forked from mindspore-Ecosystem/mindspore
!6071 Add TBE op ExtractImagePatches for new backend.
Merge pull request !6071 from liuxiao93/ExtractImagePatches-for-new-backend
This commit is contained in:
commit
af3998dc75
|
@ -204,6 +204,8 @@ from .batch_to_space import _batch_to_space_tbe
|
||||||
from .space_to_batch import _space_to_batch_tbe
|
from .space_to_batch import _space_to_batch_tbe
|
||||||
from .depth_to_space import _depth_to_space_tbe
|
from .depth_to_space import _depth_to_space_tbe
|
||||||
from .space_to_depth import _space_to_depth_tbe
|
from .space_to_depth import _space_to_depth_tbe
|
||||||
|
from .extract_image_patches import _extract_image_patches_tbe
|
||||||
|
from .sort import _sort_tbe
|
||||||
from .floor import _floor_tbe
|
from .floor import _floor_tbe
|
||||||
from .ceil import _ceil_tbe
|
from .ceil import _ceil_tbe
|
||||||
from .log1p import _log1p_tbe
|
from .log1p import _log1p_tbe
|
||||||
|
|
|
@ -0,0 +1,41 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""ExtractImagePatches op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||||
|
|
||||||
|
extract_image_patches_op_info = TBERegOp("ExtractImagePatches") \
|
||||||
|
.fusion_type("OPAQUE") \
|
||||||
|
.async_flag(False) \
|
||||||
|
.binfile_name("extract_image_patches.so") \
|
||||||
|
.compute_cost(10) \
|
||||||
|
.kernel_name("extract_image_patches") \
|
||||||
|
.partial_flag(True) \
|
||||||
|
.attr("ksizes", "required", "listInt", "all") \
|
||||||
|
.attr("strides", "required", "listInt", "all") \
|
||||||
|
.attr("rates", "required", "listInt", "all") \
|
||||||
|
.attr("padding", "required", "str", "all") \
|
||||||
|
.input(0, "x", False, "required", "all") \
|
||||||
|
.output(0, "y", False, "required", "all") \
|
||||||
|
.dtype_format(DataType.F16_5HD, DataType.F16_NHWC) \
|
||||||
|
.dtype_format(DataType.I8_5HD, DataType.I8_NHWC) \
|
||||||
|
.dtype_format(DataType.U8_5HD, DataType.U8_NHWC) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(extract_image_patches_op_info)
|
||||||
|
def _extract_image_patches_tbe():
|
||||||
|
"""ExtractImagePatches TBE register"""
|
||||||
|
return
|
|
@ -0,0 +1,38 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""Sort op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||||
|
|
||||||
|
sort_op_info = TBERegOp("Sort") \
|
||||||
|
.fusion_type("OPAQUE") \
|
||||||
|
.async_flag(False) \
|
||||||
|
.binfile_name("sort.so") \
|
||||||
|
.compute_cost(10) \
|
||||||
|
.kernel_name("sort") \
|
||||||
|
.partial_flag(True) \
|
||||||
|
.attr("axis", "optional", "int", "all", "-1") \
|
||||||
|
.attr("descending", "optional", "bool", "all", "false") \
|
||||||
|
.input(0, "x", False, "required", "all") \
|
||||||
|
.output(0, "y1", False, "required", "all") \
|
||||||
|
.output(1, "y2", False, "required", "all") \
|
||||||
|
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.I32_Default) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(sort_op_info)
|
||||||
|
def _sort_tbe():
|
||||||
|
"""Sort TBE register"""
|
||||||
|
return
|
|
@ -29,7 +29,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
|
||||||
ScatterUpdate, ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select,
|
ScatterUpdate, ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select,
|
||||||
Shape, DynamicShape, Size, Slice, Split, TransShape, ParallelConcat, Padding,
|
Shape, DynamicShape, Size, Slice, Split, TransShape, ParallelConcat, Padding,
|
||||||
ScatterNdAdd, ScatterNdSub, ScatterNonAliasingAdd, ReverseV2, Rint,
|
ScatterNdAdd, ScatterNdSub, ScatterNonAliasingAdd, ReverseV2, Rint,
|
||||||
Squeeze, StridedSlice, Tile, TensorScatterUpdate, EditDistance,
|
Squeeze, StridedSlice, Tile, TensorScatterUpdate, EditDistance, Sort,
|
||||||
Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentProd,
|
Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentProd,
|
||||||
UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace,
|
UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace,
|
||||||
SpaceToBatchND, BatchToSpaceND, BroadcastTo, InplaceUpdate, ReverseSequence, EmbeddingLookup,
|
SpaceToBatchND, BatchToSpaceND, BroadcastTo, InplaceUpdate, ReverseSequence, EmbeddingLookup,
|
||||||
|
@ -93,6 +93,7 @@ from .sparse_ops import SparseToDense
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'Unique',
|
'Unique',
|
||||||
'ReverseSequence',
|
'ReverseSequence',
|
||||||
|
'Sort',
|
||||||
'EditDistance',
|
'EditDistance',
|
||||||
'CropAndResize',
|
'CropAndResize',
|
||||||
'TensorAdd',
|
'TensorAdd',
|
||||||
|
|
|
@ -3670,6 +3670,44 @@ class TransShape(PrimitiveWithInfer):
|
||||||
'value': None}
|
'value': None}
|
||||||
|
|
||||||
|
|
||||||
|
class Sort(PrimitiveWithInfer):
|
||||||
|
"""
|
||||||
|
Sorts the elements of the input tensor along a given dimension in ascending order by value.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
axis (int): The dimension to sort along. Default: -1.
|
||||||
|
descending (bool): Controls the sorting order. If descending is True then the elements
|
||||||
|
are sorted in descending order by value. Default: False.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **x** (Tensor) - The input to sort, with float16 or float32 data type.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- **y1** (Tensor) - A tensor whose values are the sorted values, with the same shape and data type as input.
|
||||||
|
- **y2** (Tensor) - The indices of the elements in the original input tensor. Data type is int32.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> x = Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), mindspore.float16)
|
||||||
|
>>> sort = P.Sort()
|
||||||
|
>>> sort(x)
|
||||||
|
>>> ([[1.0, 2.0, 8.0], [3.0, 5.0, 9.0], [4.0, 6.0 ,7.0]],
|
||||||
|
[[2, 1, 0], [2, 0, 1], [0, 1, 2]])
|
||||||
|
"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self, axis=-1, descending=False):
|
||||||
|
"""init Sort"""
|
||||||
|
self.axis = validator.check_value_type("axis", axis, [int], self.name)
|
||||||
|
self.descending = validator.check_value_type("descending", descending, [bool], self.name)
|
||||||
|
|
||||||
|
def infer_shape(self, x_shape):
|
||||||
|
return x_shape, x_shape
|
||||||
|
|
||||||
|
def infer_dtype(self, x_dtype):
|
||||||
|
validator.check_tensor_type_same({"x_dtype": x_dtype}, [mstype.float32, mstype.float16], self.name)
|
||||||
|
return x_dtype, mstype.tensor_type(mstype.int32)
|
||||||
|
|
||||||
|
|
||||||
class EmbeddingLookup(PrimitiveWithInfer):
|
class EmbeddingLookup(PrimitiveWithInfer):
|
||||||
"""
|
"""
|
||||||
Returns a slice of input tensor based on the specified indices.
|
Returns a slice of input tensor based on the specified indices.
|
||||||
|
|
Loading…
Reference in New Issue