!13429 Refactor some cpu ops

From: @wuxuejian
Reviewed-by: @kisnwang,@liangchenghui
Signed-off-by: @liangchenghui
This commit is contained in:
mindspore-ci-bot 2021-03-17 19:57:59 +08:00 committed by Gitee
commit b20e964760
15 changed files with 296 additions and 393 deletions

View File

@ -20,54 +20,38 @@
namespace mindspore {
namespace kernel {
void HSigmoidCPUKernel::InitKernel(const CNodePtr &kernel_node) {
template <typename T>
void HSigmoidCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
if (dtype_ == kTypeUnknown) {
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
for (const uint64_t &d : x_shape_) {
tensor_size_ *= d;
}
launch_map_[kNumberTypeInt8] = &HSigmoidCPUKernel::LaunchKernel<int8_t>;
launch_map_[kNumberTypeInt16] = &HSigmoidCPUKernel::LaunchKernel<int16_t>;
launch_map_[kNumberTypeInt32] = &HSigmoidCPUKernel::LaunchKernel<int>;
launch_map_[kNumberTypeInt64] = &HSigmoidCPUKernel::LaunchKernel<int64_t>;
launch_map_[kNumberTypeFloat32] = &HSigmoidCPUKernel::LaunchKernel<float>;
auto iter = launch_map_.find(dtype_);
if (iter != launch_map_.end()) {
launch_func_ = iter->second;
} else {
MS_LOG(EXCEPTION) << "Input data type: " << dtype_ << "is not supported for HSigmoid kernel on CPU.";
}
}
bool HSigmoidCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
launch_func_(this, inputs, outputs);
template <typename T>
bool HSigmoidCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto x = reinterpret_cast<T *>(inputs[0]->addr);
auto y = reinterpret_cast<T *>(outputs[0]->addr);
auto task = [&](size_t start, size_t end) {
for (uint64_t i = start; i < end; ++i) {
if (x[i] <= -3) {
y[i] = 0;
} else if (x[i] >= 3) {
y[i] = 1;
} else {
y[i] = (x[i] + 3) / 6;
}
}
};
CPUKernelUtils::ParallelFor(task, tensor_size_);
return true;
}
template <typename T>
void HSigmoidCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto x = reinterpret_cast<T *>(inputs[0]->addr);
auto y = reinterpret_cast<T *>(outputs[0]->addr);
for (uint64_t i = 0; i < tensor_size_; ++i) {
if (x[i] <= -3) {
y[i] = 0;
} else if (x[i] >= 3) {
y[i] = 1;
} else {
y[i] = (x[i] + 3) / 6;
}
}
}
void HSigmoidCPUKernel::CheckParam(const CNodePtr &kernel_node) {
void HSigmoidCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSigmoidCPUKernel needs 1 input.";

View File

@ -24,6 +24,7 @@
namespace mindspore {
namespace kernel {
template <typename T>
class HSigmoidCPUKernel : public CPUKernel {
public:
HSigmoidCPUKernel() = default;
@ -34,34 +35,26 @@ class HSigmoidCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> x_shape_;
TypeId dtype_{kTypeUnknown};
using TypeKernel = std::function<void(HSigmoidCPUKernel *, const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs)>;
std::unordered_map<TypeId, TypeKernel> launch_map_;
TypeKernel launch_func_;
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL_T(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
HSigmoidCPUKernel, int8_t);
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL_T(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
HSigmoidCPUKernel, int16_t);
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL_T(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
HSigmoidCPUKernel, int);
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL_T(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
HSigmoidCPUKernel, int64_t);
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL_T(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSigmoidCPUKernel, float);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_

