forked from mindspore-Ecosystem/mindspore
!16774 push genet code
From: @cuihulan Reviewed-by: @c_34,@oacjiewen Signed-off-by: @c_34
This commit is contained in:
commit
a1e6d6a8a5
|
@ -0,0 +1,270 @@
|
|||
# 目录
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [目录](#目录)
|
||||
- [GENet概述](#GENet概述)
|
||||
- [模型架构](#模型架构)
|
||||
- [数据集](#数据集)
|
||||
- [特性](#特性)
|
||||
- [混合精度](#混合精度)
|
||||
- [环境要求](#环境要求)
|
||||
- [脚本说明](#脚本说明)
|
||||
- [脚本和样例代码](#脚本和样例代码)
|
||||
- [脚本参数](#脚本参数)
|
||||
- [训练过程](#训练过程)
|
||||
- [用法](#用法)
|
||||
- [启动](#启动)
|
||||
- [结果](#结果)
|
||||
- [评估过程](#评估过程)
|
||||
- [用法](#用法-1)
|
||||
- [启动](#启动-1)
|
||||
- [结果](#结果-1)
|
||||
- [模型描述](#模型描述)
|
||||
- [性能](#性能)
|
||||
- [训练性能](#训练性能)
|
||||
- [评估性能](#评估性能)
|
||||
- [随机情况说明](#随机情况说明)
|
||||
- [ModelZoo主页](#modelzoo主页)
|
||||
|
||||
<!-- /TOC -->
|
||||
|
||||
# GENet_Res50概述
|
||||
|
||||
GENet_Res50是一个基于GEBlock构建于ResNet50之上的卷积神经网络,可以将ImageNet图像分成1000个目标类,准确率达78.47%。
|
||||
|
||||
[论文](https://arxiv.org/abs/1810.12348)
|
||||
|
||||
## 模型架构
|
||||
|
||||
在对应的代码实现中, extra设为False时对应GEθ-结构,extra为True时,mlp=False则对应GEθ结构,mlp=True则对应GEθ+结构。
|
||||
|
||||
GENet_Res50总体网络架构如下:
|
||||
|
||||
[链接](https://arxiv.org/abs/1810.12348)
|
||||
|
||||
## 数据集
|
||||
|
||||
使用的数据集:[imagenet 2017](http://www.image-net.org/)
|
||||
|
||||
Imagenet 2017和Imagenet 2012 数据集一致
|
||||
|
||||
- 数据集大小:144G,共1000个类、125万张彩色图像
|
||||
- 训练集:138G,共120万张图像
|
||||
- 测试集:6G,共5万张图像
|
||||
|
||||
- 数据格式:RGB
|
||||
- 注:数据在src/dataset.py中处理。
|
||||
|
||||
## 特性
|
||||
|
||||
## 混合精度
|
||||
|
||||
采用[混合精度](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html)的训练方法使用支持单精度和半精度数据来提高深度学习神经网络的训练速度,同时保持单精度训练所能达到的网络精度。混合精度训练提高计算速度、减少内存使用的同时,支持在特定硬件上训练更大的模型或实现更大批次的训练。
|
||||
以FP16算子为例,如果输入数据类型为FP32,MindSpore后台会自动降低精度来处理数据。用户可打开INFO日志,搜索“reduce precision”查看精度降低的算子。
|
||||
|
||||
# 环境要求
|
||||
|
||||
- 硬件:昇腾处理器(Ascend)
|
||||
- 使用昇腾处理器来搭建硬件环境。
|
||||
|
||||
- 框架
|
||||
- [MindSpore](https://www.mindspore.cn/install)
|
||||
|
||||
- 如需查看详情,请参见如下资源:
|
||||
|
||||
- [MindSpore教程](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
## 脚本说明
|
||||
|
||||
## 脚本和样例代码
|
||||
|
||||
```python
|
||||
├── GENet_Res50
|
||||
├── Readme.md
|
||||
├── scripts
|
||||
│ ├──run_distribute_train.sh # 使用昇腾处理器进行八卡训练的shell脚本
|
||||
│ ├──run_train.sh # 使用昇腾处理器进行单卡训练的shell脚本
|
||||
│ ├──run_eval.sh # 使用昇腾处理器进行评估的单卡shell脚本
|
||||
├──src
|
||||
│ ├──config.py # 参数配置
|
||||
│ ├──dataset.py # 创建数据集
|
||||
│ ├──lr_generator.py # 配置学习速率
|
||||
│ ├──crossentropy.py # 定义GENet_Res50的交叉熵
|
||||
│ ├──GENet.py # GENet_Res50的网络模型
|
||||
│ ├──GEBlock.py # GENet_Res50的Block模型
|
||||
├── train.py # 训练脚本
|
||||
├── eval.py # 评估脚本
|
||||
├── export.py
|
||||
```
|
||||
|
||||
### 脚本参数
|
||||
|
||||
在config.py中可以同时配置训练参数和评估参数。
|
||||
|
||||
- 配置GENet_Res50和ImageNet2012数据集。
|
||||
|
||||
```python
|
||||
"class_num": 1000,
|
||||
"batch_size": 256,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 150,
|
||||
"pretrain_epoch_size": 0,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 10,
|
||||
