[feat] [assistant] [I40GZC] add new data ops RandomInvert

This commit is contained in:
despicablemme 2021-09-13 11:43:43 +08:00
parent 4141404213
commit b977d8723b
14 changed files with 471 additions and 0 deletions

View File

@ -44,6 +44,7 @@
#include "minddata/dataset/kernels/ir/vision/random_crop_with_bbox_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_horizontal_flip_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_horizontal_flip_with_bbox_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_invert_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_posterize_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_resized_crop_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_resized_crop_with_bbox_ir.h"
@ -373,6 +374,17 @@ PYBIND_REGISTER(RandomHorizontalFlipWithBBoxOperation, 1, ([](const py::module *
}));
}));
PYBIND_REGISTER(
RandomInvertOperation, 1, ([](const py::module *m) {
(void)py::class_<vision::RandomInvertOperation, TensorOperation, std::shared_ptr<vision::RandomInvertOperation>>(
*m, "RandomInvertOperation")
.def(py::init([](float prob) {
auto random_invert = std::make_shared<vision::RandomInvertOperation>(prob);
THROW_IF_ERROR(random_invert->ValidateParams());
return random_invert;
}));
}));
PYBIND_REGISTER(RandomPosterizeOperation, 1, ([](const py::module *m) {
(void)py::class_<vision::RandomPosterizeOperation, TensorOperation,
std::shared_ptr<vision::RandomPosterizeOperation>>(*m, "RandomPosterizeOperation")

View File

@ -48,6 +48,7 @@
#include "minddata/dataset/kernels/ir/vision/random_crop_with_bbox_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_horizontal_flip_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_horizontal_flip_with_bbox_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_invert_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_posterize_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_resized_crop_ir.h"
#include "minddata/dataset/kernels/ir/vision/random_resized_crop_with_bbox_ir.h"
@ -608,6 +609,18 @@ std::shared_ptr<TensorOperation> RandomHorizontalFlipWithBBox::Parse() {
return std::make_shared<RandomHorizontalFlipWithBBoxOperation>(data_->probability_);
}
// RandomInvert Operation.
struct RandomInvert::Data {
explicit Data(float prob) : probability_(prob) {}
float probability_;
};
RandomInvert::RandomInvert(float prob) : data_(std::make_shared<Data>(prob)) {}
std::shared_ptr<TensorOperation> RandomInvert::Parse() {
return std::make_shared<RandomInvertOperation>(data_->probability_);
}
// RandomPosterize Transform Operation.
struct RandomPosterize::Data {
explicit Data(const std::vector<uint8_t> &bit_range) : bit_range_(bit_range) {}

View File

@ -535,6 +535,27 @@ class RandomHorizontalFlipWithBBox final : public TensorTransform {
std::shared_ptr<Data> data_;
};
/// \brief Randomly invert the input image with a given probability.
class RandomInvert final : public TensorTransform {
public:
/// \brief Constructor.
/// \param[in] prob A float representing the probability of the image being inverted, which
/// must be in range of [0, 1] (default=0.5).
explicit RandomInvert(float prob = 0.5);
/// \brief Destructor.
~RandomInvert() = default;
protected:
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
/// \return Shared pointer to TensorOperation object.
std::shared_ptr<TensorOperation> Parse() override;
private:
struct Data;
std::shared_ptr<Data> data_;
};
/// \brief Reduce the number of bits for each color channel randomly.
class RandomPosterize final : public TensorTransform {
public:

View File

@ -37,6 +37,7 @@ add_library(kernels-image OBJECT
random_crop_with_bbox_op.cc
random_horizontal_flip_op.cc
random_horizontal_flip_with_bbox_op.cc
random_invert_op.cc
bounding_box_augment_op.cc
random_posterize_op.cc
random_resize_op.cc

View File

@ -0,0 +1,31 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/kernels/image/random_invert_op.h"
namespace mindspore {
namespace dataset {
const float RandomInvertOp::kDefProbability = 0.5;
Status RandomInvertOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
IO_CHECK(input, output);
if (distribution_(rnd_)) {
return InvertOp::Compute(input, output);
}
*output = input;
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,59 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_RANDOM_INVERT_OP_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_RANDOM_INVERT_OP_H_
#include <memory>
#include <random>
#include <string>
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/kernels/tensor_op.h"
#include "minddata/dataset/kernels/image/invert_op.h"
#include "minddata/dataset/util/random.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
class RandomInvertOp : public InvertOp {
public:
static const float kDefProbability;
explicit RandomInvertOp(float prob = kDefProbability) : distribution_(prob) {
is_deterministic_ = false;
rnd_.seed(GetSeed());
}
~RandomInvertOp() override = default;
// Provide stream operator for displaying it
friend std::ostream &operator<<(std::ostream &out, const RandomInvertOp &so) {
so.Print(out);
return out;
}
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
std::string Name() const override { return kRandomInvertOp; }
private:
std::mt19937 rnd_;
std::bernoulli_distribution distribution_;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_RANDOM_INVERT_OP_H_

