forked from mindspore-Ecosystem/mindspore
Fix dir of test case
This commit is contained in:
parent
ad1766492d
commit
b40af48366
|
@ -28,42 +28,29 @@
|
|||
using namespace mindspore::api;
|
||||
using namespace mindspore::dataset::vision;
|
||||
|
||||
static void SaveFile(int idx, Buffer buffer, int seq) {
|
||||
std::string path = "mnt/disk1/yolo_dvpp_result/result_Files/output" + std::to_string(idx) +
|
||||
"_in_YoloV3-DarkNet_coco_bs_dvpp_" + std::to_string(seq) + ".bin";
|
||||
FILE *output_file = fopen(path.c_str(), "wb");
|
||||
if (output_file == nullptr) {
|
||||
std::cout << "Write file" << path << "failed when fopen" << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
size_t wsize = fwrite(buffer.Data(), buffer.DataSize(), sizeof(int8_t), output_file);
|
||||
if (wsize == 0) {
|
||||
std::cout << "Write file" << path << " failed when fwrite." << std::endl;
|
||||
return;
|
||||
}
|
||||
fclose(output_file);
|
||||
std::cout << "Save file " << path << "length" << buffer.DataSize() << " success." << std::endl;
|
||||
}
|
||||
|
||||
class TestDE : public ST::Common {
|
||||
public:
|
||||
TestDE() {}
|
||||
};
|
||||
|
||||
TEST_F(TestDE, ResNetPreprocess) {
|
||||
TEST_F(TestDE, TestResNetPreprocess) {
|
||||
// Read images from target directory
|
||||
std::vector<std::shared_ptr<Tensor>> images;
|
||||
MindDataEager::LoadImageFromDir("/home/workspace/mindspore_dataset/imagenet/imagenet_original/val/n01440764",
|
||||
&images);
|
||||
|
||||
MindDataEager Compose({Decode(), Resize({224, 224}),
|
||||
Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}),
|
||||
HWC2CHW()});
|
||||
// Define transform operations
|
||||
MindDataEager Transform({Decode(), Resize({224, 224}),
|
||||
Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}),
|
||||
HWC2CHW()});
|
||||
|
||||
// Apply transform on images
|
||||
for (auto &img : images) {
|
||||
img = Compose(img);
|
||||
img = Transform(img);
|
||||
}
|
||||
|
||||
// Check shape of result
|
||||
ASSERT_NE(images.size(), 0);
|
||||
ASSERT_EQ(images[0]->Shape().size(), 3);
|
||||
ASSERT_EQ(images[0]->Shape()[0], 3);
|
||||
ASSERT_EQ(images[0]->Shape()[1], 224);
|
||||
|
@ -71,55 +58,27 @@ TEST_F(TestDE, ResNetPreprocess) {
|
|||
}
|
||||
|
||||
TEST_F(TestDE, TestDvpp) {
|
||||
// Read images from target directory
|
||||
std::vector<std::shared_ptr<Tensor>> images;
|
||||
MindDataEager::LoadImageFromDir("/root/Dvpp_Unit_Dev/val2014_test/", &images);
|
||||
MindDataEager::LoadImageFromDir("/home/workspace/mindspore_dataset/imagenet/imagenet_original/val/n01440764",
|
||||
&images);
|
||||
|
||||
// Define dvpp transform
|
||||
std::vector<uint32_t> crop_size = {224, 224};
|
||||
std::vector<uint32_t> resize_size = {256, 256};
|
||||
MindDataEager Solo({DvppDecodeResizeCropJpeg(crop_size, resize_size)});
|
||||
MindDataEager Transform({DvppDecodeResizeCropJpeg(crop_size, resize_size)});
|
||||
|
||||
// Apply transform on images
|
||||
for (auto &img : images) {
|
||||
img = Solo(img);
|
||||
ASSERT_EQ(images[0]->Shape().size(), 3);
|
||||
img = Transform(img);
|
||||
ASSERT_NE(img, nullptr);
|
||||
ASSERT_EQ(img->Shape().size(), 3);
|
||||
if (crop_size.size() == 1) {
|
||||
ASSERT_EQ(images[0]->Shape()[0], pow(crop_size[0], 2) 1.5);
|
||||
ASSERT_EQ(img->Shape()[0], pow(crop_size[0], 2) * 1.5);
|
||||
} else {
|
||||
ASSERT_EQ(images[0]->Shape()[0], crop_size[0] * crop_size[1] * 1.5);
|
||||
ASSERT_EQ(img->Shape()[0], crop_size[0] * crop_size[1] * 1.5);
|
||||
}
|
||||
ASSERT_EQ(images[0]->Shape()[1], 1);
|
||||
ASSERT_EQ(images[0]->Shape()[2], 1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(TestDE, TestYoloV3_with_Dvpp) {
|
||||
std::vector<std::shared_ptr<Tensor>> images;
|
||||
MindDataEager::LoadImageFromDir("/home/lizhenglong/val2014", &images);
|
||||
MindDataEager SingleOp({DvppDecodeResizeCropJpeg({416, 416}, {416, 416})});
|
||||
constexpr auto yolo_mindir_file = "/home/zhoufeng/yolov3/yolov3_darknet53.mindir";
|
||||
Context::Instance().SetDeviceTarget(kDeviceTypeAscend310).SetDeviceID(1);
|
||||
auto graph = Serialization::LoadModel(yolo_mindir_file, ModelType::kMindIR);
|
||||
Model yolov3((GraphCell(graph)));
|
||||
Status ret = yolov3.Build({{kModelOptionInsertOpCfgPath, "/mnt/disk1/yolo_dvpp_result/aipp_resnet50.cfg"}});
|
||||
ASSERT_TRUE(ret == SUCCESS);
|
||||
|
||||
std::vector<std::string> names;
|
||||
std::vector<std::vector<int64_t>> shapes;
|
||||
std::vector<DataType> data_types;
|
||||
std::vector<size_t> mem_sizes;
|
||||
yolov3.GetOutputsInfo(&names, &shapes, &data_types, &mem_sizes);
|
||||
std::vector<Buffer> outputs;
|
||||
std::vector<Buffer> inputs;
|
||||
|
||||
int64_t seq = 0;
|
||||
for (auto &img : images) {
|
||||
img = SingleOp(img);
|
||||
std::vector<float> input_shape = {416, 416};
|
||||
inputs.clear();
|
||||
inputs.emplace_back(img->Data(), img->DataSize());
|
||||
inputs.emplace_back(input_shape.data(), input_shape.size() * sizeof(float));
|
||||
ret = yolov3.Predict(inputs, &outputs);
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
SaveFile(i, outputs[i], seq);
|
||||
}
|
||||
seq++;
|
||||
ASSERT_TRUE(ret == SUCCESS);
|
||||
ASSERT_EQ(img->Shape()[1], 1);
|
||||
ASSERT_EQ(img->Shape()[2], 1);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue