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed! name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeUInt8, PrimitiveType_QuantDTypeCast, CpuQuantDTypeCastFp32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_QuantDTypeCast, CpuQuantDTypeCastFp32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_QuantDTypeCast, CpuQuantDTypeCastFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -200,28 +200,4 @@ kernel::LiteKernel *CpuReduceFp32KernelCreator(const std::vector<lite::Tensor *>
|
||||||
}
|
}
|
||||||
return kernel;
|
return kernel;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuMeanFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
auto *kernel = new (std::nothrow) ReduceCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed.";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Reduce, CpuReduceFp32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt, PrimitiveType_Reduce, CpuReduceFp32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Reduce, CpuReduceFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -1,84 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/reshape_base.h"
|
|
||||||
#include <vector>
|
|
||||||
#include "src/runtime/kernel/arm/fp32/reshape_fp32.h"
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_Reshape;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
int ReshapeBaseCPUKernel::Init() { return RET_OK; }
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuReshapeInt32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Reshape);
|
|
||||||
auto *kernel = new (std::nothrow) ReshapeCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new ReshapeCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuReshapeFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Reshape);
|
|
||||||
auto *kernel = new (std::nothrow) ReshapeCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new ReshapeCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Reshape, CpuReshapeInt32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Reshape, CpuReshapeFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,47 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_RESHAPE_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_RESHAPE_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "nnacl/reshape_parameter.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class ReshapeBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
ReshapeBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx) {
|
|
||||||
reshape_param_ = reinterpret_cast<ReshapeParameter *>(op_parameter_);
|
|
||||||
}
|
|
||||||
~ReshapeBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
int ReSize() override { return 0; }
|
|
||||||
int Run() override { return 0; }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
const InnerContext *ctx_;
|
|
||||||
ReshapeParameter *reshape_param_;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_RESHAPE_BASE_H_
|
|
|
@ -126,32 +126,4 @@ int ResizeBaseCPUKernel::Init() {
|
||||||
|
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuResizeFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Resize);
|
|
||||||
auto *kernel = new (std::nothrow) ResizeCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new ResizeCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Resize, CpuResizeFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -54,31 +54,4 @@ int SoftmaxBaseCPUKernel::ReSize() {
|
||||||
softmax_param_->element_size_ = ele_size;
|
softmax_param_->element_size_ = ele_size;
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuSoftmaxFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_SoftMax);
|
|
||||||
auto *kernel = new (std::nothrow) SoftmaxCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new SoftmaxCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_SoftMax, CpuSoftmaxFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -75,57 +75,4 @@ int SplitBaseCPUKernel::ReSize() {
|
||||||
thread_n_stride_ = UP_DIV(num_unit_, thread_n_num_);
|
thread_n_stride_ = UP_DIV(num_unit_, thread_n_num_);
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuSplitInt32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Split);
|
|
||||||
auto *kernel = new (std::nothrow) SplitCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new SplitCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
delete kernel;
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuSplitFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Split);
|
|
||||||
auto *kernel = new (std::nothrow) SplitCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new SplitCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Split, CpuSplitInt32KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Split, CpuSplitFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -1,31 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
#include "src/runtime/kernel/arm/base/squeeze_base.h"
|
|
||||||
#include <vector>
|
|
||||||
#include "schema/model_generated.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "include/context.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
using mindspore::schema::PrimitiveType_Squeeze;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
int SqueezeBaseCPUKernel::Init() { return RET_OK; }
|
|
||||||
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,50 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "nnacl/squeeze_parameter.h"
|
|
||||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class SqueezeBaseCPUKernel : public LiteKernel {
|
|
||||||
public:
|
|
||||||
SqueezeBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {}
|
|
||||||
|
|
||||||
virtual ~SqueezeBaseCPUKernel() = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
|
|
||||||
int ReSize() override { return 0; }
|
|
||||||
|
|
||||||
int Run() override { return 0; }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
int *axis_;
|
|
||||||
const InnerContext *ctx_;
|
|
||||||
int thread_count_;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_
|
|
|
@ -70,7 +70,7 @@ int StridedSliceCPUKernel::Run() {
|
||||||
}
|
}
|
||||||
auto output = out_tensors_.at(0);
|
auto output = out_tensors_.at(0);
|
||||||
MS_ASSERT(output);
|
MS_ASSERT(output);
|
||||||
auto ret = DoStridedSlice(input->MutableData(), output->MutableData(), param_);
|
auto ret = DoStridedSlice(input->data_c(), output->data_c(), param_);
|
||||||
if (ret != RET_OK) {
|
if (ret != RET_OK) {
|
||||||
MS_LOG(ERROR) << "StridedSlice error error_code[" << ret << "]";
|
MS_LOG(ERROR) << "StridedSlice error error_code[" << ret << "]";
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
|
@ -78,33 +78,7 @@ int StridedSliceCPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuStridedSliceKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_StridedSlice, CPUKernelCreator<StridedSliceCPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_StridedSlice, CPUKernelCreator<StridedSliceCPUKernel>)
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_StridedSlice, CPUKernelCreator<StridedSliceCPUKernel>)
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_StridedSlice);
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "opParameter null pointer dereferencing.";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) StridedSliceCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "New kernel fails.";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_StridedSlice, CpuStridedSliceKernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_StridedSlice, CpuStridedSliceKernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_StridedSlice, CpuStridedSliceKernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -91,34 +91,7 @@ int SwitchCPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuSwitchKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Switch, CPUKernelCreator<SwitchCPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *parameter,
|
REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Switch, CPUKernelCreator<SwitchCPUKernel>)
|
||||||
const lite::InnerContext *ctx, const KernelKey &desc,
|
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Switch, CPUKernelCreator<SwitchCPUKernel>)
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "parameter is nullptr";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (desc.type != PrimitiveType_Switch) {
|
|
||||||
MS_LOG(ERROR) << "type in desc is not Switch";
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (ctx == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "ctx is nullptr";
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) SwitchCPUKernel(parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Create kernel failed, name: " << parameter->name_;
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Switch, CpuSwitchKernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Switch, CpuSwitchKernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Switch, CpuSwitchKernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -136,27 +136,5 @@ int ActivationFp16CPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuActivationFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Activation, CPUKernelCreator<ActivationFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(opParameter != nullptr);
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Activation);
|
|
||||||
auto *kernel = new (std::nothrow) ActivationFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "kernel is nullptr.";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Activation, CpuActivationFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -184,35 +184,10 @@ void ArithmeticCompareFP16CPUKernel::FreeTmpBuffer() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuArithmeticCompareFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_NotEqual, CPUKernelCreator<ArithmeticCompareFP16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Equal, CPUKernelCreator<ArithmeticCompareFP16CPUKernel>)
|
||||||
OpParameter *parameter, const lite::InnerContext *ctx,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Less, CPUKernelCreator<ArithmeticCompareFP16CPUKernel>)
|
||||||
const kernel::KernelKey &desc,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LessEqual, CPUKernelCreator<ArithmeticCompareFP16CPUKernel>)
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Greater, CPUKernelCreator<ArithmeticCompareFP16CPUKernel>)
|
||||||
if (parameter == nullptr) {
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_GreaterEqual, CPUKernelCreator<ArithmeticCompareFP16CPUKernel>)
|
||||||
MS_LOG(ERROR) << "input parameter is null!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto kernel = new (std::nothrow) ArithmeticCompareFP16CPUKernel(parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Create kernel failed, name: " << parameter->name_;
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
|
||||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_NotEqual, CpuArithmeticCompareFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Equal, CpuArithmeticCompareFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Less, CpuArithmeticCompareFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LessEqual, CpuArithmeticCompareFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Greater, CpuArithmeticCompareFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_GreaterEqual, CpuArithmeticCompareFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -236,40 +236,16 @@ void ArithmeticFP16CPUKernel::FreeTmpBuffer() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuArithmeticFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Mul, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *parameter,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Add, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Sub, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Div, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
if (parameter == nullptr) {
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_FloorMod, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
MS_LOG(ERROR) << "input parameter is null!";
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_FloorDiv, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
return nullptr;
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LogicalAnd, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
}
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LogicalOr, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
auto kernel = new (std::nothrow) ArithmeticFP16CPUKernel(parameter, inputs, outputs, ctx, primitive);
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Maximum, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
if (kernel == nullptr) {
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Minimum, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
MS_LOG(ERROR) << "Create kernel failed, name: " << parameter->name_;
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Eltwise, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
free(parameter);
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_SquaredDifference, CPUKernelCreator<ArithmeticFP16CPUKernel>)
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
|
