expander lamb_apply_weight_assign

This commit is contained in:
wenfangpei 2021-03-04 16:02:58 +08:00
parent fc76d7ea93
commit a4ad6066b1
5 changed files with 122 additions and 2 deletions

View File

@ -46,3 +46,4 @@ from .square import Square
from .tanh_grad import TanhGrad
from .tile import Tile
from .lamb_apply_optimizer_assign import LambApplyOptimizerAssign
from .lamb_apply_weight_assign import LambApplyWeightAssign

View File

@ -0,0 +1,56 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===========================================================================
"""generate json desc for LambApplyWeightAssign"""
from ._utils import Expander, ExpanderInfoValidator as VLD
@VLD.check_all_formats_same
class LambApplyWeightAssign(Expander):
"""LambApplyWeightAssign expander"""
def _expand(self, graph_builder):
w_norm, g_norm, input_lr, update, input_param = self.inputs
# ratio
const_zero = graph_builder.value(g_norm.dtype, 0)
const_one = graph_builder.value(g_norm.dtype, 1)
dtype = update.dtype
g_norm_greater_res = graph_builder.emit('Greater', [g_norm, const_zero])
g_norm_greater_res_float = graph_builder.emit('Cast', [g_norm_greater_res], attrs={'dst_type': dtype})
w_norm_g_norm = graph_builder.emit('RealDiv', [w_norm, g_norm])
# select
g_norm_greater_res_neg = graph_builder.emit('Neg', [g_norm_greater_res_float])
g_norm_greater_res_f = graph_builder.emit('Add', [g_norm_greater_res_neg, const_one])
g_norm_value_1 = graph_builder.emit('Mul', [g_norm_greater_res_float, w_norm_g_norm])
g_norm_value = graph_builder.emit('Add', [g_norm_value_1, g_norm_greater_res_f])
w_norm_greater_res = graph_builder.emit('Greater', [w_norm, const_zero])
w_norm_greater_res_float = graph_builder.emit('Cast', [w_norm_greater_res], attrs={'dst_type': dtype})
# select
w_norm_greater_res_neg = graph_builder.emit('Neg', [w_norm_greater_res_float])
w_norm_greater_res_f = graph_builder.emit('Add', [w_norm_greater_res_neg, const_one])
w_norm_value_1 = graph_builder.emit('Mul', [w_norm_greater_res_float, g_norm_value])
ratio = graph_builder.emit('Add', [w_norm_value_1, w_norm_greater_res_f])
# ratio * input_lr * update
update_with_ir = graph_builder.emit('Mul', [update, input_lr])
ratio_update_with_ir = graph_builder.emit('Mul', [update_with_ir, ratio])
# input_param - ratio_update_with_ir
next_param = graph_builder.emit('Sub', [input_param, ratio_update_with_ir])
return [next_param]

View File

@ -39,7 +39,8 @@ namespace mindspore {
namespace opt {
namespace {
constexpr size_t kAssignInputIdx = 1;
constexpr size_t kLambInputIdx = 12;
constexpr size_t kLambOptimizerInputIdx = 12;
constexpr size_t kLambWeightInputIdx = 4;
std::vector<PrimitivePtr> GetExpandOps() {
std::vector<PrimitivePtr> expand_ops = {
@ -51,6 +52,7 @@ std::vector<PrimitivePtr> GetExpandOps() {
prim::kPrimSqrtGrad,
prim::kPrimClipByNormNoDivSum,
prim::kLambApplyOptimizerAssign,
prim::kLambApplyWeightAssign,
#elif ENABLE_GPU
prim::kPrimBiasAdd,
prim::kPrimBiasAddGrad,
@ -176,7 +178,8 @@ ExpanderPtr GraphKernelExpander::GetExpander(const AnfNodePtr &node) {
{prim::kPrimDropout, std::make_shared<DropoutExpander>()},
{prim::kPrimAssignAdd, std::make_shared<OpUMonadExpander>(kAssignInputIdx)},
{prim::kPrimAssignSub, std::make_shared<OpUMonadExpander>(kAssignInputIdx)},
{prim::kLambApplyOptimizerAssign, std::make_shared<OpUMonadExpander>(kLambInputIdx)},
{prim::kLambApplyOptimizerAssign, std::make_shared<OpUMonadExpander>(kLambOptimizerInputIdx)},
{prim::kLambApplyWeightAssign, std::make_shared<OpUMonadExpander>(kLambWeightInputIdx)},
};
for (auto &e : expanders) {

View File

@ -305,6 +305,8 @@ inline const PrimitivePtr kPrimTensorMove = std::make_shared<Primitive>("TensorM
inline const PrimitivePtr kPrimL2Normalize = std::make_shared<Primitive>("L2Normalize");
inline const PrimitivePtr kPrimCustomExtractFeatures = std::make_shared<Primitive>("CustomExtractFeatures");
inline const PrimitivePtr kLambApplyOptimizerAssign = std::make_shared<Primitive>("LambApplyOptimizerAssign");
inline const PrimitivePtr kLambApplyWeightAssign = std::make_shared<Primitive>("LambApplyWeightAssign");
// Comm ops
inline const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator");
inline const PrimitivePtr kPrimMirrorMiniStep = std::make_shared<Primitive>("_MirrorMiniStepOperator");

View File

@ -0,0 +1,58 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.lamb_apply_weight_assign = P.LambApplyWeightAssign()
def construct(self, w_norm, g_norm, lr, update, param):
return self.lamb_apply_weight_assign(w_norm, g_norm, lr, update, param)
def get_output(w_norm, g_norm, lr, update, param, enable_graph_kernel=False):
context.set_context(enable_graph_kernel=enable_graph_kernel)
opt = Net()
output = opt(Tensor(w_norm), Tensor(g_norm), Tensor(lr), Tensor(update), Tensor(param))
return output
def lamb_apply_weight_assign():
w_norm = np.array([0.11]).astype(np.float32)
g_norm = np.array([1.2]).astype(np.float32)
lr = np.array([0.012]).astype(np.float32)
update = np.array([0.01, 0.03, 0.05]).astype(np.float32)
param = np.array([1, 3, 5]).astype(np.float32)
expect = get_output(w_norm, g_norm, lr, update, param, False)
output = get_output(w_norm, g_norm, lr, update, param, True)
assert np.allclose(output.asnumpy(), expect.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_lamb_apply_weight_assign_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
lamb_apply_weight_assign()