forked from mindspore-Ecosystem/mindspore
!17900 numpy-native reduce histogram2d test case fractional precision
From: @jachua Reviewed-by: @guoqi1024,@liangchenghui Signed-off-by: @guoqi1024
This commit is contained in:
commit
af31b0f4a0
|
@ -2212,30 +2212,30 @@ def test_histogramdd():
|
||||||
for range in [None, [[0, 5], [2, 7], [1, 3]]]:
|
for range in [None, [[0, 5], [2, 7], [1, 3]]]:
|
||||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range)
|
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range)
|
||||||
onp_res = onp.histogramdd(x, bins=bins, range=range)
|
onp_res = onp.histogramdd(x, bins=bins, range=range)
|
||||||
match_all_arrays(mnp_res[0], onp_res[0], error=3)
|
match_all_arrays(mnp_res[0], onp_res[0], error=1)
|
||||||
match_all_arrays(mnp_res[1], onp_res[1], error=3)
|
match_all_arrays(mnp_res[1], onp_res[1], error=1)
|
||||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, density=True)
|
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, density=True)
|
||||||
onp_res = onp.histogramdd(x, bins=bins, range=range, density=True)
|
onp_res = onp.histogramdd(x, bins=bins, range=range, density=True)
|
||||||
match_all_arrays(mnp_res[0], onp_res[0], error=3)
|
match_all_arrays(mnp_res[0], onp_res[0], error=1)
|
||||||
match_all_arrays(mnp_res[1], onp_res[1], error=3)
|
match_all_arrays(mnp_res[1], onp_res[1], error=1)
|
||||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, weights=to_tensor(weights))
|
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, weights=to_tensor(weights))
|
||||||
onp_res = onp.histogramdd(x, bins=bins, range=range, weights=weights)
|
onp_res = onp.histogramdd(x, bins=bins, range=range, weights=weights)
|
||||||
match_all_arrays(mnp_res[0], onp_res[0], error=3)
|
match_all_arrays(mnp_res[0], onp_res[0], error=1)
|
||||||
match_all_arrays(mnp_res[1], onp_res[1], error=3)
|
match_all_arrays(mnp_res[1], onp_res[1], error=1)
|
||||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range,
|
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range,
|
||||||
weights=to_tensor(weights), density=True)
|
weights=to_tensor(weights), density=True)
|
||||||
|
|
||||||
mnp_res = mnp.histogramdd(mnp_y, bins=bins, range=range, weights=to_tensor(weights),
|
mnp_res = mnp.histogramdd(mnp_y, bins=bins, range=range, weights=to_tensor(weights),
|
||||||
density=True)
|
density=True)
|
||||||
onp_res = onp.histogramdd(y, bins, range=range, weights=weights, density=True)
|
onp_res = onp.histogramdd(y, bins, range=range, weights=weights, density=True)
|
||||||
match_all_arrays(mnp_res[0], onp_res[0], error=3)
|
match_all_arrays(mnp_res[0], onp_res[0], error=1)
|
||||||
match_all_arrays(mnp_res[1], onp_res[1], error=3)
|
match_all_arrays(mnp_res[1], onp_res[1], error=1)
|
||||||
|
|
||||||
bins = onp.arange(24).reshape(3, 8)
|
bins = onp.arange(24).reshape(3, 8)
|
||||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=to_tensor(bins))
|
mnp_res = mnp.histogramdd(to_tensor(x), bins=to_tensor(bins))
|
||||||
onp_res = onp.histogramdd(x, bins=bins)
|
onp_res = onp.histogramdd(x, bins=bins)
|
||||||
match_all_arrays(mnp_res[0], onp_res[0], error=3)
|
match_all_arrays(mnp_res[0], onp_res[0], error=1)
|
||||||
match_all_arrays(mnp_res[1], onp_res[1], error=3)
|
match_all_arrays(mnp_res[1], onp_res[1], error=1)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level1
|
@pytest.mark.level1
|
||||||
|
@ -2252,17 +2252,17 @@ def test_histogram2d():
|
||||||
for bins in [(5, 7), 4, [onp.arange(5).tolist(), onp.arange(2, 10).tolist()], [8, [1, 2, 3]]]:
|
for bins in [(5, 7), 4, [onp.arange(5).tolist(), onp.arange(2, 10).tolist()], [8, [1, 2, 3]]]:
|
||||||
# pylint: disable=redefined-builtin
|
# pylint: disable=redefined-builtin
|
||||||
for range in [None, [(3, 3), (2, 20)]]:
|
for range in [None, [(3, 3), (2, 20)]]:
|
||||||
match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, error=3)
|
match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, error=1)
|
||||||
match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, density=True,
|
match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, density=True,
|
||||||
error=3)
|
error=1)
|
||||||
mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range,
|
mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range,
|
||||||
weights=to_tensor(weights))
|
weights=to_tensor(weights))
|
||||||
onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights)
|
onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights)
|
||||||
match_all_arrays(mnp_res, onp_res, error=3)
|
match_all_arrays(mnp_res, onp_res, error=1)
|
||||||
mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range,
|
mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range,
|
||||||
weights=to_tensor(weights), density=True)
|
weights=to_tensor(weights), density=True)
|
||||||
onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights, density=True)
|
onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights, density=True)
|
||||||
match_all_arrays(mnp_res, onp_res, error=3)
|
match_all_arrays(mnp_res, onp_res, error=1)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level1
|
@pytest.mark.level1
|
||||||
|
|
Loading…
Reference in New Issue