||||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Mul, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Add, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Sub, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Div, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_FloorMod, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_FloorDiv, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LogicalAnd, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LogicalOr, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Maximum, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Minimum, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Eltwise, CpuArithmeticFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_SquaredDifference, CpuArithmeticFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -105,40 +105,17 @@ int ArithmeticSelfFp16CPUKernel::Run() {
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuArithmeticSelfFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Abs, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Cos, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
OpParameter *parameter, const lite::InnerContext *ctx,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Log, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
const kernel::KernelKey &desc,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Square, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Sqrt, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
auto *kernel = new (std::nothrow) ArithmeticSelfFp16CPUKernel(parameter, inputs, outputs, ctx, primitive);
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Rsqrt, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
if (kernel == nullptr) {
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Sin, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
MS_LOG(ERROR) << "new ArithmeticSelfFp16CPUKernel fail!";
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LogicalNot, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
if (parameter != nullptr) {
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Floor, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
free(parameter);
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Ceil, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
}
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Round, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
return nullptr;
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Neg, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
}
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reciprocal, CPUKernelCreator<ArithmeticSelfFp16CPUKernel>)
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
|
||||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Abs, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Cos, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Log, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Square, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Sqrt, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Rsqrt, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Sin, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LogicalNot, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Floor, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Ceil, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Round, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Neg, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reciprocal, CpuArithmeticSelfFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -87,25 +87,5 @@ void BatchnormFp16CPUKernel::FreeInputAndOutput() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuBatchnormFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_BatchNorm, CPUKernelCreator<BatchnormFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
auto *kernel = new (std::nothrow) BatchnormFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new BatchnormFp16CPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_BatchNorm, CpuBatchnormFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -128,39 +128,5 @@ int CastFp16CPUKernel::Run() {
|
||||||
return ParallelLaunch(this->context_->thread_pool_, CastFp16Run, this, op_parameter_->thread_num_);
|
return ParallelLaunch(this->context_->thread_pool_, CastFp16Run, this, op_parameter_->thread_num_);
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuCastFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Cast, CPUKernelCreator<CastFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (ctx == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input context is nullptr!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (ctx->thread_num_ == 0) {
|
|
||||||
MS_LOG(ERROR) << "context thread num is 0!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) CastFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new CastFp16CPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Cast, CpuCastFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -14,12 +14,7 @@
|
||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
#include "src/runtime/kernel/arm/fp16/concat_fp16.h"
|
#include "src/runtime/kernel/arm/fp16/concat_fp16.h"
|
||||||
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
|
|
||||||
#include "src/runtime/kernel/arm/fp32/concat_fp32.h"
|
|
||||||
#include "nnacl/fp16/concat_fp16.h"
|
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "nnacl/fp16/cast_fp16.h"
|
|
||||||
|
|
||||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
|
@ -29,18 +24,17 @@ using mindspore::schema::PrimitiveType_Concat;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
int ConcatFp16CPUKernel::Init() {
|
int ConcatFp16CPUKernel::Init() {
|
||||||
auto ret = ConcatBaseCPUKernel::Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
if (!InferShapeDone()) {
|
if (!InferShapeDone()) {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
return ReSize();
|
return ReSize();
|
||||||
}
|
}
|
||||||
|
|
||||||
int ConcatFp16CPUKernel::ReSize() { return ConcatBaseCPUKernel::ReSize(); }
|
int ConcatFp16CPUKernel::ReSize() {
|
||||||
|
concat_param_->axis_ =
|
||||||
|
concat_param_->axis_ >= 0 ? concat_param_->axis_ : in_tensors_.front()->shape().size() + concat_param_->axis_;
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
int ConcatFp16CPUKernel::MallocTmpBuffer() {
|
int ConcatFp16CPUKernel::MallocTmpBuffer() {
|
||||||
for (const auto &in_tensor : in_tensors_) {
|
for (const auto &in_tensor : in_tensors_) {
|
||||||
|
@ -64,7 +58,6 @@ int ConcatFp16CPUKernel::MallocTmpBuffer() {
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -130,28 +123,5 @@ int ConcatFp16CPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuConcatFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Concat, CPUKernelCreator<ConcatFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *parameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input parameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
kernel::LiteKernel *kernel = new (std::nothrow) ConcatFp16CPUKernel(parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new ConcatCPUKernel fail!";
|
|
||||||
free(parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
|
||||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Concat, CpuConcatFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -18,19 +18,24 @@
|
||||||
|
|
||||||
#include <arm_neon.h>
|
#include <arm_neon.h>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
#include "include/context.h"
|
#include "include/context.h"
|
||||||
#include "src/runtime/kernel/arm/base/concat_base.h"
|
#include "include/errorcode.h"
|
||||||
|
#include "nnacl/fp16/concat_fp16.h"
|
||||||
|
#include "nnacl/concat_parameter.h"
|
||||||
|
#include "nnacl/fp16/cast_fp16.h"
|
||||||
|
#include "src/lite_kernel.h"
|
||||||
|
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
using mindspore::lite::InnerContext;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class ConcatFp16CPUKernel : public ConcatBaseCPUKernel {
|
class ConcatFp16CPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
ConcatFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
ConcatFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: ConcatBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
|
concat_param_ = reinterpret_cast<ConcatParameter *>(op_parameter_);
|
||||||
|
}
|
||||||
|
|
||||||
~ConcatFp16CPUKernel() = default;
|
~ConcatFp16CPUKernel() = default;
|
||||||
|
|
||||||
|
@ -47,6 +52,7 @@ class ConcatFp16CPUKernel : public ConcatBaseCPUKernel {
|
||||||
private:
|
private:
|
||||||
std::vector<float16_t *> fp16_inputs_;
|
std::vector<float16_t *> fp16_inputs_;
|
||||||
float16_t *fp16_output_ = nullptr;
|
float16_t *fp16_output_ = nullptr;
|
||||||
|
ConcatParameter *concat_param_ = nullptr;
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CONCAT_FP16_H_
|
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CONCAT_FP16_H_
|
||||||
|
|
|
@ -14,15 +14,8 @@
|
||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
#include "src/runtime/kernel/arm/fp16/crop_fp16.h"
|
#include "src/runtime/kernel/arm/fp16/crop_fp16.h"
|
||||||
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "nnacl/crop_parameter.h"
|
|
||||||
#include "nnacl/fp16/cast_fp16.h"
|
|
||||||
#include "nnacl/fp16/crop_fp16.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "src/runtime/kernel/arm/base/crop_base.h"
|
|
||||||
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
|
|
||||||
#include "src/runtime/runtime_api.h"
|
#include "src/runtime/runtime_api.h"
|
||||||
|
#include "src/kernel_registry.h"
|
||||||
|
|
||||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
|
@ -31,12 +24,7 @@ using mindspore::lite::RET_OK;
|
||||||
using mindspore::schema::PrimitiveType_Crop;
|
using mindspore::schema::PrimitiveType_Crop;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
int CropFp16CPUKernel::Init() {
|
int CropFp16CPUKernel::Init() {
|
||||||
auto ret = CropBaseCPUKernel::Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
if (!InferShapeDone()) {
|
if (!InferShapeDone()) {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
@ -69,13 +57,13 @@ int CropFp16CPUKernel::Run() {
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto ret = ParallelLaunch(this->context_->thread_pool_, CropFp16Run, this, thread_count_);
|
auto ret = ParallelLaunch(this->context_->thread_pool_, CropFp16Run, this, crop_para_->thread_count_);
|
||||||
if (ret != RET_OK) {
|
if (ret != RET_OK) {
|
||||||
MS_LOG(ERROR) << "ParallelLaunch failed: " << ret;
|
MS_LOG(ERROR) << "ParallelLaunch failed: " << ret;
|
||||||
FreeInputAndOutput();
|
FreeInputAndOutput();
|
||||||
}
|
}
|
||||||
if (out_tensors_.at(kOutputIndex)->data_type() == kNumberTypeFloat32) {
|
if (out_tensors_.at(kOutputIndex)->data_type() == kNumberTypeFloat32) {
|
||||||
Float16ToFloat32(output_ptr_, reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->MutableData()),
|
Float16ToFloat32(output_ptr_, reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->data_c()),
|
||||||
out_tensors_.at(kOutputIndex)->ElementsNum());
|
out_tensors_.at(kOutputIndex)->ElementsNum());
|
||||||
}
|
}
|
||||||
FreeInputAndOutput();
|
FreeInputAndOutput();
|
||||||
|
@ -93,29 +81,5 @@ void CropFp16CPUKernel::FreeInputAndOutput() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuCropFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Crop, CPUKernelCreator<CropFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Crop);
|
|
||||||
auto *kernel = new (std::nothrow) CropFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new CropFp16CPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Crop, CpuCropFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -18,11 +18,14 @@
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CROP_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CROP_H_
|
||||||
|
|
||||||
#include <arm_neon.h>
|
#include <arm_neon.h>
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include "include/errorcode.h"
|
||||||
|
#include "nnacl/crop_parameter.h"
|
||||||
|
#include "nnacl/fp16/cast_fp16.h"
|
||||||
|
#include "nnacl/fp16/crop_fp16.h"
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "src/runtime/kernel/arm/base/crop_base.h"
|
#include "src/runtime/kernel/arm/base/crop_base.h"
|
||||||
|
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class CropFp16CPUKernel : public CropBaseCPUKernel {
|
class CropFp16CPUKernel : public CropBaseCPUKernel {
|
||||||
|
@ -30,10 +33,7 @@ class CropFp16CPUKernel : public CropBaseCPUKernel {
|
||||||
CropFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
CropFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: CropBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {
|
: CropBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||||
crop_para_ = reinterpret_cast<CropParameter *>(op_parameter_);
|
|
||||||
crop_para_->thread_count_ = op_parameter_->thread_num_;
|
|
||||||
}
|
|
||||||
~CropFp16CPUKernel() override = default;
|
~CropFp16CPUKernel() override = default;
|
||||||
|
|
||||||
int Init() override;
|
int Init() override;
|
||||||
|
@ -44,7 +44,6 @@ class CropFp16CPUKernel : public CropBaseCPUKernel {
|
||||||
private:
