forked from mindspore-Ecosystem/mindspore
!1021 gpu support MinimumGrad & MaximumGrad kernel
Merge pull request !1021 from chenweifeng/broadcast_grad
This commit is contained in:
commit
b5096e1f6c
|
@ -0,0 +1,116 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/cuda_impl/broadcast_grad_impl.cuh"
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
struct MinimumGradFunc {
|
||||
__device__ __forceinline__ void operator()(const T &x1, const T &x2, const T &dy, T *dx1, T *dx2) {
|
||||
if (x1 < x2) {
|
||||
atomicAdd(dx1, dy);
|
||||
} else {
|
||||
atomicAdd(dx2, dy);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct MaximumGradFunc {
|
||||
__device__ __forceinline__ void operator()(const T &x1, const T &x2, const T &dy, T *dx1, T *dx2) {
|
||||
if (x1 > x2) {
|
||||
atomicAdd(dx1, dy);
|
||||
} else {
|
||||
atomicAdd(dx2, dy);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
__device__ __forceinline__ int Index(const int &index, const int &dim) { return dim == 1 ? 0 : index; }
|
||||
|
||||
template <typename T, typename Func>
|
||||
__device__ __forceinline__ void BroadcastGradOperator(const int &l0, const int &l1, const int &l2, const int &l3,
|
||||
const int &r0, const int &r1, const int &r2, const int &r3,
|
||||
const int &d0, const int &d1, const int &d2, const int &d3,
|
||||
const T *x1, const T *x2, const T *dy, T *dx1, T *dx2) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < d0 * d1 * d2 * d3; pos += blockDim.x * gridDim.x) {
|
||||
int i = pos / (d1 * d2 * d3) % d0;
|
||||
int j = pos / (d2 * d3) % d1;
|
||||
int k = pos / d3 % d2;
|
||||
int l = pos % d3;
|
||||
|
||||
int l_index = Index(i, l0) * l1 * l2 * l3 + Index(j, l1) * l2 * l3 + Index(k, l2) * l3 + Index(l, l3);
|
||||
int r_index = Index(i, r0) * r1 * r2 * r3 + Index(j, r1) * r2 * r3 + Index(k, r2) * r3 + Index(l, r3);
|
||||
Func()(x1[l_index], x2[r_index], dy[pos], dx1 + l_index, dx2 + r_index);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void BroadcastGradKernel(const int l0, const int l1, const int l2, const int l3, const int r0, const int r1,
|
||||
const int r2, const int r3, const int d0, const int d1, const int d2, const int d3,
|
||||
enum BroadcastGradOpType op, const T *x1, const T *x2, const T *dy, T *dx1,
|
||||
T *dx2) {
|
||||
switch (op) {
|
||||
case BROADCAST_GRAD_TYPE_MINIMUM:
|
||||
return BroadcastGradOperator<T, MinimumGradFunc<T>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, x1, x2, dy,
|
||||
dx1, dx2);
|
||||
case BROADCAST_GRAD_TYPE_MAXIMUM:
|
||||
return BroadcastGradOperator<T, MaximumGradFunc<T>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, x1, x2, dy,
|
||||
dx1, dx2);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void BroadcastGrad(const int &l0, const int &l1, const int &l2, const int &l3, const int &r0, const int &r1,
|
||||
const int &r2, const int &r3, const int &d0, const int &d1, const int &d2, const int &d3,
|
||||
enum BroadcastGradOpType op, const T *x1, const T *x2, const T *dy, T *dx1, T *dx2,
|
||||
cudaStream_t stream) {
|
||||
int size = d0 * d1 * d2 * d3;
|
||||
BroadcastGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, stream>>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, op,
|
||||
x1, x2, dy, dx1, dx2);
|
||||
}
|
||||
|
||||
template <typename T, typename Func>
|
||||
__device__ __forceinline__ void NoBroadcastOperator(const int &nums, const T *x1, const T *x2, const T *dy, T *dx1,
|
||||
T *dx2) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < nums; pos += blockDim.x * gridDim.x) {
|