View File

@ -20,54 +20,37 @@
namespace mindspore {
namespace kernel {
void HSigmoidGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
template <typename T>
void HSigmoidGradCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
if (dtype_ == kTypeUnknown) {
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
for (const uint64_t &d : x_shape_) {
tensor_size_ *= d;
}
launch_map_[kNumberTypeInt8] = &HSigmoidGradCPUKernel::LaunchKernel<int8_t>;
launch_map_[kNumberTypeInt16] = &HSigmoidGradCPUKernel::LaunchKernel<int16_t>;
launch_map_[kNumberTypeInt32] = &HSigmoidGradCPUKernel::LaunchKernel<int>;
launch_map_[kNumberTypeInt64] = &HSigmoidGradCPUKernel::LaunchKernel<int64_t>;
launch_map_[kNumberTypeFloat32] = &HSigmoidGradCPUKernel::LaunchKernel<float>;
auto iter = launch_map_.find(dtype_);
if (iter != launch_map_.end()) {
launch_func_ = iter->second;
} else {
MS_LOG(EXCEPTION) << "Input data type: " << dtype_ << "is not supported for HSigmoidGrad kernel on CPU.";
}
}
bool HSigmoidGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
launch_func_(this, inputs, outputs);
template <typename T>
bool HSigmoidGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto dy = reinterpret_cast<T *>(inputs[0]->addr);
auto x = reinterpret_cast<T *>(inputs[1]->addr);
auto out = reinterpret_cast<T *>(outputs[0]->addr);
auto task = [&](size_t start, size_t end) {
for (uint64_t i = start; i < end; ++i) {
if (x[i] <= -3 || x[i] >= 3) {
out[i] = 0;
} else {
out[i] = dy[i] / 6;
}
}
};
CPUKernelUtils::ParallelFor(task, tensor_size_);
return true;
}
template <typename T>
void HSigmoidGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs) {
auto dy = reinterpret_cast<T *>(inputs[0]->addr);
auto x = reinterpret_cast<T *>(inputs[1]->addr);
auto out = reinterpret_cast<T *>(outputs[0]->addr);
for (uint64_t i = 0; i < tensor_size_; ++i) {
if (x[i] <= -3 || x[i] >= 3) {
out[i] = 0;
} else {
out[i] = dy[i] / 6;
}
}
}
void HSigmoidGradCPUKernel::CheckParam(const CNodePtr &kernel_node) {
void HSigmoidGradCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSigmoidGradCPUKernel needs 2 input.";

View File

@ -24,6 +24,7 @@
namespace mindspore {
namespace kernel {
template <typename T>
class HSigmoidGradCPUKernel : public CPUKernel {
public:
HSigmoidGradCPUKernel() = default;
@ -34,43 +35,35 @@ class HSigmoidGradCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> x_shape_;
TypeId dtype_{kTypeUnknown};
using TypeKernel = std::function<void(HSigmoidGradCPUKernel *, const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs)>;
std::unordered_map<TypeId, TypeKernel> launch_map_;
TypeKernel launch_func_;
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSigmoidGrad, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
HSigmoidGradCPUKernel);
HSigmoidGradCPUKernel, int8_t);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
HSigmoidGradCPUKernel);
HSigmoidGradCPUKernel, int16_t);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
HSigmoidGradCPUKernel);
HSigmoidGradCPUKernel, int);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
HSigmoidGradCPUKernel);
HSigmoidGradCPUKernel, int64_t);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSigmoidGradCPUKernel);
HSigmoidGradCPUKernel, float);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_