View File

@ -29,6 +29,7 @@ set(DATASET_KERNELS_IR_VISION_SRC_FILES
random_crop_with_bbox_ir.cc
random_horizontal_flip_ir.cc
random_horizontal_flip_with_bbox_ir.cc
random_invert_ir.cc
random_posterize_ir.cc
random_resized_crop_ir.cc
random_resized_crop_with_bbox_ir.cc

View File

@ -0,0 +1,60 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/kernels/ir/vision/random_invert_ir.h"
#ifndef ENABLE_ANDROID
#include "minddata/dataset/kernels/image/random_invert_op.h"
#endif
#include "minddata/dataset/kernels/ir/validators.h"
namespace mindspore {
namespace dataset {
namespace vision {
#ifndef ENABLE_ANDROID
// RandomInvertOperation
RandomInvertOperation::RandomInvertOperation(float prob) : TensorOperation(true), probability_(prob) {}
RandomInvertOperation::~RandomInvertOperation() = default;
std::string RandomInvertOperation::Name() const { return kRandomInvertOperation; }
Status RandomInvertOperation::ValidateParams() {
RETURN_IF_NOT_OK(ValidateProbability("RandomInvert", probability_));
return Status::OK();
}
std::shared_ptr<TensorOp> RandomInvertOperation::Build() {
std::shared_ptr<RandomInvertOp> tensor_op = std::make_shared<RandomInvertOp>(probability_);
return tensor_op;
}
Status RandomInvertOperation::to_json(nlohmann::json *out_json) {
(*out_json)["prob"] = probability_;
return Status::OK();
}
Status RandomInvertOperation::from_json(nlohmann::json op_params, std::shared_ptr<TensorOperation> *operation) {
CHECK_FAIL_RETURN_UNEXPECTED(op_params.find("prob") != op_params.end(), "Failed to find prob");
float prob = op_params["prob"];
*operation = std::make_shared<vision::RandomInvertOperation>(prob);
return Status::OK();
}
#endif
} // namespace vision
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,61 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IR_VISION_RANDOM_INVERT_IR_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IR_VISION_RANDOM_INVERT_IR_H_
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "include/api/status.h"
#include "minddata/dataset/include/dataset/constants.h"
#include "minddata/dataset/include/dataset/transforms.h"
#include "minddata/dataset/kernels/ir/tensor_operation.h"
namespace mindspore {
namespace dataset {
namespace vision {
constexpr char kRandomInvertOperation[] = "RandomInvert";
class RandomInvertOperation : public TensorOperation {
public:
explicit RandomInvertOperation(float prob);
~RandomInvertOperation();
std::shared_ptr<TensorOp> Build() override;
Status ValidateParams() override;
std::string Name() const override;
Status to_json(nlohmann::json *out_json) override;
static Status from_json(nlohmann::json op_params, std::shared_ptr<TensorOperation> *operation);
private:
float probability_;
};
} // namespace vision
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IR_VISION_RANDOM_INVERT_IR_H_

View File

@ -89,6 +89,7 @@ constexpr char kRandomCropOp[] = "RandomCropOp";
constexpr char kRandomCropWithBBoxOp[] = "RandomCropWithBBoxOp";
constexpr char kRandomHorizontalFlipWithBBoxOp[] = "RandomHorizontalFlipWithBBoxOp";
constexpr char kRandomHorizontalFlipOp[] = "RandomHorizontalFlipOp";
constexpr char kRandomInvertOp[] = "RandomInvertOp";
constexpr char kRandomResizeOp[] = "RandomResizeOp";
constexpr char kRandomResizeWithBBoxOp[] = "RandomResizeWithBBoxOp";
constexpr char kRandomRotationOp[] = "RandomRotationOp";

View File

@ -1092,6 +1092,27 @@ class RandomHorizontalFlipWithBBox(ImageTensorOperation):
return cde.RandomHorizontalFlipWithBBoxOperation(self.prob)
class RandomInvert(ImageTensorOperation):
"""
Randomly invert the colors of image with a given probability.
Args:
prob (float, optional): Probability of the image being inverted, which must be in range of [0, 1] (default=0.5).
Examples:
>>> transforms_list = [c_vision.Decode(), c_vision.RandomInvert(0.5)]
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list,
... input_columns=["image"])
"""
@check_prob
def __init__(self, prob=0.5):
self.prob = prob
def parse(self):
return cde.RandomInvertOperation(self.prob)
class RandomPosterize(ImageTensorOperation):
"""
Reduce the number of bits for each color channel to posterize the input image randomly with a given probability.