||||
Func()(x1[pos], x2[pos], dy[pos], dx1 + pos, dx2 + pos);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void NoBroadcastGradKernel(const int nums, enum BroadcastGradOpType op, const T *x1, const T *x2,
|
||||
const T *dy, T *dx1, T *dx2) {
|
||||
switch (op) {
|
||||
case BROADCAST_GRAD_TYPE_MINIMUM:
|
||||
return NoBroadcastOperator<T, MinimumGradFunc<T>>(nums, x1, x2, dy, dx1, dx2);
|
||||
case BROADCAST_GRAD_TYPE_MAXIMUM:
|
||||
return NoBroadcastOperator<T, MaximumGradFunc<T>>(nums, x1, x2, dy, dx1, dx2);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void NoBroadcastGrad(const int &nums, enum BroadcastGradOpType op, const T *x1, const T *x2, const T *dy, T *dx1,
|
||||
T *dx2, cudaStream_t stream) {
|
||||
NoBroadcastGradKernel<<<GET_BLOCKS(nums), GET_THREADS, 0, stream>>>(nums, op, x1, x2, dy, dx1, dx2);
|
||||
}
|
||||
|
||||
template void NoBroadcastGrad(const int &nums, enum BroadcastGradOpType op, const float *x1, const float *x2,
|
||||
const float *dy, float *dx1, float *dx2, cudaStream_t stream);
|
||||
template void BroadcastGrad(const int &l0, const int &l1, const int &l2, const int &l3, const int &r0, const int &r1,
|
||||
const int &r2, const int &r3, const int &d0, const int &d1, const int &d2, const int &d3,
|
||||
enum BroadcastGradOpType op, const float *x1, const float *x2, const float *dy, float *dx1,
|
||||
float *dx2, cudaStream_t stream);
|
|
@ -0,0 +1,38 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BROADCAST_GRAD_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BROADCAST_GRAD_H_
|
||||
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
enum BroadcastGradOpType {
|
||||
BROADCAST_GRAD_TYPE_MAXIMUM = 0,
|
||||
BROADCAST_GRAD_TYPE_MINIMUM = 1,
|
||||
BROADCAST_GRAD_TYPE_INVALID = 0xffffffff,
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
void BroadcastGrad(const int &l0, const int &l1, const int &l2, const int &l3, const int &r0, const int &r1,
|
||||
const int &r2, const int &r3, const int &d0, const int &d1, const int &d2, const int &d3,
|
||||
enum BroadcastGradOpType op, const T *x1, const T *x2, const T *dy, T *dx1, T *dx2,
|
||||
cudaStream_t stream);
|
||||
|
||||
template <typename T>
|
||||
void NoBroadcastGrad(const int &nums, enum BroadcastGradOpType op, const T *x1, const T *x2, const T *dy, T *dx1,
|
||||
T *dx2, cudaStream_t stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BROADCAST_GRAD_H_
|
|
@ -0,0 +1,38 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/math/broadcast_grad_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(MinimumGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastOpGradGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(MaximumGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastOpGradGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,149 @@
|
|||
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_BROADCAST_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_BROADCAST_GPU_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/broadcast_grad_impl.cuh"
|
||||
#include "kernel/gpu/kernel_constants.h"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
class BroadcastOpGradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
BroadcastOpGradGpuKernel()
|
||||
: op_type_(BROADCAST_GRAD_TYPE_INVALID), need_broadcast_(false), input1_num_(1), input2_num_(1), output_num_(1) {}
|
||||
~BroadcastOpGradGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
T *x1 = GetDeviceAddress<T>(inputs, 0);
|
||||
T *x2 = GetDeviceAddress<T>(inputs, 1);
|
||||