View File

@ -20,54 +20,38 @@
namespace mindspore {
namespace kernel {
void HSwishCPUKernel::InitKernel(const CNodePtr &kernel_node) {
template <typename T>
void HSwishCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
if (dtype_ == kTypeUnknown) {
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
for (const uint64_t &d : x_shape_) {
tensor_size_ *= d;
}
launch_map_[kNumberTypeInt8] = &HSwishCPUKernel::LaunchKernel<int8_t>;
launch_map_[kNumberTypeInt16] = &HSwishCPUKernel::LaunchKernel<int16_t>;
launch_map_[kNumberTypeInt32] = &HSwishCPUKernel::LaunchKernel<int>;
launch_map_[kNumberTypeInt64] = &HSwishCPUKernel::LaunchKernel<int64_t>;
launch_map_[kNumberTypeFloat32] = &HSwishCPUKernel::LaunchKernel<float>;
auto iter = launch_map_.find(dtype_);
if (iter != launch_map_.end()) {
launch_func_ = iter->second;
} else {
MS_LOG(EXCEPTION) << "Input data type: " << dtype_ << "is not supported for HSwish kernel on CPU.";
}
}
bool HSwishCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
launch_func_(this, inputs, outputs);
template <typename T>
bool HSwishCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto x = reinterpret_cast<T *>(inputs[0]->addr);
auto y = reinterpret_cast<T *>(outputs[0]->addr);
auto task = [&](size_t start, size_t end) {
for (uint64_t i = start; i < end; ++i) {
if (x[i] <= -3) {
y[i] = 0;
} else if (x[i] >= 3) {
y[i] = x[i];
} else {
y[i] = x[i] * (x[i] + 3) / 6;
}
}
};
CPUKernelUtils::ParallelFor(task, tensor_size_);
return true;
}
template <typename T>
void HSwishCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto x = reinterpret_cast<T *>(inputs[0]->addr);
auto y = reinterpret_cast<T *>(outputs[0]->addr);
for (uint64_t i = 0; i < tensor_size_; ++i) {
if (x[i] <= -3) {
y[i] = 0;
} else if (x[i] >= 3) {
y[i] = x[i];
} else {
y[i] = x[i] * (x[i] + 3) / 6;
}
}
}
void HSwishCPUKernel::CheckParam(const CNodePtr &kernel_node) {
void HSwishCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSwishCPUKernel needs 1 input.";

View File

@ -24,6 +24,7 @@
namespace mindspore {
namespace kernel {
template <typename T>
class HSwishCPUKernel : public CPUKernel {
public:
HSwishCPUKernel() = default;
@ -34,30 +35,26 @@ class HSwishCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> x_shape_;
TypeId dtype_{kTypeUnknown};
using TypeKernel = std::function<void(HSwishCPUKernel *, const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs)>;
std::unordered_map<TypeId, TypeKernel> launch_map_;
TypeKernel launch_func_;
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), HSwishCPUKernel);
MS_REG_CPU_KERNEL_T(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), HSwishCPUKernel,
int8_t);
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16), HSwishCPUKernel);
MS_REG_CPU_KERNEL_T(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
HSwishCPUKernel, int16_t);
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), HSwishCPUKernel);
MS_REG_CPU_KERNEL_T(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
HSwishCPUKernel, int);
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64), HSwishCPUKernel);
MS_REG_CPU_KERNEL_T(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
HSwishCPUKernel, int64_t);
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSwishCPUKernel);
MS_REG_CPU_KERNEL_T(HSwish, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSwishCPUKernel, float);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_

View File

@ -20,55 +20,39 @@
namespace mindspore {
namespace kernel {
void HSwishGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
template <typename T>
void HSwishGradCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
if (dtype_ == kTypeUnknown) {
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
for (const uint64_t &d : x_shape_) {
tensor_size_ *= d;
}
launch_map_[kNumberTypeInt8] = &HSwishGradCPUKernel::LaunchKernel<int8_t>;
launch_map_[kNumberTypeInt16] = &HSwishGradCPUKernel::LaunchKernel<int16_t>;
launch_map_[kNumberTypeInt32] = &HSwishGradCPUKernel::LaunchKernel<int>;
launch_map_[kNumberTypeInt64] = &HSwishGradCPUKernel::LaunchKernel<int64_t>;
launch_map_[kNumberTypeFloat32] = &HSwishGradCPUKernel::LaunchKernel<float>;
auto iter = launch_map_.find(dtype_);
if (iter != launch_map_.end()) {
launch_func_ = iter->second;
} else {
MS_LOG(EXCEPTION) << "Input data type: " << dtype_ << "is not supported for HSwishGrad kernel on CPU.";
}
}
bool HSwishGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
launch_func_(this, inputs, outputs);
template <typename T>
bool HSwishGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto dy = reinterpret_cast<T *>(inputs[0]->addr);
auto x = reinterpret_cast<T *>(inputs[1]->addr);
auto out = reinterpret_cast<T *>(outputs[0]->addr);
auto task = [&](size_t start, size_t end) {
for (uint64_t i = start; i < end; ++i) {
if (x[i] <= -3) {
out[i] = 0;
} else if (x[i] >= 3) {
out[i] = dy[i];
} else {
out[i] = dy[i] * (2 * x[i] + 3) / 6;
}
}
};
CPUKernelUtils::ParallelFor(task, tensor_size_);
return true;
}
template <typename T>
void HSwishGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto dy = reinterpret_cast<T *>(inputs[0]->addr);
auto x = reinterpret_cast<T *>(inputs[1]->addr);
auto out = reinterpret_cast<T *>(outputs[0]->addr);
for (uint64_t i = 0; i < tensor_size_; ++i) {
if (x[i] <= -3) {
out[i] = 0;
} else if (x[i] >= 3) {
out[i] = dy[i];
} else {
out[i] = dy[i] * (2 * x[i] + 3) / 6;
}
}
}
void HSwishGradCPUKernel::CheckParam(const CNodePtr &kernel_node) {
void HSwishGradCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSwishGradCPUKernel needs 2 input.";