|
private:
|
||||||
float16_t *input_ptr_ = nullptr;
|
float16_t *input_ptr_ = nullptr;
|
||||||
float16_t *output_ptr_ = nullptr;
|
float16_t *output_ptr_ = nullptr;
|
||||||
CropParameter *crop_para_;
|
|
||||||
void FreeInputAndOutput();
|
void FreeInputAndOutput();
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -15,12 +15,8 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "src/runtime/kernel/arm/fp16/fullconnection_fp16.h"
|
#include "src/runtime/kernel/arm/fp16/fullconnection_fp16.h"
|
||||||
#include "nnacl/fp16/matmul_fp16.h"
|
|
||||||
#include "nnacl/fp16/cast_fp16.h"
|
|
||||||
#include "src/runtime/runtime_api.h"
|
#include "src/runtime/runtime_api.h"
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
#include "src/runtime/kernel/arm/base/dequant.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::lite::RET_ERROR;
|
using mindspore::lite::RET_ERROR;
|
||||||
|
@ -34,19 +30,19 @@ FullconnectionFP16CPUKernel::~FullconnectionFP16CPUKernel() { FreeTmpBuffer(); }
|
||||||
|
|
||||||
void FullconnectionFP16CPUKernel::FreeTmpBuffer() {
|
void FullconnectionFP16CPUKernel::FreeTmpBuffer() {
|
||||||
if (a_pack_ptr_ != nullptr) {
|
if (a_pack_ptr_ != nullptr) {
|
||||||
ctx_->allocator->Free(a_pack_ptr_);
|
context_->allocator->Free(a_pack_ptr_);
|
||||||
a_pack_ptr_ = nullptr;
|
a_pack_ptr_ = nullptr;
|
||||||
}
|
}
|
||||||
if (b_pack_ptr_ != nullptr) {
|
if (b_pack_ptr_ != nullptr) {
|
||||||
ctx_->allocator->Free(b_pack_ptr_);
|
context_->allocator->Free(b_pack_ptr_);
|
||||||
b_pack_ptr_ = nullptr;
|
b_pack_ptr_ = nullptr;
|
||||||
}
|
}
|
||||||
if (bias_ptr_ != nullptr) {
|
if (bias_ptr_ != nullptr) {
|
||||||
ctx_->allocator->Free(bias_ptr_);
|
context_->allocator->Free(bias_ptr_);
|
||||||
bias_ptr_ = nullptr;
|
bias_ptr_ = nullptr;
|
||||||
}
|
}
|
||||||
if (output_fp16_ != nullptr) {
|
if (output_fp16_ != nullptr) {
|
||||||
ctx_->allocator->Free(output_fp16_);
|
context_->allocator->Free(output_fp16_);
|
||||||
output_fp16_ = nullptr;
|
output_fp16_ = nullptr;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -60,7 +56,7 @@ int FullconnectionFP16CPUKernel::ReSize() {
|
||||||
fc_param_->deep_ = (in_tensors_.at(1)->shape()).at(1);
|
fc_param_->deep_ = (in_tensors_.at(1)->shape()).at(1);
|
||||||
fc_param_->row_16_ = UP_ROUND(fc_param_->row_, C16NUM);
|
fc_param_->row_16_ = UP_ROUND(fc_param_->row_, C16NUM);
|
||||||
fc_param_->col_8_ = UP_ROUND(fc_param_->col_, C8NUM);
|
fc_param_->col_8_ = UP_ROUND(fc_param_->col_, C8NUM);
|
||||||
thread_count_ = MSMIN(thread_count_, UP_DIV(fc_param_->col_, C8NUM));
|
thread_count_ = MSMIN(op_parameter_->thread_num_, UP_DIV(fc_param_->col_, C8NUM));
|
||||||
thread_stride_ = UP_DIV(UP_DIV(fc_param_->col_, C8NUM), thread_count_) * C8NUM;
|
thread_stride_ = UP_DIV(UP_DIV(fc_param_->col_, C8NUM), thread_count_) * C8NUM;
|
||||||
|
|
||||||
if (row == 1) is_vector_input_ = true;
|
if (row == 1) is_vector_input_ = true;
|
||||||
|
@ -74,7 +70,7 @@ int FullconnectionFP16CPUKernel::ReSize() {
|
||||||
b_pack_col = fc_param_->col_8_;
|
b_pack_col = fc_param_->col_8_;
|
||||||
}
|
}
|
||||||
a_pack_ptr_ =
|
a_pack_ptr_ =
|
||||||
reinterpret_cast<float16_t *>(ctx_->allocator->Malloc(a_pack_row * fc_param_->deep_ * sizeof(float16_t)));
|
reinterpret_cast<float16_t *>(context_->allocator->Malloc(a_pack_row * fc_param_->deep_ * sizeof(float16_t)));
|
||||||
if (a_pack_ptr_ == nullptr) {
|
if (a_pack_ptr_ == nullptr) {
|
||||||
FreeTmpBuffer();
|
FreeTmpBuffer();
|
||||||
return RET_MEMORY_FAILED;
|
return RET_MEMORY_FAILED;
|
||||||
|
@ -82,7 +78,7 @@ int FullconnectionFP16CPUKernel::ReSize() {
|
||||||
memset(a_pack_ptr_, 0, a_pack_row * fc_param_->deep_ * sizeof(float16_t));
|
memset(a_pack_ptr_, 0, a_pack_row * fc_param_->deep_ * sizeof(float16_t));
|
||||||
|
|
||||||
b_pack_ptr_ =
|
b_pack_ptr_ =
|
||||||
reinterpret_cast<float16_t *>(ctx_->allocator->Malloc(b_pack_col * fc_param_->deep_ * sizeof(float16_t)));
|
reinterpret_cast<float16_t *>(context_->allocator->Malloc(b_pack_col * fc_param_->deep_ * sizeof(float16_t)));
|
||||||
if (b_pack_ptr_ == nullptr) {
|
if (b_pack_ptr_ == nullptr) {
|
||||||
FreeTmpBuffer();
|
FreeTmpBuffer();
|
||||||
return RET_MEMORY_FAILED;
|
return RET_MEMORY_FAILED;
|
||||||
|
@ -110,7 +106,7 @@ int FullconnectionFP16CPUKernel::ReSize() {
|
||||||
}
|
}
|
||||||
|
|
||||||
if (in_tensors_.size() == 3) {
|
if (in_tensors_.size() == 3) {
|
||||||
bias_ptr_ = reinterpret_cast<float16_t *>(ctx_->allocator->Malloc(b_pack_col * sizeof(float16_t)));
|
bias_ptr_ = reinterpret_cast<float16_t *>(context_->allocator->Malloc(b_pack_col * sizeof(float16_t)));
|
||||||
if (bias_ptr_ == nullptr) {
|
if (bias_ptr_ == nullptr) {
|
||||||
FreeTmpBuffer();
|
FreeTmpBuffer();
|
||||||
return RET_MEMORY_FAILED;
|
return RET_MEMORY_FAILED;
|
||||||
|
@ -121,7 +117,7 @@ int FullconnectionFP16CPUKernel::ReSize() {
|
||||||
|
|
||||||
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
|
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
|
||||||
output_fp16_ =
|
output_fp16_ =
|
||||||
reinterpret_cast<float16_t *>(ctx_->allocator->Malloc(fc_param_->row_ * fc_param_->col_ * sizeof(float16_t)));
|
reinterpret_cast<float16_t *>(context_->allocator->Malloc(fc_param_->row_ * fc_param_->col_ * sizeof(float16_t)));
|
||||||
if (output_fp16_ == nullptr) {
|
if (output_fp16_ == nullptr) {
|
||||||
FreeTmpBuffer();
|
FreeTmpBuffer();
|
||||||
return RET_MEMORY_FAILED;
|
return RET_MEMORY_FAILED;
|
||||||
|
|
|
@ -17,21 +17,24 @@
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_FULLCONNECTION_H_
|
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_FULLCONNECTION_H_
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_FULLCONNECTION_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_FULLCONNECTION_H_
|
||||||
|
|
||||||
#ifdef ENABLE_NEON
|
|
||||||
#include <arm_neon.h>
|
#include <arm_neon.h>
|
||||||
#endif
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/lite_kernel.h"
|
#include "include/errorcode.h"
|
||||||
#include "nnacl/matmul_parameter.h"
|
#include "nnacl/matmul_parameter.h"
|
||||||
#include "src/runtime/kernel/arm/base/fullconnection_base.h"
|
#include "nnacl/fp16/matmul_fp16.h"
|
||||||
|
#include "nnacl/fp16/cast_fp16.h"
|
||||||
|
#include "src/lite_kernel.h"
|
||||||
|
#include "src/runtime/kernel/arm/base/dequant.h"
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class FullconnectionFP16CPUKernel : public FullconnectionBaseCPUKernel {
|
class FullconnectionFP16CPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
explicit FullconnectionFP16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
explicit FullconnectionFP16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: FullconnectionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
|
fc_param_ = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
||||||
|
}
|
||||||
~FullconnectionFP16CPUKernel() override;
|
~FullconnectionFP16CPUKernel() override;
|
||||||
int Init() override;
|
int Init() override;
|
||||||
int ReSize() override;
|
int ReSize() override;
|
||||||
|
@ -46,6 +49,7 @@ class FullconnectionFP16CPUKernel : public FullconnectionBaseCPUKernel {
|
||||||
void FreeTmpBuffer();
|
void FreeTmpBuffer();
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
MatMulParameter *fc_param_ = nullptr;
|
||||||
float16_t *a_pack_ptr_ = nullptr;
|
float16_t *a_pack_ptr_ = nullptr;
|
||||||
float16_t *b_pack_ptr_ = nullptr;
|
float16_t *b_pack_ptr_ = nullptr;
|
||||||
float16_t *bias_ptr_ = nullptr;
|
float16_t *bias_ptr_ = nullptr;
|
||||||
|
@ -54,6 +58,8 @@ class FullconnectionFP16CPUKernel : public FullconnectionBaseCPUKernel {
|
||||||
float16_t *a_ptr_ = nullptr;
|
float16_t *a_ptr_ = nullptr;
|
||||||
float16_t *b_ptr_ = nullptr;
|
float16_t *b_ptr_ = nullptr;
|
||||||
bool is_vector_input_ = false;
|
bool is_vector_input_ = false;
|
||||||
|
int thread_count_ = 1;
|
||||||
|
int thread_stride_ = 0;
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
|
|
|
@ -107,7 +107,7 @@ int MatmulFP16CPUKernel::MallocMatrixBBuffer() {
|
||||||
return RET_MEMORY_FAILED;
|
return RET_MEMORY_FAILED;
|
||||||
}
|
}
|
||||||
memset(b_pack_ptr_, 0, params_->batch * params_->col_8_ * params_->deep_ * sizeof(float16_t));
|
memset(b_pack_ptr_, 0, params_->batch * params_->col_8_ * params_->deep_ * sizeof(float16_t));
|
||||||
thread_count_ = MSMIN(thread_count_, UP_DIV(params_->col_, C8NUM));
|
thread_count_ = MSMIN(op_parameter_->thread_num_, UP_DIV(params_->col_, C8NUM));
|
||||||
thread_stride_ = UP_DIV(UP_DIV(params_->col_, C8NUM), thread_count_) * C8NUM;
|
thread_stride_ = UP_DIV(UP_DIV(params_->col_, C8NUM), thread_count_) * C8NUM;
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
@ -228,7 +228,7 @@ int MatmulFP16CPUKernel::Init() {
|
||||||
int MatmulFP16CPUKernel::MallocFp16Output() {
|
int MatmulFP16CPUKernel::MallocFp16Output() {
|
||||||
if (out_tensors_[0]->data_type() == kNumberTypeFloat32) {
|
if (out_tensors_[0]->data_type() == kNumberTypeFloat32) {
|
||||||
output_ptr_ = reinterpret_cast<float16_t *>(
|
output_ptr_ = reinterpret_cast<float16_t *>(
|
||||||
ctx_->allocator->Malloc(params_->batch * params_->row_ * params_->col_ * sizeof(float16_t)));
|
context_->allocator->Malloc(params_->batch * params_->row_ * params_->col_ * sizeof(float16_t)));
|
||||||
if (output_ptr_ == nullptr) {
|
if (output_ptr_ == nullptr) {
|
||||||
MS_LOG(ERROR) << "malloc output_ptr_ failed.";
|
MS_LOG(ERROR) << "malloc output_ptr_ failed.";
|
||||||
return RET_MEMORY_FAILED;
|
return RET_MEMORY_FAILED;
|
||||||
|
@ -313,7 +313,7 @@ int MatmulFP16CPUKernel::Run() {
|
||||||
auto size = out_tensor->ElementsNum();
|
auto size = out_tensor->ElementsNum();
|
||||||
auto out_tensor_data = reinterpret_cast<float *>(out_tensor->data_c());
|
auto out_tensor_data = reinterpret_cast<float *>(out_tensor->data_c());
|
||||||
Float16ToFloat32(output_ptr_, out_tensor_data, size);
|
Float16ToFloat32(output_ptr_, out_tensor_data, size);
|
||||||
ctx_->allocator->Free(output_ptr_);
|
context_->allocator->Free(output_ptr_);
|
||||||
}
|
}
|
||||||
if (!params_->a_const_) {
|
if (!params_->a_const_) {
|
||||||
context_->allocator->Free(a_pack_ptr_);
|
context_->allocator->Free(a_pack_ptr_);
|
||||||
|
|
|
@ -23,15 +23,16 @@
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "nnacl/matmul_parameter.h"
|
#include "nnacl/matmul_parameter.h"
|
||||||
#include "src/runtime/kernel/arm/base/matmul_base.h"
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class MatmulFP16CPUKernel : public MatmulBaseCPUKernel {
|
class MatmulFP16CPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
explicit MatmulFP16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
explicit MatmulFP16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: MatmulBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
|
params_ = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
||||||
|
}
|
||||||
~MatmulFP16CPUKernel() override;
|
~MatmulFP16CPUKernel() override;
|
||||||
int Init() override;
|
int Init() override;
|
||||||
int ReSize() override;
|
int ReSize() override;
|
||||||
|
@ -50,6 +51,7 @@ class MatmulFP16CPUKernel : public MatmulBaseCPUKernel {
|
||||||
void FreeTmpBuffer();
|
void FreeTmpBuffer();
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
MatMulParameter *params_ = nullptr;
|
||||||
float16_t *a_pack_ptr_ = nullptr;
|
float16_t *a_pack_ptr_ = nullptr;
|
||||||
float16_t *b_pack_ptr_ = nullptr;
|
float16_t *b_pack_ptr_ = nullptr;
|
||||||
float16_t *bias_ptr_ = nullptr;
|
float16_t *bias_ptr_ = nullptr;
|
||||||
|
@ -57,6 +59,8 @@ class MatmulFP16CPUKernel : public MatmulBaseCPUKernel {
|
||||||
float16_t *current_a_ = nullptr;
|
float16_t *current_a_ = nullptr;
|
||||||
float16_t *current_b_ = nullptr;
|
float16_t *current_b_ = nullptr;
|
||||||
float16_t *current_c_ = nullptr;
|
float16_t *current_c_ = nullptr;
|
||||||
|
int thread_stride_ = 0;
|
||||||
|
int thread_count_ = 0;
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
|
|
|
@ -91,24 +91,5 @@ void PadFp16CPUKernel::FreeInputAndOutput() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuPadFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Pad, CPUKernelCreator<PadFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
auto *kernel = new (std::nothrow) PadFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new PadFp16CPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Pad, CpuPadFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -112,30 +112,5 @@ int PoolingFp16CPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuPoolingFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Pooling, CPUKernelCreator<PoolingFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Pooling);
|
|
||||||
auto *kernel = new (std::nothrow) PoolingFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new PoolingCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Pooling, CpuPoolingFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -197,5 +197,5 @@ kernel::LiteKernel *CpuQuantDTypeCastFp16KernelCreator(const std::vector<lite::T
|
||||||
}
|
}
|
||||||
return kernel;
|
return kernel;
|
||||||
}
|
}