T *dy = GetDeviceAddress<T>(inputs, 2);
|
||||
T *dx1 = GetDeviceAddress<T>(outputs, 0);
|
||||
T *dx2 = GetDeviceAddress<T>(outputs, 1);
|
||||
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemsetAsync(dx1, 0, outputs[0]->size, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemSet Failed");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemsetAsync(dx2, 0, outputs[1]->size, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemSet Failed");
|
||||
if (need_broadcast_) {
|
||||
BroadcastGrad(x1_shape_[0], x1_shape_[1], x1_shape_[2], x1_shape_[3], x2_shape_[0], x2_shape_[1], x2_shape_[2],
|
||||
x2_shape_[3], dy_shape_[0], dy_shape_[1], dy_shape_[2], dy_shape_[3], op_type_, x1, x2, dy, dx1,
|
||||
dx2, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
} else {
|
||||
NoBroadcastGrad(output_num_, op_type_, x1, x2, dy, dx1, dx2, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
GetOpType(kernel_node);
|
||||
auto shape1 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto shape2 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
auto shape3 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
need_broadcast_ = IsBroadcast(shape1, shape2);
|
||||
if (need_broadcast_ && shape1.size() > 4) {
|
||||
MS_LOG(EXCEPTION) << "Broadcast operation not support dim greater than 4";
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < shape3.size(); i++) {
|
||||
dy_shape_[i] = shape3[i];
|
||||
output_num_ *= shape3[i];
|
||||
}
|
||||
int offset = shape3.size() - shape1.size();
|
||||
for (size_t i = 0; i < shape1.size(); i++) {
|
||||
x1_shape_[i + offset] = shape1[i];
|
||||
input1_num_ *= shape1[i];
|
||||
}
|
||||
offset = shape3.size() - shape2.size();
|
||||
for (size_t i = 0; i < shape2.size(); i++) {
|
||||
x2_shape_[i + offset] = shape2[i];
|
||||
input2_num_ *= shape2[i];
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override { return; }
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input1_num_ * sizeof(T));
|
||||
input_size_list_.push_back(input2_num_ * sizeof(T));
|
||||
input_size_list_.push_back(output_num_ * sizeof(T));
|
||||
output_size_list_.push_back(input1_num_ * sizeof(T));
|
||||
output_size_list_.push_back(input2_num_ * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
void GetOpType(const CNodePtr &kernel_node) {
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
|
||||
static std::map<std::string, BroadcastGradOpType> kBroadcastTypeMap = {
|
||||
{"MaximumGrad", BROADCAST_GRAD_TYPE_MAXIMUM},
|
||||
{"MinimumGrad", BROADCAST_GRAD_TYPE_MINIMUM},
|
||||
};
|
||||
|
||||
auto iter = kBroadcastTypeMap.find(kernel_name);
|
||||
if (iter == kBroadcastTypeMap.end()) {
|
||||
MS_LOG(EXCEPTION) << "operation " << kernel_name << " is not supported.";
|
||||
} else {
|
||||
op_type_ = iter->second;
|
||||
}
|
||||
}
|
||||
|
||||
bool IsBroadcast(const std::vector<size_t> &lhs, const std::vector<size_t> &rhs) {
|
||||
if (lhs.size() != rhs.size()) {
|
||||
return true;
|
||||
}
|
||||
for (size_t i = 0; i < lhs.size(); i++) {
|
||||
if (lhs[i] != rhs[i]) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
BroadcastGradOpType op_type_;
|
||||
bool need_broadcast_;
|
||||
int input1_num_;
|
||||
int input2_num_;
|
||||
int output_num_;
|
||||
int x1_shape_[4] = {1, 1, 1, 1};
|
||||
int x2_shape_[4] = {1, 1, 1, 1};
|
||||
int dy_shape_[4] = {1, 1, 1, 1};
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_BINARYOP_GPU_KERNEL_H_
|
|
@ -15,6 +15,7 @@
|
|||
|
||||
import pytest
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.context as context
|