View File

@ -1270,3 +1270,49 @@ TEST_F(MindDataTestPipeline, TestConvertColorFail) {
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomInvert) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomInvert.";
std::string MindDataPath = "data/dataset";
std::string folder_path = MindDataPath + "/testImageNetData/train/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, std::make_shared<RandomSampler>(false, 2));
EXPECT_NE(ds, nullptr);
auto random_invert_op = vision::RandomInvert(0.5);
ds = ds->Map({random_invert_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
std::unordered_map<std::string, mindspore::MSTensor> row;
ASSERT_OK(iter->GetNextRow(&row));
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 2);
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomInvertInvalidProb) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomInvertInvalidProb.";
std::string MindDataPath = "data/dataset";
std::string folder_path = MindDataPath + "/testImageNetData/train/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, std::make_shared<RandomSampler>(false, 2));
EXPECT_NE(ds, nullptr);
auto random_invert_op = vision::RandomInvert(1.5);
ds = ds->Map({random_invert_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_EQ(iter, nullptr);
}

View File

@ -1057,6 +1057,7 @@ TEST_F(MindDataTestExecute, TestFadeWithInvalidArg) {
Status s04 = Transform04(input_04, &input_04);
EXPECT_FALSE(s04.IsOk());
}
TEST_F(MindDataTestExecute, TestVolDefalutValue) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestVolDefalutValue.";
std::shared_ptr<Tensor> input_tensor_;
@ -1097,3 +1098,17 @@ TEST_F(MindDataTestExecute, TestMagphaseEager) {
Status rc = transform({input_tensor}, &output_tensor);
ASSERT_TRUE(rc.IsOk());
}
TEST_F(MindDataTestExecute, TestRandomInvertEager) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestRandomInvertEager.";
// Read images
auto image = ReadFileToTensor("data/dataset/apple.jpg");
// Transform params
auto decode = vision::Decode();
auto random_invert_op = vision::RandomInvert(0.6);
auto transform = Execute({decode, random_invert_op});
Status rc = transform(image, &image);
EXPECT_EQ(rc, Status::OK());
}

View File

@ -0,0 +1,129 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomInvert in DE
"""
import numpy as np
import mindspore.dataset as ds
from mindspore.dataset.vision.c_transforms import Decode, Resize, RandomInvert, Invert
from mindspore import log as logger
from util import visualize_list, visualize_image, diff_mse
image_file = "../data/dataset/testImageNetData/train/class1/1_1.jpg"
data_dir = "../data/dataset/testImageNetData/train/"
def test_random_invert_pipeline(plot=False):
"""
Test RandomInvert pipeline
"""
logger.info("Test RandomInvert pipeline")
# Original Images
data_set = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
transforms_original = [Decode(), Resize(size=[224, 224])]
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = image.asnumpy()
else:
images_original = np.append(images_original,
image.asnumpy(),
axis=0)
# Randomly Inverted Images
data_set1 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
transform_random_invert = [Decode(), Resize(size=[224, 224]), RandomInvert(0.6)]
ds_random_invert = data_set1.map(operations=transform_random_invert, input_columns="image")
ds_random_invert = ds_random_invert.batch(512)
for idx, (image, _) in enumerate(ds_random_invert):
if idx == 0:
images_random_invert = image.asnumpy()
else:
images_random_invert = np.append(images_random_invert,
image.asnumpy(),
axis=0)
if plot:
visualize_list(images_original, images_random_invert)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_random_invert[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
def test_random_invert_eager():
"""
Test RandomInvert eager.
"""
img = np.fromfile(image_file, dtype=np.uint8)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
img = Decode()(img)
img_inverted = Invert()(img)
img_random_inverted = RandomInvert(1.0)(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img_random_inverted), img_random_inverted.shape))
assert img_random_inverted.all() == img_inverted.all()
def test_random_invert_comp(plot=False):
"""
Test RandomInvert op compared with Invert op.
"""
random_invert_op = RandomInvert(prob=1.0)
invert_op = Invert()
dataset1 = ds.ImageFolderDataset(data_dir, 1, shuffle=False, decode=True)
for item in dataset1.create_dict_iterator(output_numpy=True):
image = item['image']
dataset1.map(operations=random_invert_op, input_columns=['image'])
dataset2 = ds.ImageFolderDataset(data_dir, 1, shuffle=False, decode=True)
dataset2.map(operations=invert_op, input_columns=['image'])
for item1, item2 in zip(dataset1.create_dict_iterator(output_numpy=True),
dataset2.create_dict_iterator(output_numpy=True)):
image_random_inverted = item1['image']
image_inverted = item2['image']
mse = diff_mse(image_inverted, image_random_inverted)
assert mse == 0
logger.info("mse: {}".format(mse))
if plot:
visualize_image(image, image_random_inverted, mse, image_inverted)
def test_random_invert_invalid_prob():
"""
Test invalid prob. prob out of range.
"""
logger.info("test_random_invert_invalid_prob")
dataset = ds.ImageFolderDataset(data_dir, 1, shuffle=False, decode=True)
try:
random_invert_op = RandomInvert(1.5)
dataset = dataset.map(operations=random_invert_op, input_columns=['image'])
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input prob is not within the required interval of [0.0, 1.0]." in str(e)
if __name__ == "__main__":
test_random_invert_pipeline(plot=True)
test_random_invert_eager()
test_random_invert_comp(plot=True)
test_random_invert_invalid_prob()