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_QuantDTypeCast, CpuQuantDTypeCastFp16KernelCreator)
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_QuantDTypeCast, CPUKernelCreator<QuantDTypeCastFp16CPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -157,54 +157,5 @@ int ReduceFp16CPUKernel::MallocTmpBuffer() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuReduceFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reduce, CPUKernelCreator<ReduceFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(opParameter != nullptr);
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Reduce);
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Reduce opParameter nullptr";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
if (desc.type != schema::PrimitiveType_Reduce) {
|
|
||||||
MS_LOG(ERROR) << "Reduce op desc.type should be PrimitiveType_Reduce, got " << desc.type;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) ReduceFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed.";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
kernel::LiteKernel *CpuMeanFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
auto *kernel = new (std::nothrow) ReduceFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed.";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reduce, CpuReduceFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -69,30 +69,5 @@ int ReshapeFp16CPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuReshapeFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reshape, CPUKernelCreator<ReshapeFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Reshape);
|
|
||||||
auto *kernel = new (std::nothrow) ReshapeFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new ReshapeFp16CPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reshape, CpuReshapeFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -181,31 +181,5 @@ void ScaleFp16CPUKernel::FreeTmpBuffer() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuScaleFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Scale, CPUKernelCreator<ScaleFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Scale);
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "opParameter is nullptr";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto *kernel = new (std::nothrow) ScaleFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "New kernel fails.";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Scale, CpuScaleFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -65,25 +65,5 @@ void SliceFp16CPUKernel::FreeInputAndOutput() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuSliceFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Slice, CPUKernelCreator<SliceFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
auto *kernel = new (std::nothrow) SliceFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new SliceFp16CPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Slice, CpuSliceFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -119,31 +119,5 @@ int SoftmaxFp16CPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuSoftmaxFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_SoftMax, CPUKernelCreator<SoftmaxFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_SoftMax);
|
|
||||||
auto *kernel = new (std::nothrow) SoftmaxFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new SoftmaxFp16CPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_SoftMax, CpuSoftmaxFp16KernelCreator)
|
|
||||||
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -116,29 +116,5 @@ void SplitFp16CPUKernel::FreeInputAndOutput() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuSplitFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Split, CPUKernelCreator<SplitFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Split);
|
|
||||||
auto *kernel = new (std::nothrow) SplitFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new SplitFp16CPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Split, CpuSplitFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -100,31 +100,5 @@ int StackFp16CPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuStackFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Stack, CPUKernelCreator<StackFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (op_parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input op_parameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Stack);
|
|
||||||
auto *kernel = new (std::nothrow) StackFp16CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new StackFp16CPUKernel fail!";
|
|
||||||
free(op_parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Stack, CpuStackFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -88,31 +88,5 @@ int TransposeFp16CPUKernel::Run() {
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuTransposeFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Transpose, CPUKernelCreator<TransposeFp16CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_Transpose);
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "desc type is not Transpose";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) TransposeFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "New kernel fails.";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Transpose, CpuTransposeFp16KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -14,39 +14,37 @@
|
||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
#include "src/runtime/kernel/arm/fp32/batch_to_space_fp32.h"
|
#include "src/runtime/kernel/arm/fp32/batch_to_space_fp32.h"
|
||||||
#include <vector>
|
|
||||||
#include "schema/model_generated.h"
|
#include "schema/model_generated.h"
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
#include "nnacl/batch_to_space.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
|
|
||||||
using mindspore::lite::RET_OK;
|
using mindspore::lite::KernelRegistrar;
|
||||||
|
using mindspore::schema::PrimitiveType_BatchToSpace;
|
||||||
|
using mindspore::schema::PrimitiveType_BatchToSpaceND;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
int BatchToSpaceCPUKernel::Init() {
|
int BatchToSpaceCPUKernel::Init() {
|
||||||
auto ret = BatchToSpaceBaseCPUKernel::Init();
|
MS_ASSERT(in_tensors_.at(0)->format() == schema::Format::Format_NHWC);
|
||||||
if (ret != RET_OK) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!InferShapeDone()) {
|
if (!InferShapeDone()) {
|
||||||
return RET_OK;
|
return lite::RET_OK;
|
||||||
}
|
}
|
||||||
return ReSize();
|
return ReSize();
|
||||||
}
|
}
|
||||||
|
|
||||||
int BatchToSpaceCPUKernel::ReSize() { return BatchToSpaceBaseCPUKernel::ReSize(); }
|
int BatchToSpaceCPUKernel::ReSize() {
|
||||||
|
MS_ASSERT(in_tensors_.at(0)->shape().size() == 4);
|
||||||
|
return lite::RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
int BatchToSpaceCPUKernel::Run() {
|
int BatchToSpaceCPUKernel::Run() {
|
||||||
auto input = in_tensors_[0];
|
auto input = in_tensors_[0];
|
||||||
auto output = out_tensors_[0];
|
auto output = out_tensors_[0];
|
||||||
const float *input_data = reinterpret_cast<const float *>(input->MutableData());
|
const float *input_data = reinterpret_cast<const float *>(input->data_c());
|
||||||
float *output_data = reinterpret_cast<float *>(output->MutableData());
|
float *output_data = reinterpret_cast<float *>(output->MutableData());
|
||||||
auto in_shape = input->shape();
|
auto in_shape = input->shape();
|
||||||
auto out_shape = output->shape();
|
auto out_shape = output->shape();
|
||||||
BatchToSpaceParameter *param = reinterpret_cast<BatchToSpaceParameter *>(this->op_parameter_);
|
BatchToSpaceParameter *param = reinterpret_cast<BatchToSpaceParameter *>(this->op_parameter_);
|
||||||
|
|
||||||
if (IsNoCrop()) {
|
if (param->no_crop_) {
|
||||||
BatchToSpaceNoCropForNHWC(input_data, output_data, in_shape.data(), out_shape[0], param->block_shape_,
|
BatchToSpaceNoCropForNHWC(input_data, output_data, in_shape.data(), out_shape[0], param->block_shape_,
|
||||||
sizeof(float));
|
sizeof(float));
|
||||||
} else {
|
} else {
|
||||||
|
@ -54,6 +52,9 @@ int BatchToSpaceCPUKernel::Run() {
|
||||||
sizeof(float));
|
sizeof(float));
|
||||||
}
|
}
|
||||||
|
|
||||||
return RET_OK;
|
return lite::RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_BatchToSpace, CPUKernelCreator<BatchToSpaceCPUKernel>)
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_BatchToSpaceND, CPUKernelCreator<BatchToSpaceCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -15,17 +15,19 @@
|
||||||
*/
|
*/
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_BATCH_TO_SPACE_H_
|
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_BATCH_TO_SPACE_H_
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_BATCH_TO_SPACE_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_BATCH_TO_SPACE_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/runtime/kernel/arm/base/batch_to_space_base.h"
|
#include "include/errorcode.h"
|
||||||
|
#include "nnacl/batch_to_space.h"
|
||||||
|
#include "src/lite_kernel.h"
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class BatchToSpaceCPUKernel : public BatchToSpaceBaseCPUKernel {
|
class BatchToSpaceCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
BatchToSpaceCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
BatchToSpaceCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: BatchToSpaceBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||||
|
|
||||||
~BatchToSpaceCPUKernel() = default;
|
~BatchToSpaceCPUKernel() = default;
|
||||||
|
|
||||||
int Init() override;
|
int Init() override;
|
||||||
|
|
|
@ -15,13 +15,8 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "src/runtime/kernel/arm/fp32/concat_fp32.h"
|
#include "src/runtime/kernel/arm/fp32/concat_fp32.h"
|
||||||
#include <vector>
|
|
||||||
#include "nnacl/fp32/concat_fp32.h"
|
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
#include "schema/model_generated.h"
|
#include "schema/model_generated.h"
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "src/runtime/runtime_api.h"
|
|
||||||
#include "src/runtime/thread_pool.h"
|
|
||||||
|
|
||||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
|
@ -31,18 +26,17 @@ using mindspore::schema::PrimitiveType_Concat;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
int ConcatCPUKernel::Init() {
|
int ConcatCPUKernel::Init() {
|
||||||
auto ret = ConcatBaseCPUKernel::Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
if (!InferShapeDone()) {
|
if (!InferShapeDone()) {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
return ReSize();
|
return ReSize();
|
||||||
}
|
}
|
||||||
|
|
||||||
int ConcatCPUKernel::ReSize() { return ConcatBaseCPUKernel::ReSize(); }
|
int ConcatCPUKernel::ReSize() {
|
||||||
|
concat_param_->axis_ =
|
||||||
|
concat_param_->axis_ >= 0 ? concat_param_->axis_ : in_tensors_.front()->shape().size() + concat_param_->axis_;
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
int ConcatCPUKernel::DoConcat(int task_id) {
|
int ConcatCPUKernel::DoConcat(int task_id) {
|
||||||
auto input_num = in_tensors_.size();
|
auto input_num = in_tensors_.size();
|
||||||
|
@ -60,7 +54,7 @@ int ConcatCPUKernel::DoConcat(int task_id) {
|
||||||
auto output_addr = out_tensors_.at(0)->MutableData();
|
auto output_addr = out_tensors_.at(0)->MutableData();
|
||||||
|
|
||||||
Concat(inputs_addr.data(), input_num, concat_param_->axis_, inputs_output_shape.data(), output_shape.size(),
|
Concat(inputs_addr.data(), input_num, concat_param_->axis_, inputs_output_shape.data(), output_shape.size(),
|
||||||
output_addr, task_id, thread_count_);
|
output_addr, task_id, op_parameter_->thread_num_);
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -75,7 +69,10 @@ int ConcatsRun(void *cdata, int task_id) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int ConcatCPUKernel::Run() {
|
int ConcatCPUKernel::Run() {
|
||||||
int error_code = ParallelLaunch(this->context_->thread_pool_, ConcatsRun, this, thread_count_);
|
int error_code = ParallelLaunch(this->context_->thread_pool_, ConcatsRun, this, op_parameter_->thread_num_);
|
||||||
return error_code;
|
return error_code;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Concat, CPUKernelCreator<ConcatCPUKernel>)
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Concat, CPUKernelCreator<ConcatCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -18,19 +18,24 @@
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
|
#include "nnacl/fp32/concat_fp32.h"
|
||||||
|
#include "nnacl/concat_parameter.h"
|
||||||
|
#include "include/errorcode.h"
|
||||||
|
#include "src/runtime/runtime_api.h"
|
||||||
|
#include "src/runtime/thread_pool.h"
|
||||||
#include "include/context.h"
|
#include "include/context.h"
|
||||||
#include "src/runtime/kernel/arm/base/concat_base.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
using mindspore::lite::InnerContext;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class ConcatCPUKernel : public ConcatBaseCPUKernel {
|
class ConcatCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
ConcatCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
ConcatCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: ConcatBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
|
concat_param_ = reinterpret_cast<ConcatParameter *>(op_parameter_);