||||
|
@ -29,11 +30,20 @@ class Net(Cell):
|
|||
def construct(self, x, y):
|
||||
return self.max(x, y)
|
||||
|
||||
class Grad(Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x1, x2, sens):
|
||||
gout = self.grad(self.network)(x1, x2, sens)
|
||||
return gout
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_max():
|
||||
def test_maximum():
|
||||
x = Tensor(np.array([[1, 2, 3]]).astype(np.float32))
|
||||
y = Tensor(np.array([[2]]).astype(np.float32))
|
||||
expect = [[2, 2, 3]]
|
||||
|
@ -53,3 +63,160 @@ def test_max():
|
|||
assert np.all(diff < error)
|
||||
assert np.all(-diff < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast():
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target='GPU')
|
||||
|
||||
x1_np = np.array([[[[0.659578 ],
|
||||
[0.49113268],
|
||||
[0.75909054],
|
||||
[0.71681815],
|
||||
[0.30421826]]],
|
||||
[[[0.30322495],
|
||||
[0.02858258],
|
||||
[0.06398096],
|
||||
[0.09519596],
|
||||
[0.12498625]]],
|
||||
[[[0.7347768 ],
|
||||
[0.166469 ],
|
||||
[0.328553 ],
|
||||
[0.54908437],
|
||||
[0.23673844]]]]).astype(np.float32)
|
||||
x2_np = np.array([[[[0.9154968, 0.29014662, 0.6492294, 0.39918253, 0.1648203, 0.00861965]],
|
||||
[[0.996885, 0.24152198, 0.3601213, 0.51664376, 0.7933056, 0.84706444]],
|
||||
[[0.75606346, 0.974512, 0.3939527, 0.69697475, 0.83400667, 0.6348955 ]],
|
||||
[[0.68492866, 0.24609096, 0.4924665, 0.22500521, 0.38474053, 0.5586104 ]]]]).astype(np.float32)
|
||||
dy_np = np.array([[[[0.42891738, 0.03434946, 0.06192983, 0.21216309, 0.37450036, 0.6619524 ],
|
||||
[0.8583447, 0.5765161, 0.1468952, 0.9975385, 0.6908136, 0.4903796 ],
|
||||
[0.68952006, 0.39336833, 0.9049695, 0.66886294, 0.2338471, 0.913618 ],
|
||||
[0.0428149, 0.6243054, 0.8519898, 0.12088962, 0.9735885, 0.45661286],
|
||||
[0.41563734, 0.41607043, 0.4754915, 0.32207987, 0.33823156, 0.47422352]],
|
||||
|
||||
[[0.64478457, 0.22430937, 0.7682554, 0.46082005, 0.8938723, 0.20490853],
|
||||
[0.44393885, 0.08278944, 0.4734108, 0.5543551, 0.39428464, 0.44424313],
|
||||
[0.12612297, 0.76566416, 0.71133816, 0.81280327, 0.20583127, 0.54058075],
|
||||
[0.41341263, 0.48118508, 0.00401995, 0.37259838, 0.05435474, 0.5240658 ],
|
||||
[0.4081956, 0.48718935, 0.9132831, 0.67969185, 0.0119757, 0.8328054 ]],
|
||||
|
||||
[[0.91695577, 0.95370644, 0.263782, 0.7477626, 0.6448147, 0.8080634 ],
|
||||
[0.15576603, 0.9104615, 0.3778708, 0.6912833, 0.2092224, 0.67462957],
|
||||
[0.7087075, 0.7888326, 0.4672294, 0.98221505, 0.25210258, 0.98920417],
|
||||
[0.7466197, 0.22702982, 0.01991269, 0.6846591, 0.7515228, 0.5890395 ],
|
||||
[0.04531088, 0.21740614, 0.8406235, 0.36480767, 0.37733936, 0.02914464]],
|
||||
|
||||
[[0.33069974, 0.5497569, 0.9896345, 0.4167176, 0.78057563, 0.04659131],
|
||||
[0.7747768, 0.21427679, 0.29893255, 0.7706969, 0.9755185, 0.42388415],
|
||||
[0.3910244, 0.39381978, 0.37065396, 0.15558061, 0.05012341, 0.15870963],
|
||||
[0.17791101, 0.47219893, 0.13899496, 0.32323205, 0.3628809, 0.02580585],
|
||||
[0.30274773, 0.62890774, 0.11024303, 0.6980051, 0.35346958, 0.062852 ]]],
|
||||
|
||||
|
||||
[[[0.6925081, 0.74668753, 0.80145043, 0.06598313, 0.665123, 0.15073007],
|
||||
[0.11784806, 0.6385372, 0.5228278, 0.5349848, 0.84671104, 0.8096436 ],
|
||||
[0.09516156, 0.63298017, 0.52382874, 0.36734378, 0.66497755, 0.6019127 ],
|
||||
[0.46438488, 0.0194377, 0.9388292, 0.7286089, 0.29178405, 0.11872514],
|
||||
[0.22101837, 0.6164887, 0.6139798, 0.11711904, 0.6227745, 0.09701069]],
|
||||
|
||||
