forked from mindspore-Ecosystem/mindspore
add cell psnr
This commit is contained in:
parent
c0c0b0985e
commit
aa8fbcc06e
|
@ -25,7 +25,7 @@ from .lstm import LSTM
|
|||
from .basic import Dropout, Flatten, Dense, ClipByNorm, Norm, OneHot, Pad, Unfold
|
||||
from .embedding import Embedding
|
||||
from .pooling import AvgPool2d, MaxPool2d
|
||||
from .image import ImageGradients, SSIM
|
||||
from .image import ImageGradients, SSIM, PSNR
|
||||
|
||||
__all__ = ['Softmax', 'LogSoftmax', 'ReLU', 'ReLU6', 'Tanh', 'GELU', 'Sigmoid',
|
||||
'PReLU', 'get_activation', 'LeakyReLU', 'HSigmoid', 'HSwish', 'ELU',
|
||||
|
@ -36,5 +36,5 @@ __all__ = ['Softmax', 'LogSoftmax', 'ReLU', 'ReLU6', 'Tanh', 'GELU', 'Sigmoid',
|
|||
'Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot',
|
||||
'Embedding',
|
||||
'AvgPool2d', 'MaxPool2d', 'Pad', 'Unfold',
|
||||
'ImageGradients', 'SSIM',
|
||||
'ImageGradients', 'SSIM', 'PSNR',
|
||||
]
|
||||
|
|
|
@ -69,6 +69,18 @@ class ImageGradients(Cell):
|
|||
return dy, dx
|
||||
|
||||
|
||||
def _convert_img_dtype_to_float32(img, max_val):
|
||||
"""convert img dtype to float32"""
|
||||
# Ususally max_val is 1.0 or 255, we will do the scaling if max_val > 1.
|
||||
# We will scale img pixel value if max_val > 1. and just cast otherwise.
|
||||
ret = F.cast(img, mstype.float32)
|
||||
max_val = F.scalar_cast(max_val, mstype.float32)
|
||||
if max_val > 1.:
|
||||
scale = 1. / max_val
|
||||
ret = ret * scale
|
||||
return ret
|
||||
|
||||
|
||||
@constexpr
|
||||
def _gauss_kernel_helper(filter_size):
|
||||
"""gauss kernel helper"""
|
||||
|
@ -134,9 +146,9 @@ class SSIM(Cell):
|
|||
self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size)
|
||||
|
||||
def construct(self, img1, img2):
|
||||
max_val = self._convert_img_dtype_to_float32(self.max_val, self.max_val)
|
||||
img1 = self._convert_img_dtype_to_float32(img1, self.max_val)
|
||||
img2 = self._convert_img_dtype_to_float32(img2, self.max_val)
|
||||
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val)
|
||||
img1 = _convert_img_dtype_to_float32(img1, self.max_val)
|
||||
img2 = _convert_img_dtype_to_float32(img2, self.max_val)
|
||||
|
||||
kernel = self._fspecial_gauss(self.filter_size, self.filter_sigma)
|
||||
kernel = P.Tile()(kernel, (1, P.Shape()(img1)[1], 1, 1))
|
||||
|
@ -145,21 +157,10 @@ class SSIM(Cell):
|
|||
|
||||
return mean_ssim
|
||||
|
||||
def _convert_img_dtype_to_float32(self, img, max_val):
|
||||
"""convert img dtype to float32"""
|
||||
# Ususally max_val is 1.0 or 255, we will do the scaling if max_val > 1.
|
||||
# We will scale img pixel value if max_val > 1. and just cast otherwise.
|
||||
ret = P.Cast()(img, mstype.float32)
|
||||
max_val = F.scalar_cast(max_val, mstype.float32)
|
||||
if max_val > 1.:
|
||||
scale = 1./max_val
|
||||
ret = ret*scale
|
||||
return ret
|
||||
|
||||
def _calculate_mean_ssim(self, x, y, kernel, max_val, k1, k2):
|
||||
"""calculate mean ssim"""
|
||||
c1 = (k1*max_val)*(k1*max_val)
|
||||
c2 = (k2*max_val)*(k2*max_val)
|
||||
c1 = (k1 * max_val) * (k1 * max_val)
|
||||
c2 = (k2 * max_val) * (k2 * max_val)
|
||||
|
||||
# SSIM luminance formula
|
||||
# (2 * mean_{x} * mean_{y} + c1) / (mean_{x}**2 + mean_{y}**2 + c1)
|
||||
|
@ -195,3 +196,52 @@ class SSIM(Cell):
|
|||
g = P.Softmax()(g)
|
||||
ret = F.reshape(g, (1, 1, filter_size, filter_size))
|
||||
return ret
|
||||
|
||||
|
||||
class PSNR(Cell):
|
||||
r"""
|
||||
Returns Peak Signal-to-Noise Ratio of two image batches.
|
||||
|
||||
It produces a PSNR value for each image in batch.
|
||||
Assume inputs are :math:`I` and :math:`K`, both with shape :math:`h*w`.
|
||||
:math:`MAX` represents the dynamic range of pixel values.