|
||||||
|
}
|
||||||
|
|
||||||
~ConcatCPUKernel() = default;
|
~ConcatCPUKernel() = default;
|
||||||
|
|
||||||
|
@ -38,6 +43,9 @@ class ConcatCPUKernel : public ConcatBaseCPUKernel {
|
||||||
int ReSize() override;
|
int ReSize() override;
|
||||||
int DoConcat(int task_id);
|
int DoConcat(int task_id);
|
||||||
int Run() override;
|
int Run() override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
ConcatParameter *concat_param_ = nullptr;
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
|
|
|
@ -16,14 +16,10 @@
|
||||||
#include "src/runtime/kernel/arm/fp32/crop_fp32.h"
|
#include "src/runtime/kernel/arm/fp32/crop_fp32.h"
|
||||||
#include "schema/model_generated.h"
|
#include "schema/model_generated.h"
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
#include "nnacl/fp32/crop_fp32.h"
|
|
||||||
#include "nnacl/crop_parameter.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "src/runtime/runtime_api.h"
|
#include "src/runtime/runtime_api.h"
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::lite::RET_ERROR;
|
using mindspore::lite::RET_ERROR;
|
||||||
using mindspore::lite::RET_FORMAT_ERR;
|
|
||||||
using mindspore::lite::RET_NULL_PTR;
|
using mindspore::lite::RET_NULL_PTR;
|
||||||
using mindspore::lite::RET_OK;
|
using mindspore::lite::RET_OK;
|
||||||
using mindspore::schema::PrimitiveType_Crop;
|
using mindspore::schema::PrimitiveType_Crop;
|
||||||
|
@ -40,34 +36,42 @@ int CropLaunch(void *cdata, int task_id) {
|
||||||
}
|
}
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
int CropCPUKernel::Init() { return RET_OK; }
|
int CropCPUKernel::Init() {
|
||||||
|
if (!InferShapeDone()) {
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
return ReSize();
|
||||||
|
}
|
||||||
|
|
||||||
|
int CropCPUKernel::ReSize() { return CropBaseCPUKernel::ReSize(); }
|
||||||
|
|
||||||
int CropCPUKernel::CropParallelRun(int thread_id) {
|
int CropCPUKernel::CropParallelRun(int thread_id) {
|
||||||
auto input = in_tensors_[0];
|
auto input = in_tensors_[0];
|
||||||
auto output = out_tensors_[0];
|
auto output = out_tensors_[0];
|
||||||
float *input_data = reinterpret_cast<float *>(input->MutableData());
|
float *input_data = reinterpret_cast<float *>(input->data_c());
|
||||||
float *output_data = reinterpret_cast<float *>(output->MutableData());
|
float *output_data = reinterpret_cast<float *>(output->data_c());
|
||||||
auto param = reinterpret_cast<CropParameter *>(op_parameter_);
|
Crop4D(input_data, output_data, input->shape().data(), output->shape().data(), crop_para_, thread_id);
|
||||||
Crop4D(input_data, output_data, input->shape().data(), output->shape().data(), param, thread_id);
|
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
int CropCPUKernel::Run() {
|
int CropCPUKernel::Run() {
|
||||||
auto input = in_tensors_[0];
|
auto input = in_tensors_[0];
|
||||||
auto output = out_tensors_[0];
|
auto output = out_tensors_[0];
|
||||||
auto param = reinterpret_cast<CropParameter *>(op_parameter_);
|
if (output->shape()[1] < crop_para_->thread_count_) {
|
||||||
if (output->shape()[1] < param->op_parameter_.thread_num_) {
|
float *input_data = reinterpret_cast<float *>(input->data_c());
|
||||||
float *input_data = reinterpret_cast<float *>(input->MutableData());
|
float *output_data = reinterpret_cast<float *>(output->data_c());
|
||||||
float *output_data = reinterpret_cast<float *>(output->MutableData());
|
Crop4DNoParallel(input_data, output_data, input->shape().data(), output->shape().data(), crop_para_);
|
||||||
Crop4DNoParallel(input_data, output_data, input->shape().data(), output->shape().data(), param);
|
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto ret = ParallelLaunch(this->context_->thread_pool_, CropLaunch, this, param->op_parameter_.thread_num_);
|
auto ret = ParallelLaunch(this->context_->thread_pool_, CropLaunch, this, crop_para_->thread_count_);
|
||||||
if (ret != RET_OK) {
|
if (ret != RET_OK) {
|
||||||
MS_LOG(ERROR) << "Crop launch fail!ret: " << ret;
|
MS_LOG(ERROR) << "Crop launch fail!ret: " << ret;
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Crop, CPUKernelCreator<CropCPUKernel>)
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Crop, CPUKernelCreator<CropCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -15,7 +15,11 @@
|
||||||
*/
|
*/
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CROP_H_
|
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CROP_H_
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CROP_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CROP_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include "include/errorcode.h"
|
||||||
|
#include "nnacl/fp32/crop_fp32.h"
|
||||||
|
#include "nnacl/crop_parameter.h"
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
||||||
#include "src/runtime/kernel/arm/base/crop_base.h"
|
#include "src/runtime/kernel/arm/base/crop_base.h"
|
||||||
|
@ -29,7 +33,7 @@ class CropCPUKernel : public CropBaseCPUKernel {
|
||||||
: CropBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: CropBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||||
~CropCPUKernel() = default;
|
~CropCPUKernel() = default;
|
||||||
int Init() override;
|
int Init() override;
|
||||||
int ReSize() override { return 0; }
|
int ReSize() override;
|
||||||
int Run() override;
|
int Run() override;
|
||||||
int CropParallelRun(int thread_id);
|
int CropParallelRun(int thread_id);
|
||||||
};
|
};
|
||||||
|
|
|
@ -14,12 +14,8 @@
|
||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
#include "src/runtime/kernel/arm/fp32/depth_to_space_fp32.h"
|
#include "src/runtime/kernel/arm/fp32/depth_to_space_fp32.h"
|
||||||
#include <vector>
|
|
||||||
#include "schema/model_generated.h"
|
#include "schema/model_generated.h"
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
#include "nnacl/arithmetic_common.h"
|
|
||||||
#include "nnacl/depth_to_space.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::lite::RET_ERROR;
|
using mindspore::lite::RET_ERROR;
|
||||||
|
@ -29,18 +25,11 @@ using mindspore::lite::RET_PARAM_INVALID;
|
||||||
using mindspore::schema::PrimitiveType_DepthToSpace;
|
using mindspore::schema::PrimitiveType_DepthToSpace;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
int DepthToSpaceCPUKernel::Init() {
|
int DepthToSpaceCPUKernel::Init() {
|
||||||
auto ret = DepthToSpaceBaseCPUKernel::Init();
|
param_->data_type_size_ = sizeof(float);
|
||||||
if (ret != RET_OK) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
DepthToSpaceParameter *param = reinterpret_cast<DepthToSpaceParameter *>(op_parameter_);
|
|
||||||
param->data_type_size_ = sizeof(float);
|
|
||||||
if (!InferShapeDone()) {
|
if (!InferShapeDone()) {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
return ReSize();
|
return ReSize();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -49,16 +38,17 @@ int DepthToSpaceCPUKernel::ReSize() { return DepthToSpaceBaseCPUKernel::ReSize()
|
||||||
int DepthToSpaceCPUKernel::Run() {
|
int DepthToSpaceCPUKernel::Run() {
|
||||||
auto input = in_tensors_[0];
|
auto input = in_tensors_[0];
|
||||||
auto output = out_tensors_[0];
|
auto output = out_tensors_[0];
|
||||||
const float *input_data = reinterpret_cast<const float *>(input->MutableData());
|
const float *input_data = reinterpret_cast<const float *>(input->data_c());
|
||||||
float *output_data = reinterpret_cast<float *>(output->MutableData());
|
float *output_data = reinterpret_cast<float *>(output->data_c());
|
||||||
auto in_shape = input->shape();
|
auto in_shape = input->shape();
|
||||||
DepthToSpaceParameter *param = reinterpret_cast<DepthToSpaceParameter *>(op_parameter_);
|
|
||||||
if (input->format() == schema::Format::Format_NHWC) {
|
if (input->format() == schema::Format::Format_NHWC) {
|
||||||
DepthToSpaceForNHWC(input_data, output_data, in_shape.data(), param);
|
DepthToSpaceForNHWC(input_data, output_data, in_shape.data(), param_);
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
} else {
|
} else {
|
||||||
MS_LOG(ERROR) << "Depth_to_space only support NHWC now!";
|
MS_LOG(ERROR) << "Depth_to_space only support NHWC now!";
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_DepthToSpace, CPUKernelCreator<DepthToSpaceCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -17,6 +17,9 @@
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_DEPTH_TO_SPACE_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_DEPTH_TO_SPACE_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include "include/errorcode.h"
|
||||||
|
#include "nnacl/arithmetic_common.h"
|
||||||
|
#include "nnacl/depth_to_space.h"
|
||||||
#include "src/runtime/kernel/arm/base/depth_to_space_base.h"
|
#include "src/runtime/kernel/arm/base/depth_to_space_base.h"
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
|
@ -26,7 +26,6 @@ using mindspore::lite::RET_OK;
|
||||||
using mindspore::schema::PrimitiveType_DetectionPostProcess;
|
using mindspore::schema::PrimitiveType_DetectionPostProcess;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
int DetectionPostProcessCPUKernel::GetInputData() {
|
int DetectionPostProcessCPUKernel::GetInputData() {
|
||||||
if ((in_tensors_.at(0)->data_type() != kNumberTypeFloat32 && in_tensors_.at(0)->data_type() != kNumberTypeFloat) ||
|
if ((in_tensors_.at(0)->data_type() != kNumberTypeFloat32 && in_tensors_.at(0)->data_type() != kNumberTypeFloat) ||
|
||||||
(in_tensors_.at(1)->data_type() != kNumberTypeFloat32 && in_tensors_.at(1)->data_type() != kNumberTypeFloat)) {
|
(in_tensors_.at(1)->data_type() != kNumberTypeFloat32 && in_tensors_.at(1)->data_type() != kNumberTypeFloat)) {
|
||||||
|
@ -37,32 +36,6 @@ int DetectionPostProcessCPUKernel::GetInputData() {
|
||||||
input_scores_ = reinterpret_cast<float *>(in_tensors_.at(1)->data_c());
|
input_scores_ = reinterpret_cast<float *>(in_tensors_.at(1)->data_c());
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_DetectionPostProcess,
|
||||||
kernel::LiteKernel *CpuDetectionPostProcessFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
CPUKernelCreator<DetectionPostProcessCPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
|
||||||
OpParameter *opParameter, const lite::InnerContext *ctx,
|
|
||||||
const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
if (opParameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Create kernel failed, opParameter is nullptr, type: PrimitiveType_DetectionPostProcess. ";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_DetectionPostProcess);
|
|
||||||
auto *kernel = new (std::nothrow) DetectionPostProcessCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new DetectionPostProcessCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_DetectionPostProcess, CpuDetectionPostProcessFp32KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -15,10 +15,17 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "src/runtime/kernel/arm/fp32/fullconnection_fp32.h"
|
#include "src/runtime/kernel/arm/fp32/fullconnection_fp32.h"
|
||||||
|
#include "src/kernel_registry.h"
|
||||||
#include "src/runtime/runtime_api.h"
|
#include "src/runtime/runtime_api.h"
|
||||||
|
|
||||||
|
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||||
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::lite::RET_ERROR;
|
using mindspore::lite::RET_ERROR;
|
||||||
|
using mindspore::lite::RET_INVALID_OP_ATTR;
|
||||||
using mindspore::lite::RET_MEMORY_FAILED;
|
using mindspore::lite::RET_MEMORY_FAILED;
|
||||||
|
using mindspore::lite::RET_NULL_PTR;
|
||||||
using mindspore::lite::RET_OK;
|
using mindspore::lite::RET_OK;
|
||||||
|
using mindspore::schema::PrimitiveType_FullConnection;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
FullconnectionCPUKernel::~FullconnectionCPUKernel() {
|
FullconnectionCPUKernel::~FullconnectionCPUKernel() {
|
||||||
|
@ -63,7 +70,7 @@ int FullconnectionCPUKernel::ReSize() {
|
||||||
fc_param_->row_6_ = UP_ROUND(fc_param_->row_, C6NUM);
|
fc_param_->row_6_ = UP_ROUND(fc_param_->row_, C6NUM);
|
||||||
fc_param_->row_4_ = UP_ROUND(fc_param_->row_, C4NUM);
|
fc_param_->row_4_ = UP_ROUND(fc_param_->row_, C4NUM);
|
||||||
|
|
||||||
thread_count_ = MSMIN(thread_count_, UP_DIV(fc_param_->col_align_, col_tile));
|
thread_count_ = MSMIN(op_parameter_->thread_num_, UP_DIV(fc_param_->col_align_, col_tile));
|
||||||
thread_stride_ = UP_DIV(UP_DIV(fc_param_->col_align_, col_tile), thread_count_);
|
thread_stride_ = UP_DIV(UP_DIV(fc_param_->col_align_, col_tile), thread_count_);
|
||||||
|
|
||||||
#ifdef ENABLE_ARM
|
#ifdef ENABLE_ARM
|
||||||
|
@ -214,4 +221,57 @@ int FullconnectionCPUKernel::Run() {
|
||||||
|
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
kernel::LiteKernel *CpuFullConnectionFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||||
|
const std::vector<lite::Tensor *> &outputs,
|
||||||
|
OpParameter *opParameter, const lite::InnerContext *ctx,
|
||||||
|
const kernel::KernelKey &desc,
|
||||||
|
const mindspore::lite::PrimitiveC *primitive) {
|
||||||
|
MS_ASSERT(opParameter != nullptr);
|
||||||
|
MS_ASSERT(desc.type == schema::PrimitiveType_FullConnection);
|
||||||
|
auto *weight_tensor = inputs.at(kWeightIndex);