[[0.80480653, 0.90034056, 0.8633447, 0.97415197, 0.08309154, 0.8446033 ],
|
||||
[0.9473769, 0.791024, 0.26339203, 0.01155075, 0.2673186, 0.7116369 ],
|
||||
[0.9687511, 0.24281934, 0.37777108, 0.09802654, 0.2421312, 0.87095344],
|
||||
[0.6311381, 0.23368953, 0.0998995, 0.4364419, 0.9187446, 0.5043872 ],
|
||||
[0.35226053, 0.09357589, 0.41317305, 0.85930043, 0.16249318, 0.5478765 ]],
|
||||
|
||||
[[0.14338651, 0.24859418, 0.4246941, 0.73034066, 0.47172204, 0.8717199 ],
|
||||
[0.05415315, 0.78556925, 0.99214983, 0.7415298, 0.673708, 0.87817156],
|
||||
[0.616975, 0.42843062, 0.05179814, 0.1566958, 0.04536059, 0.70166487],
|
||||
[0.15493333, 0.776598, 0.4361967, 0.40253627, 0.89210516, 0.8144414 ],
|
||||
[0.04816005, 0.29696834, 0.4586605, 0.3419852, 0.5595613, 0.74093205]],
|
||||
|
||||
[[0.1388035, 0.9168704, 0.64287645, 0.83864623, 0.48026922, 0.78323376],
|
||||
[0.12724937, 0.83034366, 0.42557436, 0.50578654, 0.25630295, 0.15349793],
|
||||
[0.27256685, 0.04547984, 0.5385756, 0.39270344, 0.7661698, 0.23722854],
|
||||
[0.24620503, 0.25431684, 0.71564585, 0.01161419, 0.846467, 0.7043044 ],
|
||||
[0.63272387, 0.11857849, 0.3772076, 0.16758402, 0.46743023, 0.05919575]]],
|
||||
|
||||
|
||||
[[[0.18827082, 0.8912264, 0.6841404, 0.74436826, 0.9582085, 0.1083683 ],
|
||||
[0.60695344, 0.09742349, 0.25074378, 0.87940735, 0.21116392, 0.39418384],
|
||||
[0.744686, 0.35679692, 0.01308284, 0.45166633, 0.68166, 0.8634658 ],
|
||||
[0.7331758, 0.21113694, 0.3935488, 0.87934476, 0.70728546, 0.09309767],
|
||||
[0.12128611, 0.93696386, 0.81177396, 0.85402405, 0.5827289, 0.9776509 ]],
|
||||
|
||||
[[0.54069614, 0.66651285, 0.10646132, 0.17342485, 0.88795924, 0.03551182],
|
||||
[0.25531697, 0.87946486, 0.74267226, 0.89230734, 0.95171434, 0.94697934],
|
||||
[0.3708397, 0.507355, 0.97099817, 0.4918163, 0.17212386, 0.5008048 ],
|
||||
[0.62530744, 0.25210327, 0.73966664, 0.71555346, 0.82484317, 0.6094874 ],
|
||||
[0.4589691, 0.1386695, 0.27448782, 0.20373994, 0.27805242, 0.23292768]],
|
||||
|
||||
[[0.7414099, 0.2270226, 0.90431255, 0.47035843, 0.9581062, 0.5359226 ],
|
||||
[0.79603523, 0.45549425, 0.80858237, 0.7705133, 0.017761, 0.98001194],
|
||||
[0.06013146, 0.99240226, 0.33515573, 0.04110833, 0.41470334, 0.7130743 ],
|
||||
[0.5687417, 0.5788611, 0.00722461, 0.6603336, 0.3420471, 0.75181854],
|
||||
[0.4699261, 0.51390815, 0.343182, 0.81498754, 0.8942413, 0.46532857]],
|
||||
|
||||
[[0.4589523, 0.5534698, 0.2825786, 0.8205943, 0.78258514, 0.43154418],
|
||||
[0.27020997, 0.01667354, 0.60871965, 0.90670526, 0.3208025, 0.96995634],
|
||||
[0.85337156, 0.9711295, 0.1381724, 0.53670496, 0.7347996, 0.73380876],
|
||||
[0.6137464, 0.54751194, 0.9037335, 0.23134394, 0.61411524, 0.26583543],
|
||||
[0.70770144, 0.01813207, 0.24718016, 0.70329237, 0.7062925, 0.14399007]]]]).astype(np.float32)
|
||||
|
||||
expect_dx1 = np.array([[[[ 6.6534014 ],
|
||||
[ 5.649811 ],
|
||||
[10.071739 ],
|
||||
[ 6.6798244 ],
|
||||
[ 3.0426278 ]]],
|
||||
[[[ 4.2183976 ],
|
||||
[ 0.8096436 ],
|
||||
[ 0.6019127 ],
|
||||
[ 0.11872514],
|
||||
[ 0.09701069]]],
|
||||
[[[ 9.573029 ],
|
||||
[ 0.60534775],
|
||||
[ 3.917112 ],
|
||||
[ 5.9021177 ],
|
||||
[ 2.263672 ]]]]).astype(np.float32)
|
||||
|
||||
expect_dx2 = np.array([[[[6.4205275, 2.941831 , 5.492452 , 4.3212175, 2.4262471, 0. ]],
|
||||
[[7.991917 , 2.3792431, 4.9190216, 5.2013817, 6.348791 , 8.351772 ]],
|
||||
[[5.518505 , 8.401285 , 4.691043 , 6.463884 , 7.504318 , 7.620938 ]],
|
||||
[[5.2708025, 1.2835244, 4.1031275, 1.9843934, 4.9320035, 4.537787 ]]]]).astype(np.float32)