View File

@ -24,6 +24,7 @@
namespace mindspore {
namespace kernel {
template <typename T>
class HSwishGradCPUKernel : public CPUKernel {
public:
HSwishGradCPUKernel() = default;
@ -34,43 +35,35 @@ class HSwishGradCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> x_shape_;
TypeId dtype_{kTypeUnknown};
using TypeKernel = std::function<void(HSwishGradCPUKernel *, const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs)>;
std::unordered_map<TypeId, TypeKernel> launch_map_;
TypeKernel launch_func_;
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSwishGrad, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
HSwishGradCPUKernel);
HSwishGradCPUKernel, int8_t);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSwishGrad,
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
HSwishGradCPUKernel);
HSwishGradCPUKernel, int16_t);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSwishGrad,
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
HSwishGradCPUKernel);
HSwishGradCPUKernel, int);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSwishGrad,
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
HSwishGradCPUKernel);
HSwishGradCPUKernel, int64_t);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
HSwishGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSwishGradCPUKernel);
HSwishGradCPUKernel, float);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_

View File

@ -19,50 +19,45 @@
namespace mindspore {
namespace kernel {
void SmoothL1LossCPUKernel::InitKernel(const CNodePtr &kernel_node) {
template <typename T>
void SmoothL1LossCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
beta_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "beta");
CheckParam(kernel_node);
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
std::vector<size_t> x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (const uint64_t &d : x_shape) {
tensor_size_ *= d;
}
}
bool SmoothL1LossCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
LaunchKernel<float>(inputs, outputs);
}
return true;
}
template <typename T>
void SmoothL1LossCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs) {
bool SmoothL1LossCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto predict_addr = reinterpret_cast<T *>(inputs[0]->addr);
auto target_addr = reinterpret_cast<T *>(inputs[1]->addr);
auto result_addr = reinterpret_cast<T *>(outputs[0]->addr);
T zero = (T)0.0;
T half = (T)0.5;
T beta = (T)beta_;
for (uint64_t i = 0; i < tensor_size_; ++i) {
T diff = predict_addr[i] - target_addr[i];
if (diff < zero) {
diff = -diff;
auto task = [&](size_t start, size_t end) {
for (uint64_t i = start; i < end; ++i) {
T diff = predict_addr[i] - target_addr[i];
if (diff < zero) {
diff = -diff;
}
if (diff < beta) {
result_addr[i] = half * diff * diff / beta;
} else {
result_addr[i] = diff - (half * beta);
}
}
if (diff < beta) {
result_addr[i] = half * diff * diff / beta;
} else {
result_addr[i] = diff - (half * beta);
}
}
};
CPUKernelUtils::ParallelFor(task, tensor_size_);
return true;
}
void SmoothL1LossCPUKernel::CheckParam(const CNodePtr &kernel_node) {
template <typename T>
void SmoothL1LossCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but SmoothL1LossCPUKernel needs 2 input.";