|
||||||
|
// data of second tensor of fc may be nullptr
|
||||||
|
auto *restore_data = weight_tensor->data_c();
|
||||||
|
auto restore_type = weight_tensor->data_type();
|
||||||
|
bool dequant_flag =
|
||||||
|
!weight_tensor->quant_params().empty() && weight_tensor->quant_params().front().inited && restore_data != nullptr;
|
||||||
|
if (dequant_flag) {
|
||||||
|
auto *dequant_weight = kernel::DequantUtil::DequantWeight(weight_tensor);
|
||||||
|
if (dequant_weight == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "dequant data is nullptr.";
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
weight_tensor->set_data(dequant_weight);
|
||||||
|
}
|
||||||
|
auto kernel = new (std::nothrow) FullconnectionCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||||
|
if (!kernel) {
|
||||||
|
MS_LOG(ERROR) << "kernel is nullptr.";
|
||||||
|
if (dequant_flag) {
|
||||||
|
weight_tensor->FreeData();
|
||||||
|
weight_tensor->set_data(restore_data);
|
||||||
|
weight_tensor->set_data_type(restore_type);
|
||||||
|
}
|
||||||
|
free(opParameter);
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
auto ret = kernel->Init();
|
||||||
|
if (ret != RET_OK) {
|
||||||
|
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||||
|
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||||
|
if (dequant_flag) {
|
||||||
|
weight_tensor->FreeData();
|
||||||
|
weight_tensor->set_data(restore_data);
|
||||||
|
weight_tensor->set_data_type(restore_type);
|
||||||
|
}
|
||||||
|
delete kernel;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
if (dequant_flag) {
|
||||||
|
weight_tensor->FreeData();
|
||||||
|
weight_tensor->set_data(restore_data);
|
||||||
|
weight_tensor->set_data_type(restore_type);
|
||||||
|
}
|
||||||
|
return kernel;
|
||||||
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_FullConnection, CpuFullConnectionFp32KernelCreator)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -18,20 +18,22 @@
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FULLCONNECTION_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FULLCONNECTION_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/runtime/kernel/arm/base/fullconnection_base.h"
|
|
||||||
#include "include/context.h"
|
#include "include/context.h"
|
||||||
#include "include/errorcode.h"
|
#include "include/errorcode.h"
|
||||||
#include "nnacl/fp32/matmul_fp32.h"
|
#include "nnacl/fp32/matmul_fp32.h"
|
||||||
|
#include "src/lite_kernel.h"
|
||||||
|
#include "src/runtime/kernel/arm/base/dequant.h"
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
using mindspore::lite::InnerContext;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class FullconnectionCPUKernel : public FullconnectionBaseCPUKernel {
|
class FullconnectionCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
FullconnectionCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
FullconnectionCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: FullconnectionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
|
fc_param_ = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
||||||
|
}
|
||||||
~FullconnectionCPUKernel() override;
|
~FullconnectionCPUKernel() override;
|
||||||
|
|
||||||
int Init() override;
|
int Init() override;
|
||||||
|
@ -47,6 +49,7 @@ class FullconnectionCPUKernel : public FullconnectionBaseCPUKernel {
|
||||||
void InitMatrixB(const float *src_ptr, float *dst_ptr);
|
void InitMatrixB(const float *src_ptr, float *dst_ptr);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
MatMulParameter *fc_param_ = nullptr;
|
||||||
float *a_pack_ptr_ = nullptr;
|
float *a_pack_ptr_ = nullptr;
|
||||||
float *b_pack_ptr_ = nullptr;
|
float *b_pack_ptr_ = nullptr;
|
||||||
float *c_ptr_ = nullptr;
|
float *c_ptr_ = nullptr;
|
||||||
|
@ -54,6 +57,8 @@ class FullconnectionCPUKernel : public FullconnectionBaseCPUKernel {
|
||||||
float *a_ptr_ = nullptr;
|
float *a_ptr_ = nullptr;
|
||||||
float *b_ptr_ = nullptr;
|
float *b_ptr_ = nullptr;
|
||||||
bool is_vector_input_ = false;
|
bool is_vector_input_ = false;
|
||||||
|
int thread_count_ = 1;
|
||||||
|
int thread_stride_ = 0;
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FULLCONNECTION_H_
|
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FULLCONNECTION_H_
|
||||||
|
|
|
@ -129,27 +129,5 @@ int FusedBatchnormCPUKernel::DoExecute(int task_id) {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuFusedBatchnormKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_FusedBatchNorm, CPUKernelCreator<FusedBatchnormCPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
|
||||||
OpParameter *op_parameter, const lite::InnerContext *ctx,
|
|
||||||
const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
FusedBatchnormCPUKernel *kernel =
|
|
||||||
new (std::nothrow) FusedBatchnormCPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new FusedBatchnormCPUKernel fail!";
|
|
||||||
free(op_parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_FusedBatchNorm, CpuFusedBatchnormKernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -1,88 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "src/runtime/kernel/arm/fp32/gelu_fp32.h"
|
|
||||||
#include "src/runtime/kernel/arm/base/gelu_base.h"
|
|
||||||
#include "nnacl/fp32/gelu_fp32.h"
|
|
||||||
#include "nnacl/gelu_parameter.h"
|
|
||||||
#include "src/kernel_registry.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "src/runtime/runtime_api.h"
|
|
||||||
|
|
||||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
// using mindspore::schema::PrimitiveType_GeLU;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
|
|
||||||
int GeLUCPUKernel::Init() {
|
|
||||||
auto ret = GeLUBaseCPUKernel::Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!InferShapeDone()) {
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
return ReSize();
|
|
||||||
}
|
|
||||||
|
|
||||||
int GeLUCPUKernel::ReSize() { return RET_OK; }
|
|
||||||
|
|
||||||
int GeLUCPUKernel::GeLU(int task_id) {
|
|
||||||
int64_t real_dst_count = MSMIN(elements_num_ - task_id * count_unit_, count_unit_);
|
|
||||||
if (real_dst_count <= 0) {
|
|
||||||
return lite::RET_OK;
|
|
||||||
}
|
|
||||||
float *cur_input_data = input_ptr_ + task_id * count_unit_;
|
|
||||||
float *cur_output_data = output_ptr_ + task_id * count_unit_;
|
|
||||||
auto ret = DoGeLU(cur_input_data, cur_output_data, real_dst_count, gelu_param_);
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "GeLU error task_id[" << task_id << "] error_code[" << ret << "]";
|
|
||||||
return RET_ERROR;
|
|
||||||
}
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
int GeLURun(void *cdata, int task_id) {
|
|
||||||
auto g_kernel = reinterpret_cast<GeLUCPUKernel *>(cdata);
|
|
||||||
auto ret = g_kernel->GeLU(task_id);
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "GeLURun error task_id[" << task_id << "] error_code[" << ret << "]";
|
|
||||||
return RET_ERROR;
|
|
||||||
}
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
int GeLUCPUKernel::Run() {
|
|
||||||
auto in_tensor = in_tensors_.front();
|
|
||||||
auto out_tensor = out_tensors_.front();
|
|
||||||
input_ptr_ = reinterpret_cast<float *>(in_tensor->MutableData());
|
|
||||||
output_ptr_ = reinterpret_cast<float *>(out_tensor->MutableData());
|
|
||||||
elements_num_ = out_tensor->ElementsNum();
|
|
||||||
count_unit_ = thread_count_ > 1 ? UP_DIV(elements_num_, thread_count_) : elements_num_;
|
|
||||||
auto ret = ParallelLaunch(this->context_->thread_pool_, GeLURun, this, thread_count_);
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Scale error error_code[" << ret << "]";
|
|
||||||
return RET_ERROR;
|
|
||||||
}
|
|
||||||
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
} // namespace mindspore::kernel
|
|
|
@ -1,46 +0,0 @@
|
||||||
/**
|
|
||||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GELU_H_
|
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GELU_H_
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "src/runtime/kernel/arm/base/gelu_base.h"
|
|
||||||
#include "src/lite_kernel.h"
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
|
||||||
class GeLUCPUKernel : public GeLUBaseCPUKernel {
|
|
||||||
public:
|
|
||||||
GeLUCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
|
||||||
: GeLUBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
|
||||||
~GeLUCPUKernel() override = default;
|
|
||||||
|
|
||||||
int Init() override;
|
|
||||||
int ReSize() override;
|
|
||||||
int Run() override;
|
|
||||||
int GeLU(int task_id);
|
|
||||||
|
|
||||||
private:
|
|
||||||
float *input_ptr_ = nullptr;
|
|
||||||
float *output_ptr_ = nullptr;
|
|
||||||
int64_t elements_num_ = 0;
|
|
||||||
int64_t count_unit_ = 0;
|
|
||||||
};
|
|
||||||
} // namespace mindspore::kernel
|
|
||||||
|
|
||||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GELU_H_
|
|
|
@ -124,7 +124,7 @@ int MatmulCPUKernel::MallocMatrixBBuffer() {
|
||||||
return RET_MEMORY_FAILED;
|
return RET_MEMORY_FAILED;
|
||||||
}
|
}
|
||||||
|
|
||||||
thread_count_ = MSMIN(thread_count_, UP_DIV(params_->col_align_, col_tile_));
|
thread_count_ = MSMIN(op_parameter_->thread_num_, UP_DIV(params_->col_align_, col_tile_));
|
||||||
thread_stride_ = UP_DIV(UP_DIV(params_->col_align_, col_tile_), thread_count_);
|
thread_stride_ = UP_DIV(UP_DIV(params_->col_align_, col_tile_), thread_count_);
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
|
@ -20,15 +20,16 @@
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "nnacl/matmul_parameter.h"
|
#include "nnacl/matmul_parameter.h"
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "src/runtime/kernel/arm/base/matmul_base.h"
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class MatmulCPUKernel : public MatmulBaseCPUKernel {
|
class MatmulCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
explicit MatmulCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
explicit MatmulCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: MatmulBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
|
params_ = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
||||||
|
}
|
||||||
~MatmulCPUKernel() override;
|
~MatmulCPUKernel() override;
|
||||||
int Init() override;
|
int Init() override;
|
||||||
int ReSize() override;
|
int ReSize() override;
|
||||||
|
@ -45,6 +46,7 @@ class MatmulCPUKernel : public MatmulBaseCPUKernel {
|
||||||
void FreeTmpBuffer();
|
void FreeTmpBuffer();
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
MatMulParameter *params_ = nullptr;
|
||||||
float *a_pack_ptr_ = nullptr;
|
float *a_pack_ptr_ = nullptr;
|
||||||
float *b_pack_ptr_ = nullptr;
|
float *b_pack_ptr_ = nullptr;
|
||||||
float *bias_ptr_ = nullptr;
|
float *bias_ptr_ = nullptr;
|
||||||
|
@ -55,6 +57,8 @@ class MatmulCPUKernel : public MatmulBaseCPUKernel {
|
||||||
float *cur_c_ptr_ = nullptr;
|
float *cur_c_ptr_ = nullptr;
|
||||||
bool is_vector_a_ = false;
|
bool is_vector_a_ = false;
|
||||||
int col_tile_ = 0;
|
int col_tile_ = 0;
|
||||||
|
int thread_stride_ = 0;
|
||||||
|
int thread_count_ = 0;
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
|
|
|
@ -413,4 +413,6 @@ int PadCPUKernel::Run() {
|
||||||
|
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Pad, CPUKernelCreator<PadCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -91,4 +91,6 @@ int PoolingCPUKernel::Run() {
|
||||||
}
|
}
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Pooling, CPUKernelCreator<PoolingCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -74,4 +74,5 @@ int PowerCPUKernel::RunImpl(int task_id) {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Power, CPUKernelCreator<PowerCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -21,15 +21,14 @@
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "include/context.h"
|
#include "include/context.h"
|
||||||
#include "nnacl/power.h"
|
#include "nnacl/power.h"
|
||||||
#include "src/runtime/kernel/arm/base/power_base.h"
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class PowerCPUKernel : public PowerBaseCPUKernel {
|
class PowerCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
PowerCPUKernel(OpParameter *param, const std::vector<lite::Tensor *> &inputs,
|
PowerCPUKernel(OpParameter *param, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: PowerBaseCPUKernel(param, inputs, outputs, ctx, primitive),
|
: LiteKernel(param, inputs, outputs, ctx, primitive),
|
||||||
thread_count_(ctx->thread_num_),
|
thread_count_(ctx->thread_num_),
|
||||||
power_(reinterpret_cast<PowerParameter *>(op_parameter_)->power_),
|
power_(reinterpret_cast<PowerParameter *>(op_parameter_)->power_),
|
||||||
scale_(reinterpret_cast<PowerParameter *>(op_parameter_)->scale_),
|
scale_(reinterpret_cast<PowerParameter *>(op_parameter_)->scale_),
|
||||||
|
|
|
@ -234,4 +234,8 @@ void ReduceCPUKernel::FreeTmpBuffer() {
|
||||||
}
|
}
|
||||||
data_buffers_.clear();
|
data_buffers_.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Reduce, CPUKernelCreator<ReduceCPUKernel>)
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeInt, PrimitiveType_Reduce, CPUKernelCreator<ReduceCPUKernel>)