|
||||
|
||||
net = Grad(Net())
|
||||
output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
|
||||
assert np.allclose(output_ms[0].asnumpy(), expect_dx1)
|
||||
assert np.allclose(output_ms[1].asnumpy(), expect_dx2)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_diff_dims():
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target='GPU')
|
||||
|
||||
x1_np = np.array([[[0.275478, 0.48933202, 0.71846116],
|
||||
[0.9803821, 0.57205725, 0.28511533]],
|
||||
[[0.61111903, 0.9671023, 0.70624334],
|
||||
[0.53730786, 0.90413177, 0.94349676]]]).astype(np.float32)
|
||||
|
||||
x2_np = np.array([[0.01045662, 0.82126397, 0.6365063 ],
|
||||
[0.9900942, 0.6584232, 0.98537433]]).astype(np.float32)
|
||||
|
||||
dy_np = np.array([[[0.3897645, 0.61152864, 0.33675498],
|
||||
[0.5303635, 0.84893036, 0.4959739 ]],
|
||||
[[0.5391046, 0.8443047, 0.4174708 ],
|
||||
[0.57513475, 0.9225578, 0.46760973]]]).astype(np.float32)
|
||||
|
||||
expect_dx1 = np.array([[[0.3897645 , 0. , 0.33675498],
|
||||
[0. , 0. , 0. ]],
|
||||
[[0.5391046 , 0.8443047 , 0.4174708 ],
|
||||
[0. , 0.9225578 , 0. ]]]).astype(np.float32)
|
||||
|
||||
expect_dx2 = np.array([[0. , 0.61152864, 0. ],
|
||||
[1.1054983 , 0.84893036, 0.96358365]]).astype(np.float32)
|
||||
|
||||
net = Grad(Net())
|
||||
output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
|
||||
assert np.allclose(output_ms[0].asnumpy(), expect_dx1)
|
||||
assert np.allclose(output_ms[1].asnumpy(), expect_dx2)
|
||||
|
|
|
@ -0,0 +1,220 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.context as context
|
||||
import numpy as np
|
||||
|
||||
class MinimumNet(Cell):
|
||||
def __init__(self):
|
||||
super(MinimumNet, self).__init__()
|
||||
self.min = P.Minimum()
|
||||
|
||||
def construct(self, x1, x2):
|
||||
x = self.min(x1, x2)
|
||||
return x
|
||||
|
||||
|
||||
class Grad(Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x1, x2, sens):
|
||||
gout = self.grad(self.network)(x1, x2, sens)
|
||||
return gout
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_nobroadcast():
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target='GPU')
|
||||
|
||||
x1_np = np.random.rand(3, 4).astype(np.float32)
|
||||
x2_np = np.random.rand(3, 4).astype(np.float32)
|
||||
dy_np = np.random.rand(3, 4).astype(np.float32)
|
||||
|
||||
net = Grad(MinimumNet())
|
||||
output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
|
||||
output0_np = np.where(x1_np < x2_np, dy_np, 0)
|
||||
output1_np = np.where(x1_np < x2_np, 0, dy_np)
|
||||
assert np.allclose(output_ms[0].asnumpy(), output0_np)
|
||||
assert np.allclose(output_ms[1].asnumpy(), output1_np)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast():
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target='GPU')
|
||||
|
||||
x1_np = np.array([[[[0.659578 ],
|
||||
[0.49113268],
|
||||
[0.75909054],
|
||||
[0.71681815],
|
||||
[0.30421826]]],
|
||||
[[[0.30322495],
|
||||
[0.02858258],
|
||||
[0.06398096],
|
||||
[0.09519596],
|
||||
[0.12498625]]],
|
||||
[[[0.7347768 ],
|
||||
[0.166469 ],
|
||||
[0.328553 ],
|
||||
[0.54908437],
|
||||
[0.23673844]]]]).astype(np.float32)
|
||||
x2_np = np.array([[[[0.9154968, 0.29014662, 0.6492294, 0.39918253, 0.1648203, 0.00861965]],
|
||||
[[0.996885, 0.24152198, 0.3601213, 0.51664376, 0.7933056, 0.84706444]],
|
||||
[[0.75606346, 0.974512, 0.3939527, 0.69697475, 0.83400667, 0.6348955 ]],
|
||||
[[0.68492866, 0.24609096, 0.4924665, 0.22500521, 0.38474053, 0.5586104 ]]]]).astype(np.float32)
|
||||