View File

@ -24,6 +24,7 @@
namespace mindspore {
namespace kernel {
template <typename T>
class SmoothL1LossCPUKernel : public CPUKernel {
public:
SmoothL1LossCPUKernel() = default;
@ -34,9 +35,6 @@ class SmoothL1LossCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
float beta_ = 1.0;
@ -44,15 +42,15 @@ class SmoothL1LossCPUKernel : public CPUKernel {
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
SmoothL1Loss,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
SmoothL1LossCPUKernel);
SmoothL1LossCPUKernel, float16);
MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL_T(
SmoothL1Loss,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
SmoothL1LossCPUKernel);
SmoothL1LossCPUKernel, float);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SMOOTH_L1_LOSS_CPU_KERNEL_H_

View File

@ -19,30 +19,20 @@
namespace mindspore {
namespace kernel {
void SmoothL1LossGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
template <typename T>
void SmoothL1LossGradCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
beta_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "beta");
CheckParam(kernel_node);
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
std::vector<size_t> x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (const uint64_t &d : x_shape) {
tensor_size_ *= d;
}
}
bool SmoothL1LossGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
LaunchKernel<float>(inputs, outputs);
}
return true;
}
template <typename T>
void SmoothL1LossGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs) {
bool SmoothL1LossGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto predict_addr = reinterpret_cast<T *>(inputs[0]->addr);
auto target_addr = reinterpret_cast<T *>(inputs[1]->addr);
auto dloss_addr = reinterpret_cast<T *>(inputs[2]->addr);
@ -58,9 +48,11 @@ void SmoothL1LossGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inpu
result_addr[i] = (diff / beta) * dloss_addr[i];
}
}
return true;
}
void SmoothL1LossGradCPUKernel::CheckParam(const CNodePtr &kernel_node) {
template <typename T>
void SmoothL1LossGradCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 3) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but SmoothL1LossGradCPUKernel needs 3 input.";

View File

@ -24,6 +24,7 @@
namespace mindspore {
namespace kernel {
template <typename T>
class SmoothL1LossGradCPUKernel : public CPUKernel {
public:
SmoothL1LossGradCPUKernel() = default;
@ -34,31 +35,27 @@ class SmoothL1LossGradCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
float beta_ = 1.0;
TypeId dtype_{kTypeUnknown};
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(SmoothL1LossGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
SmoothL1LossGradCPUKernel);
MS_REG_CPU_KERNEL_T(SmoothL1LossGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
SmoothL1LossGradCPUKernel, float16);
MS_REG_CPU_KERNEL(SmoothL1LossGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
SmoothL1LossGradCPUKernel);
MS_REG_CPU_KERNEL_T(SmoothL1LossGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
SmoothL1LossGradCPUKernel, float);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SMOOTH_L1_LOSS_GRAD_CPU_KERNEL_H_

View File

@ -1,61 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class Net(nn.Cell):
def __init__(self, sigma=1.0):
super(Net, self).__init__()
self.SmoothL1Loss = P.SmoothL1Loss(sigma)
def construct(self, pred, gt):
return self.SmoothL1Loss(pred, gt)
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, pred, gt, dout):
return self.grad(self.network)(pred, gt, dout)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net():
pred = np.random.randn(2, 4).astype(np.float32)
gt = np.random.randn(2, 4).astype(np.float32)
dout = np.random.randn(2, 4).astype(np.float32)
smooth_l1_loss_grad = Grad(Net())
output = smooth_l1_loss_grad(Tensor(pred), Tensor(gt), Tensor(dout))
print("------------- input ---------------")
print("predict:\n", pred)
print("grount truth:\n", gt)
print("dout:\n", dout)
print("------------- output ---------------")
print("predict grad:\n", output[0].asnumpy())

