!10424 Compute weighted loss

From: @xuguoyang5566
Reviewed-by: @wuxuejian
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-12-28 10:00:10 +08:00 committed by Gitee
commit aecd96cdb2
3 changed files with 60 additions and 2 deletions

View File

@ -29,7 +29,7 @@ class _Loss(Cell):
"""
Base class for other losses.
"""
def __init__(self, reduction='mean'):
def __init__(self, reduction='mean', weights=1.0):
super(_Loss, self).__init__()
if reduction is None:
reduction = 'none'
@ -46,6 +46,11 @@ class _Loss(Cell):
self.reduce_mean = _selected_ops.ReduceMean()
self.reduce_sum = P.ReduceSum()
self.mul = P.Mul()
if isinstance(weights, int):
self.weights = float(weights)
else:
self.weights = weights
def get_axis(self, x):
shape = F.shape(x)
@ -54,6 +59,8 @@ class _Loss(Cell):
return perm
def get_loss(self, x):
if self.weights != 1.0:
x = self.mul(self.weights, x)
if self.reduce and self.average:
x = self.reduce_mean(x, self.get_axis(x))
if self.reduce and not self.average:

View File

@ -131,7 +131,7 @@ class RMSProp(Optimizer):
Tensor[bool], the value is True.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> net = Net()

View File

@ -0,0 +1,51 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test loss """
import numpy as np
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.nn.loss.loss import _Loss
class WeightedLoss(_Loss):
def __init__(self, reduction='mean', weights=1.0):
super(WeightedLoss, self).__init__(reduction, weights)
self.abs = P.Abs()
def construct(self, base, target):
x = self.abs(base - target)
return self.get_loss(x)
def test_WeightedLoss():
loss = WeightedLoss()
input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32))
target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32))
output_data = loss(input_data, target_data)
error_range = np.ones(shape=output_data.shape) * 10e-6
loss.weights = 1.0
test_output = loss(input_data, target_data)
diff = test_output - output_data * loss.weights
assert np.all(abs(diff.asnumpy()) < error_range)
loss.weights = 2.0
test_output = loss(input_data, target_data)
diff = test_output - output_data * loss.weights
assert np.all(abs(diff.asnumpy()) < error_range)
loss.weights = 3
test_output = loss(input_data, target_data)
diff = test_output - output_data * loss.weights
assert np.all(abs(diff.asnumpy()) < error_range)