dy_np = np.array([[[[0.42891738, 0.03434946, 0.06192983, 0.21216309, 0.37450036, 0.6619524 ],
|
||||
[0.8583447, 0.5765161, 0.1468952, 0.9975385, 0.6908136, 0.4903796 ],
|
||||
[0.68952006, 0.39336833, 0.9049695, 0.66886294, 0.2338471, 0.913618 ],
|
||||
[0.0428149, 0.6243054, 0.8519898, 0.12088962, 0.9735885, 0.45661286],
|
||||
[0.41563734, 0.41607043, 0.4754915, 0.32207987, 0.33823156, 0.47422352]],
|
||||
|
||||
[[0.64478457, 0.22430937, 0.7682554, 0.46082005, 0.8938723, 0.20490853],
|
||||
[0.44393885, 0.08278944, 0.4734108, 0.5543551, 0.39428464, 0.44424313],
|
||||
[0.12612297, 0.76566416, 0.71133816, 0.81280327, 0.20583127, 0.54058075],
|
||||
[0.41341263, 0.48118508, 0.00401995, 0.37259838, 0.05435474, 0.5240658 ],
|
||||
[0.4081956, 0.48718935, 0.9132831, 0.67969185, 0.0119757, 0.8328054 ]],
|
||||
|
||||
[[0.91695577, 0.95370644, 0.263782, 0.7477626, 0.6448147, 0.8080634 ],
|
||||
[0.15576603, 0.9104615, 0.3778708, 0.6912833, 0.2092224, 0.67462957],
|
||||
[0.7087075, 0.7888326, 0.4672294, 0.98221505, 0.25210258, 0.98920417],
|
||||
[0.7466197, 0.22702982, 0.01991269, 0.6846591, 0.7515228, 0.5890395 ],
|
||||
[0.04531088, 0.21740614, 0.8406235, 0.36480767, 0.37733936, 0.02914464]],
|
||||
|
||||
[[0.33069974, 0.5497569, 0.9896345, 0.4167176, 0.78057563, 0.04659131],
|
||||
[0.7747768, 0.21427679, 0.29893255, 0.7706969, 0.9755185, 0.42388415],
|
||||
[0.3910244, 0.39381978, 0.37065396, 0.15558061, 0.05012341, 0.15870963],
|
||||
[0.17791101, 0.47219893, 0.13899496, 0.32323205, 0.3628809, 0.02580585],
|
||||
[0.30274773, 0.62890774, 0.11024303, 0.6980051, 0.35346958, 0.062852 ]]],
|
||||
|
||||
|
||||
[[[0.6925081, 0.74668753, 0.80145043, 0.06598313, 0.665123, 0.15073007],
|
||||
[0.11784806, 0.6385372, 0.5228278, 0.5349848, 0.84671104, 0.8096436 ],
|
||||
[0.09516156, 0.63298017, 0.52382874, 0.36734378, 0.66497755, 0.6019127 ],
|
||||
[0.46438488, 0.0194377, 0.9388292, 0.7286089, 0.29178405, 0.11872514],
|
||||
[0.22101837, 0.6164887, 0.6139798, 0.11711904, 0.6227745, 0.09701069]],
|
||||
|
||||
[[0.80480653, 0.90034056, 0.8633447, 0.97415197, 0.08309154, 0.8446033 ],
|
||||
[0.9473769, 0.791024, 0.26339203, 0.01155075, 0.2673186, 0.7116369 ],
|
||||
[0.9687511, 0.24281934, 0.37777108, 0.09802654, 0.2421312, 0.87095344],
|
||||
[0.6311381, 0.23368953, 0.0998995, 0.4364419, 0.9187446, 0.5043872 ],
|
||||
[0.35226053, 0.09357589, 0.41317305, 0.85930043, 0.16249318, 0.5478765 ]],
|
||||
|
||||
[[0.14338651, 0.24859418, 0.4246941, 0.73034066, 0.47172204, 0.8717199 ],
|
||||
[0.05415315, 0.78556925, 0.99214983, 0.7415298, 0.673708, 0.87817156],
|
||||
[0.616975, 0.42843062, 0.05179814, 0.1566958, 0.04536059, 0.70166487],
|
||||
[0.15493333, 0.776598, 0.4361967, 0.40253627, 0.89210516, 0.8144414 ],
|
||||
[0.04816005, 0.29696834, 0.4586605, 0.3419852, 0.5595613, 0.74093205]],
|
||||
|
||||
[[0.1388035, 0.9168704, 0.64287645, 0.83864623, 0.48026922, 0.78323376],
|
||||
[0.12724937, 0.83034366, 0.42557436, 0.50578654, 0.25630295, 0.15349793],
|
||||
[0.27256685, 0.04547984, 0.5385756, 0.39270344, 0.7661698, 0.23722854],
|
||||
[0.24620503, 0.25431684, 0.71564585, 0.01161419, 0.846467, 0.7043044 ],
|
||||
[0.63272387, 0.11857849, 0.3772076, 0.16758402, 0.46743023, 0.05919575]]],
|
||||
|
||||
|
||||
[[[0.18827082, 0.8912264, 0.6841404, 0.74436826, 0.9582085, 0.1083683 ],
|
||||
[0.60695344, 0.09742349, 0.25074378, 0.87940735, 0.21116392, 0.39418384],
|
||||
[0.744686, 0.35679692, 0.01308284, 0.45166633, 0.68166, 0.8634658 ],
|
||||
[0.7331758, 0.21113694, 0.3935488, 0.87934476, 0.70728546, 0.09309767],
|