View File

@ -1,48 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class Net(nn.Cell):
def __init__(self, sigma=1.0):
super(Net, self).__init__()
self.SmoothL1Loss = P.SmoothL1Loss(sigma)
def construct(self, pred, gt):
return self.SmoothL1Loss(pred, gt)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net():
pred = np.random.randn(2, 4).astype(np.float32)
gt = np.random.randn(2, 4).astype(np.float32)
smooth_l1_loss = Net()
loss = smooth_l1_loss(Tensor(pred), Tensor(gt))
print("------------- input ---------------")
print("predict:\n", pred)
print("grount truth:\n", gt)
print("------------- output ---------------")
print("loss:\n", loss.asnumpy())

View File

@ -0,0 +1,119 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import composite as C
def smoothl1loss(beta):
np.random.seed(42)
prediction = np.random.randn(20).astype(np.float32)
target = np.random.randn(20).astype(np.float32)
net = nn.SmoothL1Loss(beta)
return net(Tensor(prediction), Tensor(target))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_smoothl1loss():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU", save_graphs=True)
epsilon = 1e-6
beta = 1.0
loss = smoothl1loss(beta)
expect = [0.46941718, 0.00382918, 0.16829303, 2.447778, 0.04812113, 0.05953304,
2.2302065, 0.07672881, 0.00860204, 0.34798968, 0.00956192, 1.818008,
0.03262977, 0.36599946, 2.047463, 0.2168481, 0.7216947, 1.7739174,
0.08826803, 1.109165]
diff = np.absolute(loss.asnumpy() - np.array(expect))
assert(diff < epsilon).all()
beta = 1 / 9
loss = smoothl1loss(beta)
expect = [0.9133791, 0.03446258, 0.5246048, 2.8922224, 0.2546738, 0.289504,
2.674651, 0.33618113, 0.07560876, 0.7786982, 0.08273339, 2.2624524,
0.19990394, 0.8000138, 2.4919074, 0.6030006, 1.1661391, 2.2183619,
0.3646064, 1.5536094]
diff = np.absolute(loss.asnumpy() - np.array(expect))
assert(diff < epsilon).all()
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = C.GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, x1, x2, sens):
gout = self.grad(self.network)(x1, x2, sens)
return gout
def smoothl1loss_grad(beta):
np.random.seed(42)
prediction = np.random.randn(20).astype(np.float32)
target = np.random.randn(20).astype(np.float32)
sens = np.random.randn(20).astype(np.float32)
net = nn.SmoothL1Loss(beta)
grad = Grad(net)
return grad(Tensor(prediction), Tensor(target), Tensor(sens))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_smoothl1loss_grad():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU", save_graphs=True)
epsilon = 1e-6
beta = 1.0
dx = smoothl1loss_grad(beta)
dx1_expect = [-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093,
0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229,
0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995,
0.61330026, 0.83921754, -0.3092124, 0.1391843, -0.9755451]
dx2_expect = [0.71552587, -0.01499678, 0.06709455, 0.30110368, 0.45868093,
-0.24838912, 0.46063876, -0.41411355, -0.04507046, 1.4708229,
-0.04481723, -0.38508227, 0.17292616, 0.52333146, 1.0309995,
-0.61330026, -0.83921754, 0.3092124, -0.1391843, 0.9755451]
diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect))
diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect))
assert(diff1 < epsilon).all()
assert(diff2 < epsilon).all()
beta = 1 / 9
dx = smoothl1loss_grad(beta)
dx1_expect = [-0.73846656, 0.13497104, -0.11564828, -0.30110368, -1.478522,
0.7198442, -0.46063876, 1.0571222, 0.3436183, -1.7630402,
0.32408398, 0.38508227, -0.676922, -0.6116763, -1.0309995,
0.93128014, 0.83921754, -0.3092124, 0.33126342, -0.9755451]
dx2_expect = [0.73846656, -0.13497104, 0.11564828, 0.30110368, 1.478522,
-0.7198442, 0.46063876, -1.0571222, -0.3436183, 1.7630402,
-0.32408398, -0.38508227, 0.676922, 0.6116763, 1.0309995,
-0.93128014, -0.83921754, 0.3092124, -0.33126342, 0.9755451]
diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect))
diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect))
assert(diff1 < epsilon).all()
assert(diff2 < epsilon).all()