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Reduce, CPUKernelCreator<ReduceCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -28,20 +28,20 @@ using mindspore::lite::RET_OK;
|
||||||
using mindspore::schema::PrimitiveType_Reshape;
|
using mindspore::schema::PrimitiveType_Reshape;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
int ReshapeCPUKernel::Init() {
|
int ReshapeCPUKernel::Init() { return RET_OK; }
|
||||||
ReshapeBaseCPUKernel::Init();
|
|
||||||
return RET_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
int ReshapeCPUKernel::ReSize() { return RET_OK; }
|
int ReshapeCPUKernel::ReSize() { return RET_OK; }
|
||||||
|
|
||||||
int ReshapeCPUKernel::Run() {
|
int ReshapeCPUKernel::Run() {
|
||||||
auto input_ptr = in_tensors_.at(kInputIndex)->MutableData();
|
auto input_ptr = in_tensors_.at(kInputIndex)->data_c();
|
||||||
auto output_ptr = out_tensors_.at(kOutputIndex)->MutableData();
|
auto output_ptr = out_tensors_.at(kOutputIndex)->data_c();
|
||||||
size_t data_size = in_tensors_.at(kInputIndex)->Size();
|
size_t data_size = in_tensors_.at(kInputIndex)->Size();
|
||||||
MS_ASSERT(input_ptr);
|
MS_ASSERT(input_ptr);
|
||||||
MS_ASSERT(output_ptr);
|
MS_ASSERT(output_ptr);
|
||||||
Reshape(input_ptr, output_ptr, data_size);
|
Reshape(input_ptr, output_ptr, data_size);
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Reshape, CPUKernelCreator<ReshapeCPUKernel>)
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Reshape, CPUKernelCreator<ReshapeCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -19,19 +19,17 @@
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
|
|
||||||
#include "include/context.h"
|
#include "include/context.h"
|
||||||
#include "src/runtime/kernel/arm/base/reshape_base.h"
|
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
using mindspore::lite::InnerContext;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class ReshapeCPUKernel : public ReshapeBaseCPUKernel {
|
class ReshapeCPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
ReshapeCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
ReshapeCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: ReshapeBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||||
~ReshapeCPUKernel() = default;
|
~ReshapeCPUKernel() = default;
|
||||||
|
|
||||||
int Init() override;
|
int Init() override;
|
||||||
|
|
|
@ -15,17 +15,17 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "src/runtime/kernel/arm/fp32/resize_fp32.h"
|
#include "src/runtime/kernel/arm/fp32/resize_fp32.h"
|
||||||
#include <algorithm>
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "nnacl/fp32/resize_fp32.h"
|
|
||||||
#include "schema/model_generated.h"
|
#include "schema/model_generated.h"
|
||||||
|
#include "src/kernel_registry.h"
|
||||||
#include "src/runtime/runtime_api.h"
|
#include "src/runtime/runtime_api.h"
|
||||||
|
|
||||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||||
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::lite::RET_ERROR;
|
using mindspore::lite::RET_ERROR;
|
||||||
using mindspore::lite::RET_INVALID_OP_ATTR;
|
using mindspore::lite::RET_INVALID_OP_ATTR;
|
||||||
using mindspore::lite::RET_NULL_PTR;
|
using mindspore::lite::RET_NULL_PTR;
|
||||||
using mindspore::lite::RET_OK;
|
using mindspore::lite::RET_OK;
|
||||||
|
using mindspore::schema::PrimitiveType_Resize;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
int ResizeCPUKernel::Init() {
|
int ResizeCPUKernel::Init() {
|
||||||
|
@ -217,4 +217,6 @@ int ResizeCPUKernel::Run() {
|
||||||
|
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Resize, CPUKernelCreator<ResizeCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -17,6 +17,9 @@
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_RESIZE_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_RESIZE_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include <algorithm>
|
||||||
|
#include "include/errorcode.h"
|
||||||
|
#include "nnacl/fp32/resize_fp32.h"
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "src/runtime/kernel/arm/base/resize_base.h"
|
#include "src/runtime/kernel/arm/base/resize_base.h"
|
||||||
|
|
||||||
|
|
|
@ -111,4 +111,5 @@ int SoftmaxCPUKernel::Run() {
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_SoftMax, CPUKernelCreator<SoftmaxCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -87,4 +87,32 @@ int SplitCPUKernel::Run() {
|
||||||
|
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel::LiteKernel *CpuSplitInt32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||||
|
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||||
|
const InnerContext *ctx, const kernel::KernelKey &desc,
|
||||||
|
const mindspore::lite::PrimitiveC *primitive) {
|
||||||
|
if (opParameter == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
MS_ASSERT(desc.type == schema::PrimitiveType_Split);
|
||||||
|
auto *kernel = new (std::nothrow) SplitCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||||
|
if (kernel == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "new SplitCPUKernel fail!";
|
||||||
|
free(opParameter);
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
auto ret = kernel->Init();
|
||||||
|
if (ret != RET_OK) {
|
||||||
|
delete kernel;
|
||||||
|
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||||
|
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
return kernel;
|
||||||
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Split, CPUKernelCreator<SplitCPUKernel>)
|
||||||
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Split, CPUKernelCreator<SplitCPUKernel>)
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -14,27 +14,19 @@
|
||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
#include "src/runtime/kernel/arm/int8/batch_to_space_int8.h"
|
#include "src/runtime/kernel/arm/int8/batch_to_space_int8.h"
|
||||||
#include <vector>
|
|
||||||
#include "schema/model_generated.h"
|
#include "schema/model_generated.h"
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
#include "nnacl/batch_to_space.h"
|
|
||||||
#include "nnacl/int8/batch_to_space_int8.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::lite::RET_ERROR;
|
using mindspore::lite::RET_ERROR;
|
||||||
using mindspore::lite::RET_FORMAT_ERR;
|
using mindspore::lite::RET_OK;
|
||||||
using mindspore::schema::PrimitiveType_BatchToSpace;
|
using mindspore::schema::PrimitiveType_BatchToSpace;
|
||||||
using mindspore::schema::PrimitiveType_BatchToSpaceND;
|
using mindspore::schema::PrimitiveType_BatchToSpaceND;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
int BatchToSpaceInt8CPUKernel::Init() {
|
int BatchToSpaceInt8CPUKernel::Init() {
|
||||||
auto ret = BatchToSpaceBaseCPUKernel::Init();
|
MS_ASSERT(in_tensors_.at(0)->format() == schema::Format::Format_NHWC);
|
||||||
if (ret != RET_OK) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
auto *input_tensor = in_tensors_.at(kInputIndex);
|
auto *input_tensor = in_tensors_.at(kInputIndex);
|
||||||
auto in_quant_args = input_tensor->quant_params();
|
auto in_quant_args = input_tensor->quant_params();
|
||||||
in_quant_arg_.scale_ = in_quant_args.front().scale;
|
in_quant_arg_.scale_ = in_quant_args.front().scale;
|
||||||
|
@ -50,7 +42,10 @@ int BatchToSpaceInt8CPUKernel::Init() {
|
||||||
return ReSize();
|
return ReSize();
|
||||||
}
|
}
|
||||||
|
|
||||||
int BatchToSpaceInt8CPUKernel::ReSize() { return BatchToSpaceBaseCPUKernel::ReSize(); }
|
int BatchToSpaceInt8CPUKernel::ReSize() {
|
||||||
|
MS_ASSERT(in_tensors_.at(0)->shape().size() == 4);
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
int BatchToSpaceInt8CPUKernel::Run() {
|
int BatchToSpaceInt8CPUKernel::Run() {
|
||||||
auto input = in_tensors_[0];
|
auto input = in_tensors_[0];
|
||||||
|
@ -62,7 +57,7 @@ int BatchToSpaceInt8CPUKernel::Run() {
|
||||||
BatchToSpaceParameter *param = reinterpret_cast<BatchToSpaceParameter *>(this->op_parameter_);
|
BatchToSpaceParameter *param = reinterpret_cast<BatchToSpaceParameter *>(this->op_parameter_);
|
||||||
|
|
||||||
if (in_quant_arg_.scale_ == out_quant_arg_.scale_ && in_quant_arg_.zp_ == out_quant_arg_.zp_) {
|
if (in_quant_arg_.scale_ == out_quant_arg_.scale_ && in_quant_arg_.zp_ == out_quant_arg_.zp_) {
|
||||||
if (IsNoCrop()) {
|
if (param->no_crop_) {
|
||||||
BatchToSpaceNoCropForNHWC(input_data, output_data, in_shape.data(), out_shape[0], param->block_shape_,
|
BatchToSpaceNoCropForNHWC(input_data, output_data, in_shape.data(), out_shape[0], param->block_shape_,
|
||||||
sizeof(int8_t));
|
sizeof(int8_t));
|
||||||
} else {
|
} else {
|
||||||
|
@ -70,7 +65,7 @@ int BatchToSpaceInt8CPUKernel::Run() {
|
||||||
sizeof(int8_t));
|
sizeof(int8_t));
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (IsNoCrop()) {
|
if (param->no_crop_) {
|
||||||
BatchToSpaceNoCropForNHWCInt8(input_data, output_data, in_shape.data(), out_shape[0], param->block_shape_,
|
BatchToSpaceNoCropForNHWCInt8(input_data, output_data, in_shape.data(), out_shape[0], param->block_shape_,
|
||||||
&in_quant_arg_, &out_quant_arg_);
|
&in_quant_arg_, &out_quant_arg_);
|
||||||
} else {
|
} else {
|
||||||
|
@ -82,27 +77,6 @@ int BatchToSpaceInt8CPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuBatchToSpaceInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_BatchToSpace, CPUKernelCreator<BatchToSpaceInt8CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_BatchToSpaceND, CPUKernelCreator<BatchToSpaceInt8CPUKernel>)
|
||||||
OpParameter *op_parameter, const lite::InnerContext *ctx,
|
|
||||||
const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
auto *kernel = new (std::nothrow) BatchToSpaceInt8CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new BatchToSpaceInt8CPUKernel fail!";
|
|
||||||
free(op_parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_BatchToSpace, CpuBatchToSpaceInt8KernelCreator)
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_BatchToSpaceND, CpuBatchToSpaceInt8KernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -17,15 +17,18 @@
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_BATCH_TO_SPACE_INT8_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_BATCH_TO_SPACE_INT8_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/runtime/kernel/arm/base/batch_to_space_base.h"
|
#include "include/errorcode.h"
|
||||||
|
#include "nnacl/batch_to_space.h"
|
||||||
|
#include "nnacl/int8/batch_to_space_int8.h"
|
||||||
|
#include "src/lite_kernel.h"
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class BatchToSpaceInt8CPUKernel : public BatchToSpaceBaseCPUKernel {
|
class BatchToSpaceInt8CPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
BatchToSpaceInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
BatchToSpaceInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: BatchToSpaceBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||||
|
|
||||||
~BatchToSpaceInt8CPUKernel() = default;
|
~BatchToSpaceInt8CPUKernel() = default;
|
||||||
|
|
||||||
|
|
|
@ -15,23 +15,17 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "src/runtime/kernel/arm/int8/concat_int8.h"
|
#include "src/runtime/kernel/arm/int8/concat_int8.h"
|
||||||
#include <limits>
|
|
||||||
#include "nnacl/int8/concat_int8.h"
|
|
||||||
#include "schema/model_generated.h"
|
#include "schema/model_generated.h"
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
|
|
||||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||||
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::lite::RET_ERROR;
|
using mindspore::lite::RET_ERROR;
|
||||||
using mindspore::lite::RET_OK;
|
using mindspore::lite::RET_OK;
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::schema::PrimitiveType_Concat;
|
using mindspore::schema::PrimitiveType_Concat;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
int ConcatInt8CPUKernel::Init() {
|
int ConcatInt8CPUKernel::Init() {
|
||||||
ConcatBaseCPUKernel::Init();
|
|
||||||
concat_param_->input_shapes_ = nullptr;
|
concat_param_->input_shapes_ = nullptr;
|
||||||
auto input_num = in_tensors_.size();
|
auto input_num = in_tensors_.size();
|
||||||
input_data_ = reinterpret_cast<int8_t **>(malloc(sizeof(int8_t *) * input_num));
|
input_data_ = reinterpret_cast<int8_t **>(malloc(sizeof(int8_t *) * input_num));
|
||||||
|
@ -65,10 +59,9 @@ int ConcatInt8CPUKernel::Init() {
|
||||||
}
|
}
|
||||||
|
|
||||||
int ConcatInt8CPUKernel::ReSize() {
|
int ConcatInt8CPUKernel::ReSize() {
|
||||||
auto ret = ConcatBaseCPUKernel::ReSize();
|
concat_param_->axis_ =
|
||||||
if (ret != RET_OK) {
|
concat_param_->axis_ >= 0 ? concat_param_->axis_ : in_tensors_.front()->shape().size() + concat_param_->axis_;
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
auto input_num = in_tensors_.size();
|
auto input_num = in_tensors_.size();
|
||||||
concat_param_->input_num_ = input_num;
|
concat_param_->input_num_ = input_num;
|
||||||
concat_param_->input_shapes_ = reinterpret_cast<int **>(malloc(sizeof(int *) * input_num));
|
concat_param_->input_shapes_ = reinterpret_cast<int **>(malloc(sizeof(int *) * input_num));
|
||||||
|
@ -113,7 +106,8 @@ int ConcatInt8CPUKernel::ReSize() {
|
||||||
|
|
||||||
int ConcatInt8CPUKernel::Run() {
|
int ConcatInt8CPUKernel::Run() {
|
||||||
auto input_num = concat_param_->input_num_;
|