||||
[0.12128611, 0.93696386, 0.81177396, 0.85402405, 0.5827289, 0.9776509 ]],
|
||||
|
||||
[[0.54069614, 0.66651285, 0.10646132, 0.17342485, 0.88795924, 0.03551182],
|
||||
[0.25531697, 0.87946486, 0.74267226, 0.89230734, 0.95171434, 0.94697934],
|
||||
[0.3708397, 0.507355, 0.97099817, 0.4918163, 0.17212386, 0.5008048 ],
|
||||
[0.62530744, 0.25210327, 0.73966664, 0.71555346, 0.82484317, 0.6094874 ],
|
||||
[0.4589691, 0.1386695, 0.27448782, 0.20373994, 0.27805242, 0.23292768]],
|
||||
|
||||
[[0.7414099, 0.2270226, 0.90431255, 0.47035843, 0.9581062, 0.5359226 ],
|
||||
[0.79603523, 0.45549425, 0.80858237, 0.7705133, 0.017761, 0.98001194],
|
||||
[0.06013146, 0.99240226, 0.33515573, 0.04110833, 0.41470334, 0.7130743 ],
|
||||
[0.5687417, 0.5788611, 0.00722461, 0.6603336, 0.3420471, 0.75181854],
|
||||
[0.4699261, 0.51390815, 0.343182, 0.81498754, 0.8942413, 0.46532857]],
|
||||
|
||||
[[0.4589523, 0.5534698, 0.2825786, 0.8205943, 0.78258514, 0.43154418],
|
||||
[0.27020997, 0.01667354, 0.60871965, 0.90670526, 0.3208025, 0.96995634],
|
||||
[0.85337156, 0.9711295, 0.1381724, 0.53670496, 0.7347996, 0.73380876],
|
||||
[0.6137464, 0.54751194, 0.9037335, 0.23134394, 0.61411524, 0.26583543],
|
||||
[0.70770144, 0.01813207, 0.24718016, 0.70329237, 0.7062925, 0.14399007]]]]).astype(np.float32)
|
||||
|
||||
expect_dx1 = np.array([[[[ 5.7664223],
|
||||
[ 6.981018 ],
|
||||
[ 2.6029902],
|
||||
[ 2.7598202],
|
||||
[ 6.763105 ]]],
|
||||
[[[10.06558 ],
|
||||
[12.077246 ],
|
||||
[ 9.338394 ],
|
||||
[11.52271 ],
|
||||
[ 8.889048 ]]],
|
||||
[[[ 3.5789769],
|
||||
[13.424448 ],
|
||||
[ 8.732746 ],
|
||||
[ 6.9677467],
|
||||
[ 9.635765 ]]]]).astype(np.float32)
|
||||
|
||||
expect_dx2 = np.array([[[[0. , 4.250458 , 2.5030296 , 3.623167 , 6.4171505 , 7.2115746 ]],
|
||||
[[0. , 4.367449 , 2.803152 , 2.5352 , 0. , 0. ]],
|
||||
[[0.7087075 , 0. , 2.040332 , 2.1372325 , 0. , 2.9222295 ]],
|
||||
[[1.0278877 , 5.247942 , 2.6855955 , 5.494814 , 3.5657988 , 0.66265094]]]]).astype(np.float32)
|
||||
|
||||
net = Grad(MinimumNet())
|
||||
output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
|
||||
assert np.allclose(output_ms[0].asnumpy(), expect_dx1)
|
||||
assert np.allclose(output_ms[1].asnumpy(), expect_dx2)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_diff_dims():
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target='GPU')
|
||||
|
||||
x1_np = np.array([[[0.275478, 0.48933202, 0.71846116],
|
||||
[0.9803821, 0.57205725, 0.28511533]],
|
||||
[[0.61111903, 0.9671023, 0.70624334],
|
||||
[0.53730786, 0.90413177, 0.94349676]]]).astype(np.float32)
|
||||
|
||||
x2_np = np.array([[0.01045662, 0.82126397, 0.6365063 ],
|
||||
[0.9900942, 0.6584232, 0.98537433]]).astype(np.float32)
|
||||
|
||||
dy_np = np.array([[[0.3897645, 0.61152864, 0.33675498],
|
||||
[0.5303635, 0.84893036, 0.4959739 ]],
|
||||
[[0.5391046, 0.8443047, 0.4174708 ],
|
||||
[0.57513475, 0.9225578, 0.46760973]]]).astype(np.float32)
|
||||
|
||||
expect_dx1 = np.array([[[0. , 0.61152864, 0. ],
|
||||
[0.5303635 , 0.84893036, 0.4959739 ]],
|
||||
[[0. , 0. , 0. ],
|
||||
[0.57513475, 0. , 0.46760973]]]).astype(np.float32)
|
||||
|
||||
expect_dx2 = np.array([[0.92886907, 0.8443047 , 0.7542258 ],
|
||||
[0. , 0.9225578 , 0. ]]).astype(np.float32)
|
||||
|
||||
net = Grad(MinimumNet())
|
||||
output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
|
||||
assert np.allclose(output_ms[0].asnumpy(), expect_dx1)
|
||||
assert np.allclose(output_ms[1].asnumpy(), expect_dx2)
|
Loading…
Reference in New Issue