|
||||
|
||||
.. math::
|
||||
|
||||
MSE&=\frac{1}{hw}\sum\limits_{i=0}^{h-1}\sum\limits_{j=0}^{w-1}[I(i,j)-K(i,j)]^2\\
|
||||
PSNR&=10*log_{10}(\frac{MAX^2}{MSE})
|
||||
|
||||
Args:
|
||||
max_val (Union[int, float]): The dynamic range of the pixel values (255 for 8-bit grayscale images).
|
||||
Default: 1.0.
|
||||
|
||||
Inputs:
|
||||
- **img1** (Tensor) - The first image batch with format 'NCHW'. It should be the same shape and dtype as img2.
|
||||
- **img2** (Tensor) - The second image batch with format 'NCHW'. It should be the same shape and dtype as img1.
|
||||
|
||||
Outputs:
|
||||
Tensor, with dtype mindspore.float32. It is a 1-D tensor with shape N, where N is the batch num of img1.
|
||||
|
||||
Examples:
|
||||
>>> net = nn.PSNR()
|
||||
>>> img1 = Tensor(np.random.random((1,3,16,16)))
|
||||
>>> img2 = Tensor(np.random.random((1,3,16,16)))
|
||||
>>> psnr = net(img1, img2)
|
||||
|
||||
"""
|
||||
def __init__(self, max_val=1.0):
|
||||
super(PSNR, self).__init__()
|
||||
validator.check_type('max_val', max_val, [int, float])
|
||||
validator.check('max_val', max_val, '', 0.0, Rel.GT)
|
||||
self.max_val = max_val
|
||||
|
||||
def construct(self, img1, img2):
|
||||
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val)
|
||||
img1 = _convert_img_dtype_to_float32(img1, self.max_val)
|
||||
img2 = _convert_img_dtype_to_float32(img2, self.max_val)
|
||||
|
||||
mse = P.ReduceMean()(F.square(img1 - img2), (-3, -2, -1))
|
||||
# 10*log_10(max_val^2/MSE)
|
||||
psnr = 10 * P.Log()(F.square(max_val) / mse) / F.scalar_log(10.0)
|
||||
|
||||
return psnr
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
test psnr
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class PSNRNet(nn.Cell):
|
||||
def __init__(self, max_val=1.0):
|
||||
super(PSNRNet, self).__init__()
|
||||
self.net = nn.PSNR(max_val)
|
||||
|
||||
def construct(self, img1, img2):
|
||||
return self.net(img1, img2)
|
||||
|
||||
|
||||
def test_compile_psnr():
|
||||
max_val = 1.0
|
||||
net = PSNRNet(max_val)
|
||||
img1 = Tensor(np.random.random((8, 3, 16, 16)))
|
||||
img2 = Tensor(np.random.random((8, 3, 16, 16)))
|
||||
_executor.compile(net, img1, img2)
|
||||
|
||||
def test_compile_psnr_grayscale():
|
||||
max_val = 255
|
||||
net = PSNRNet(max_val)
|
||||
img1 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
||||
img2 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
||||
_executor.compile(net, img1, img2)
|
||||
|
||||
def test_psnr_max_val_negative():
|
||||
max_val = -1
|
||||
with pytest.raises(ValueError):
|
||||
net = PSNRNet(max_val)
|
||||
|
||||
def test_psnr_max_val_bool():
|
||||
max_val = True
|
||||
with pytest.raises(ValueError):
|
||||
net = PSNRNet(max_val)
|
||||
|
||||
def test_psnr_max_val_zero():
|
||||
max_val = 0
|
||||
with pytest.raises(ValueError):
|
||||
net = PSNRNet(max_val)
|
|
@ -0,0 +1,95 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
test ssim
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class SSIMNet(nn.Cell):
|
||||
def __init__(self, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03):
|
||||
super(SSIMNet, self).__init__()
|
||||
self.net = nn.SSIM(max_val, filter_size, filter_sigma, k1, k2)
|
||||
|
||||
def construct(self, img1, img2):
|
||||
return self.net(img1, img2)
|
||||
|
||||
|
||||
def test_compile():
|
||||
net = SSIMNet()
|
||||
img1 = Tensor(np.random.random((8, 3, 16, 16)))
|
||||
img2 = Tensor(np.random.random((8, 3, 16, 16)))
|
||||
_executor.compile(net, img1, img2)
|
||||
|
||||
def test_compile_grayscale():
|
||||
max_val = 255
|
||||
net = SSIMNet(max_val = max_val)
|
||||
img1 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
||||
img2 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
||||
_executor.compile(net, img1, img2)
|
||||
|
||||
def test_ssim_max_val_negative():
|
||||
max_val = -1
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(max_val)
|
||||
|
||||
def test_ssim_max_val_bool():
|
||||
max_val = True
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(max_val)
|
||||
|
||||
def test_ssim_max_val_zero():
|
||||
max_val = 0
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(max_val)
|
||||
|
||||
def test_ssim_filter_size_float():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_size=1.1)
|
||||
|
||||
def test_ssim_filter_size_zero():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_size=0)
|
||||
|
||||
def test_ssim_filter_sigma_zero():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_sigma=0.0)
|
||||
|
||||
def test_ssim_filter_sigma_negative():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_sigma=-0.1)
|
||||
|
||||
def test_ssim_k1_k2_wrong_value():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=1.1)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=1.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=0.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=-1.0)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=1.1)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=1.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=0.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=-1.0)
|
Loading…
Reference in New Issue