auto input_num = concat_param_->input_num_;
|
||||||
count_unit_ = thread_count_ > 1 ? UP_DIV(before_axis_size, thread_count_) : before_axis_size;
|
count_unit_ =
|
||||||
|
op_parameter_->thread_num_ > 1 ? UP_DIV(before_axis_size, op_parameter_->thread_num_) : before_axis_size;
|
||||||
concat_param_->count_unit_ = count_unit_;
|
concat_param_->count_unit_ = count_unit_;
|
||||||
|
|
||||||
for (int i = 0; i < input_num; i++) {
|
for (int i = 0; i < input_num; i++) {
|
||||||
|
@ -121,7 +115,7 @@ int ConcatInt8CPUKernel::Run() {
|
||||||
}
|
}
|
||||||
output_data_ = reinterpret_cast<int8_t *>(out_tensors_.at(0)->MutableData());
|
output_data_ = reinterpret_cast<int8_t *>(out_tensors_.at(0)->MutableData());
|
||||||
|
|
||||||
auto ret = ParallelLaunch(this->context_->thread_pool_, ConcatInt8Run, this, thread_count_);
|
auto ret = ParallelLaunch(this->context_->thread_pool_, ConcatInt8Run, this, op_parameter_->thread_num_);
|
||||||
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
@ -141,26 +135,5 @@ int ConcatInt8CPUKernel::DoExecute(int task_id) {
|
||||||
return lite::RET_OK;
|
return lite::RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuConcatInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Concat, CPUKernelCreator<ConcatInt8CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
auto *kernel = new (std::nothrow) ConcatInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new ConcatCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Concat, CpuConcatInt8KernelCreator)
|
|
||||||
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -18,20 +18,22 @@
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CONCAT_INT8_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CONCAT_INT8_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include <limits>
|
||||||
|
#include "nnacl/int8/concat_int8.h"
|
||||||
|
#include "include/errorcode.h"
|
||||||
#include "src/lite_kernel.h"
|
#include "src/lite_kernel.h"
|
||||||
#include "include/context.h"
|
#include "include/context.h"
|
||||||
#include "src/runtime/kernel/arm/base/concat_base.h"
|
|
||||||
#include "src/runtime/runtime_api.h"
|
#include "src/runtime/runtime_api.h"
|
||||||
|
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class ConcatInt8CPUKernel : public ConcatBaseCPUKernel {
|
class ConcatInt8CPUKernel : public LiteKernel {
|
||||||
public:
|
public:
|
||||||
ConcatInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
ConcatInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const mindspore::lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: ConcatBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||||
|
concat_param_ = reinterpret_cast<ConcatParameter *>(op_parameter_);
|
||||||
|
}
|
||||||
~ConcatInt8CPUKernel() override {
|
~ConcatInt8CPUKernel() override {
|
||||||
if (input_data_ != nullptr) {
|
if (input_data_ != nullptr) {
|
||||||
free(input_data_);
|
free(input_data_);
|
||||||
|
@ -64,6 +66,7 @@ class ConcatInt8CPUKernel : public ConcatBaseCPUKernel {
|
||||||
int64_t count_unit_;
|
int64_t count_unit_;
|
||||||
int8_t **input_data_ = nullptr;
|
int8_t **input_data_ = nullptr;
|
||||||
int8_t *output_data_ = nullptr;
|
int8_t *output_data_ = nullptr;
|
||||||
|
ConcatParameter *concat_param_ = nullptr;
|
||||||
};
|
};
|
||||||
|
|
||||||
int ConcatInt8Run(void *cdata, int task_id);
|
int ConcatInt8Run(void *cdata, int task_id);
|
||||||
|
|
|
@ -15,22 +15,17 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "src/runtime/kernel/arm/int8/crop_int8.h"
|
#include "src/runtime/kernel/arm/int8/crop_int8.h"
|
||||||
#include <limits>
|
|
||||||
#include "nnacl/int8/crop_int8.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
#include "src/runtime/runtime_api.h"
|
#include "src/runtime/runtime_api.h"
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
|
|
||||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||||
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::lite::RET_ERROR;
|
using mindspore::lite::RET_ERROR;
|
||||||
using mindspore::lite::RET_MEMORY_FAILED;
|
using mindspore::lite::RET_MEMORY_FAILED;
|
||||||
using mindspore::lite::RET_OK;
|
using mindspore::lite::RET_OK;
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
|
||||||
using mindspore::schema::PrimitiveType_Crop;
|
using mindspore::schema::PrimitiveType_Crop;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
int CropInt8CPUKernel::Init() {
|
int CropInt8CPUKernel::Init() {
|
||||||
auto ret = CropBaseCPUKernel::Init();
|
auto ret = CropBaseCPUKernel::Init();
|
||||||
if (ret != RET_OK) {
|
if (ret != RET_OK) {
|
||||||
|
@ -69,7 +64,7 @@ CropInt8CPUKernel::~CropInt8CPUKernel() {
|
||||||
int CropInt8CPUKernel::ReSize() { return CropBaseCPUKernel::ReSize(); }
|
int CropInt8CPUKernel::ReSize() { return CropBaseCPUKernel::ReSize(); }
|
||||||
|
|
||||||
int CropInt8CPUKernel::Run() {
|
int CropInt8CPUKernel::Run() {
|
||||||
auto ret = ParallelLaunch(this->context_->thread_pool_, CropInt8Run, this, thread_count_);
|
auto ret = ParallelLaunch(this->context_->thread_pool_, CropInt8Run, this, crop_para_->thread_count_);
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -82,31 +77,11 @@ int CropInt8Run(void *cdata, int task_id) {
|
||||||
int CropInt8CPUKernel::DoExecute(int task_id) {
|
int CropInt8CPUKernel::DoExecute(int task_id) {
|
||||||
auto input_tensor = in_tensors_.at(kInputIndex);
|
auto input_tensor = in_tensors_.at(kInputIndex);
|
||||||
auto out_tensor = out_tensors_.at(kOutputIndex);
|
auto out_tensor = out_tensors_.at(kOutputIndex);
|
||||||
int8_t *input_data = reinterpret_cast<int8_t *>(input_tensor->MutableData());
|
int8_t *input_data = reinterpret_cast<int8_t *>(input_tensor->data_c());
|
||||||
int8_t *output_data = reinterpret_cast<int8_t *>(out_tensor->MutableData());
|
int8_t *output_data = reinterpret_cast<int8_t *>(out_tensor->data_c());
|
||||||
Int8Crop(input_data, output_data, task_id, crop_para_);
|
Int8Crop(input_data, output_data, task_id, crop_para_);
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuCropInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Crop, CPUKernelCreator<CropInt8CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
|
||||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
auto *kernel = new (std::nothrow) CropInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new CropCPUKernel fail!";
|
|
||||||
free(opParameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Crop, CpuCropInt8KernelCreator)
|
|
||||||
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -18,32 +18,27 @@
|
||||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CROP_INT8_H_
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CROP_INT8_H_
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "src/lite_kernel.h"
|
#include <limits>
|
||||||
|
#include "include/errorcode.h"
|
||||||
#include "include/context.h"
|
#include "include/context.h"
|
||||||
#include "src/runtime/kernel/arm/base/crop_base.h"
|
#include "nnacl/int8/crop_int8.h"
|
||||||
|
#include "src/lite_kernel.h"
|
||||||
#include "src/runtime/runtime_api.h"
|
#include "src/runtime/runtime_api.h"
|
||||||
|
#include "src/runtime/kernel/arm/base/crop_base.h"
|
||||||
using mindspore::lite::InnerContext;
|
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
class CropInt8CPUKernel : public CropBaseCPUKernel {
|
class CropInt8CPUKernel : public CropBaseCPUKernel {
|
||||||
public:
|
public:
|
||||||
CropInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
CropInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
const std::vector<lite::Tensor *> &outputs, const mindspore::lite::InnerContext *ctx,
|
||||||
const mindspore::lite::PrimitiveC *primitive)
|
const mindspore::lite::PrimitiveC *primitive)
|
||||||
: CropBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {
|
: CropBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||||
crop_para_ = reinterpret_cast<CropParameter *>(op_parameter_);
|
|
||||||
crop_para_->thread_count_ = op_parameter_->thread_num_;
|
|
||||||
}
|
|
||||||
~CropInt8CPUKernel();
|
~CropInt8CPUKernel();
|
||||||
|
|
||||||
int Init() override;
|
int Init() override;
|
||||||
int ReSize() override;
|
int ReSize() override;
|
||||||
int Run() override;
|
int Run() override;
|
||||||
int DoExecute(int task_id);
|
int DoExecute(int task_id);
|
||||||
|
|
||||||
private:
|
|
||||||
CropParameter *crop_para_;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
int CropInt8Run(void *cdata, int task_id);
|
int CropInt8Run(void *cdata, int task_id);
|
||||||
|
|
|
@ -14,29 +14,19 @@
|
||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
#include "src/runtime/kernel/arm/int8/depth_to_space_int8.h"
|
#include "src/runtime/kernel/arm/int8/depth_to_space_int8.h"
|
||||||
#include <vector>
|
|
||||||
#include "schema/model_generated.h"
|
#include "schema/model_generated.h"
|
||||||
#include "src/kernel_registry.h"
|
#include "src/kernel_registry.h"
|
||||||
#include "nnacl/depth_to_space.h"
|
|
||||||
#include "nnacl/int8/depth_to_space_int8.h"
|
|
||||||
#include "include/errorcode.h"
|
|
||||||
|
|
||||||
using mindspore::lite::RET_ERROR;
|
|
||||||
using mindspore::lite::RET_OK;
|
|
||||||
|
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
|
using mindspore::lite::RET_ERROR;
|
||||||
using mindspore::lite::RET_FORMAT_ERR;
|
using mindspore::lite::RET_FORMAT_ERR;
|
||||||
|
using mindspore::lite::RET_OK;
|
||||||
using mindspore::lite::RET_PARAM_INVALID;
|
using mindspore::lite::RET_PARAM_INVALID;
|
||||||
using mindspore::schema::PrimitiveType_DepthToSpace;
|
using mindspore::schema::PrimitiveType_DepthToSpace;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
int DepthToSpaceInt8CPUKernel::Init() {
|
int DepthToSpaceInt8CPUKernel::Init() {
|
||||||
auto ret = DepthToSpaceBaseCPUKernel::Init();
|
param_->data_type_size_ = sizeof(int8_t);
|
||||||
if (ret != RET_OK) {
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
DepthToSpaceParameter *param = reinterpret_cast<DepthToSpaceParameter *>(op_parameter_);
|
|
||||||
param->data_type_size_ = sizeof(int8_t);
|
|
||||||
|
|
||||||
auto *input_tensor = in_tensors_.at(kInputIndex);
|
auto *input_tensor = in_tensors_.at(kInputIndex);
|
||||||
auto in_quant_args = input_tensor->quant_params();
|
auto in_quant_args = input_tensor->quant_params();
|
||||||
|
@ -58,44 +48,17 @@ int DepthToSpaceInt8CPUKernel::ReSize() { return DepthToSpaceBaseCPUKernel::ReSi
|
||||||
int DepthToSpaceInt8CPUKernel::Run() {
|
int DepthToSpaceInt8CPUKernel::Run() {
|
||||||
auto input = in_tensors_[0];
|
auto input = in_tensors_[0];
|
||||||
auto output = out_tensors_[0];
|
auto output = out_tensors_[0];
|
||||||
const int8_t *input_data = reinterpret_cast<const int8_t *>(input->MutableData());
|
const int8_t *input_data = reinterpret_cast<const int8_t *>(input->data_c());
|
||||||
int8_t *output_data = reinterpret_cast<int8_t *>(output->MutableData());
|
int8_t *output_data = reinterpret_cast<int8_t *>(output->data_c());
|
||||||
auto in_shape = input->shape();
|
auto in_shape = input->shape();
|
||||||
DepthToSpaceParameter *param = reinterpret_cast<DepthToSpaceParameter *>(op_parameter_);
|
|
||||||
if (in_quant_arg_.scale_ == out_quant_arg_.scale_ && in_quant_arg_.zp_ == out_quant_arg_.zp_) {
|
if (in_quant_arg_.scale_ == out_quant_arg_.scale_ && in_quant_arg_.zp_ == out_quant_arg_.zp_) {
|
||||||
DepthToSpaceForNHWC(input_data, output_data, in_shape.data(), param);
|
DepthToSpaceForNHWC(input_data, output_data, in_shape.data(), param_);
|
||||||
} else {
|
} else {
|
||||||
DepthToSpaceForNHWCInt8(input_data, output_data, in_shape.data(), param, &in_quant_arg_, &out_quant_arg_);
|
DepthToSpaceForNHWCInt8(input_data, output_data, in_shape.data(), param_, &in_quant_arg_, &out_quant_arg_);
|
||||||
}
|
}
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel::LiteKernel *CpuDepthToSpaceInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_DepthToSpace, CPUKernelCreator<DepthToSpaceInt8CPUKernel>)
|
||||||
const std::vector<lite::Tensor *> &outputs,
|
|
||||||
OpParameter *op_parameter, const lite::InnerContext *ctx,
|
|
||||||
const kernel::KernelKey &desc,
|
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
|
||||||
MS_ASSERT(desc.type == schema::PrimitiveType_DepthToSpace);
|
|
||||||
if (op_parameter == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Input op_parameter is nullptr!";
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
auto *kernel = new (std::nothrow) DepthToSpaceInt8CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
|
||||||
if (kernel == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "new BatchToSpaceInt8CPUKernel fail!";
|
|
||||||
free(op_parameter);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ret = kernel->Init();
|
|
||||||
if (ret != RET_OK) {
|
|
||||||
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
|
|
||||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
|
|
||||||
delete kernel;
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
return kernel;
|
|
||||||
}
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_DepthToSpace, CpuDepthToSpaceInt8KernelCreator)
|
|
||||||
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue