add inner testcases of control flow

add testcases 2
This commit is contained in:
chenfei_mindspore 2021-04-06 09:43:22 +08:00
parent a6399e7a8a
commit ac6f5983b5
17 changed files with 1195 additions and 0 deletions

View File

@ -0,0 +1,60 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target="Ascend")
class ForwardNet(nn.Cell):
def construct(self, x, y):
y = y + 10
while x < y:
x = (x + 2) * (y - 9)
y = y + 2
x = x + 5
return x
class BackwardNet(nn.Cell):
def __init__(self, forward_net):
super(BackwardNet, self).__init__()
self.forward_net = forward_net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
c1 = Tensor([0], mstype.int32)
c2 = Tensor([0], mstype.int32)
expect = Tensor([75], mstype.int32)
forward_net = ForwardNet()
output = forward_net(c1, c2)
assert expect == output
def test_backward():
c1 = Tensor([0], mstype.int32)
c2 = Tensor([0], mstype.int32)
expect = Tensor([75], mstype.int32)
forward_net = ForwardNet()
output = forward_net(c1, c2)
assert expect == output

View File

@ -0,0 +1,67 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
while i < self.max_cycles:
if out <= 20:
out = x * y + out
i = i + 1
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,114 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
while i < self.max_cycles:
out = x * y + out
if out > 20:
break
i = i + 1
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
class ForwardNetReplaceBreak(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNetReplaceBreak, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
while i < self.max_cycles and out <= 20:
out = x * y + out
i = i + 1
return out
class BackwardNetReplaceBreak(nn.Cell):
def __init__(self, net):
super(BackwardNetReplaceBreak, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
# Problem: Exceed function call depth limit 1000.
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)
def test_forward_replace_break():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNetReplaceBreak(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
# Problem: Exceed function call depth limit 1000.
def test_backward_replace_break():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNetReplaceBreak(max_cycles=10)
backward_net = BackwardNetReplaceBreak(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,64 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
for _ in range(self.max_cycles):
if out <= 20:
out = x * y + out
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,65 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
for _ in range(self.max_cycles):
out = x * y + out
if out > 20:
break
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,68 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
self.i = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
i = self.i
if x > y:
while i < self.max_cycles:
out = x * y + out
i = i + 1
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,68 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
while i < self.max_cycles:
out = x * y + out
i = i + 1
if out >= 20:
out = out - 20
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,69 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
while i < self.max_cycles:
if out <= 20:
out = x * y + out
i = i + 1
if out >= 30:
out = out - 30
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,70 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
self.i = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
i = self.i
if x > y:
while i < self.max_cycles:
out = x * y + out
i = i + 1
if out > 20:
out = out - 20
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,71 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
self.i = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
i = self.i
while x < y:
while i < self.max_cycles:
out = x * y + out
i = i + 1
x = x + 1
if out > 20:
out = out - 20
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,68 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
while x < y:
for _ in range(0, self.max_cycles):
out = x * y + out
x = x + 1
if out > 20:
out = out - 20
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,68 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
if out >= 20:
out = out - 20
while i < self.max_cycles:
out = x * y + out
i = i + 1
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,69 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
if x < y:
if out >= 20:
out = out - 20
while i < self.max_cycles:
out = x * y + out
i = i + 1
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,69 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
while i < self.max_cycles:
if out <= 20:
out = x * y + out
i = i + 1
while i < self.max_cycles:
out = out + 10
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,68 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
for _ in range(0, self.max_cycles):
if out <= 20:
out = x * y + out
while i < self.max_cycles:
out = out + 10
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=10)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,70 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
self.i = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
i = self.i
if x > y:
while i < self.max_cycles:
out = x * y + out
i = i + 1
while out > 20:
out = out - 20
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)

View File

@ -0,0 +1,67 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
class ForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
if x > y:
for _ in range(0, self.max_cycles):
out = x * y + out
while out > 20:
out = out - 20
return out
class BackwardNet(nn.Cell):
def __init__(self, net):
super(BackwardNet, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation()
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
def test_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
out = forward_net(x, y)
print("forward out:", out)
def test_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForwardNet(max_cycles=3)
backward_net = BackwardNet(forward_net)
grads = backward_net(x, y)
print("grads:", grads)