"keep_checkpoint_max": 5,
|
||||
"decay_mode":"linear",
|
||||
"save_checkpoint_path": "./checkpoints",
|
||||
"hold_epochs": 0,
|
||||
"use_label_smooth": True,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr_init": 0.8,
|
||||
"lr_end": 0.0
|
||||
```
|
||||
|
||||
## 训练过程
|
||||
|
||||
### 用法
|
||||
|
||||
- 晟腾(Ascend):
|
||||
|
||||
```python
|
||||
八卡:bash run_distribute_train.sh [RANK_TABLE_FILE] [DATASET_PATH] [MLP] [EXTRA][PRETRAINED_CKPT_PATH]\(可选)
|
||||
单卡:bash run_train.sh [DATASET_PATH] [MLP] [EXTRA] [DEVICE_ID] [PRETRAINED_CKPT_PATH](optional)
|
||||
```
|
||||
|
||||
### 启动
|
||||
|
||||
```python
|
||||
# 训练示例
|
||||
# 八卡:
|
||||
Ascend: bash run_distribute_train.sh ~/hccl_8p_01234567_127.0.0.1.json /data/imagenet/imagenet_original/train True True
|
||||
# 单卡:
|
||||
Ascend: bash run_train.sh /data/imagenet/imagenet_original/val True True 5
|
||||
```
|
||||
|
||||
### 结果
|
||||
|
||||
八卡训练结果保存在示例路径中。检查点默认保存在`./train_parallel$i/`,训练日志重定向到`./train/device$i/train.log`,单卡训练结果保存在./train_standalone下,内容如下:
|
||||
|
||||
```python
|
||||
epoch: 1 step: 5000, loss is 4.8995576
|
||||
epoch: 2 step: 5000, loss is 3.9235563
|
||||
epoch: 3 step: 5000, loss is 3.833077
|
||||
epoch: 4 step: 5000, loss is 3.2795618
|
||||
epoch: 5 step: 5000, loss is 3.1978393
|
||||
```
|
||||
|
||||
## 评估过程
|
||||
|
||||
### 用法
|
||||
|
||||
使用python或shell脚本开始训练。shell脚本的使用方法如下:
|
||||
|
||||
- 昇腾(Ascend):bash run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH] [MLP] [EXTRA] [DEVICE_ID]
|
||||
|
||||
### 启动
|
||||
|
||||
```shell
|
||||
# 推理示例
|
||||
shell:
|
||||
Ascend: sh run_eval.sh Ascend ~/imagenet/val/ ~/train/GENet-150_625.ckpt True True 0
|
||||
```
|
||||
|
||||
> 训练过程中可以生成检查点。
|
||||
|
||||
### 结果
|
||||
|
||||
推理结果保存在示例路径中,可以在`./eval/log`中找到如下结果:
|
||||
|
||||
```python
|
||||
result: {'top_5_accuracy': 0.9412860576923077, 'top_1_accuracy': 0.7847355769230769}
|
||||
```
|
||||
|
||||
# 模型描述
|
||||
|
||||
## 性能
|
||||
|
||||
### 训练性能
|
||||
|
||||
| 参数 | GENet_Res50 θ-version (mlp&extra = False)|
|
||||
| -------------------------- | ---------------------------------------------------------- |
|
||||
| 模型版本 | V1 |
|
||||
| 资源 | Ascend 910 八卡; CPU 2.60GHz,192核;内存 2048G;系统 Euler2.8 |
|
||||
| 上传日期 | 2021-04-26 |
|
||||
| MindSpore版本 | 1.1.1 |
|
||||
| 数据集 | ImageNet |
|
||||
| 训练参数 | src/config.py |
|
||||
| 优化器 | Momentum |
|
||||
| 损失函数 | SoftmaxCrossEntropy |
|
||||
| 输出 | ckpt file |
|
||||
| 损失 | 1.6 |
|
||||
| 准确率 |77.8%|
|
||||
| 总时长 | 8h |
|
||||
| 参数(M) | batch_size=256, epoch=220 |
|
||||
| 微调检查点 ||
|
||||
| 推理模型 ||
|
||||
|
||||
| 参数 | GENet_Res50 θversion (mlp=False & extra=True) |
|
||||
| -------------------------- | ---------------------------------------------------------- |
|
||||
| 模型版本 | V1 |
|
||||
| 资源 | Ascend 910 八卡; CPU 2.60GHz,192核;内存 2048G;系统 Euler2.8 |
|
||||
| 上传日期 | 2021-04-26 |
|
||||
| MindSpore版本 | 1.1.1 |
|
||||
| 数据集 | ImageNet |
|
||||
| 训练参数 | src/config.py |
|
||||
| 优化器 | Momentum |
|
||||
| 损失函数 | SoftmaxCrossEntropy |
|
||||
| 输出 | ckpt file |
|
||||
| 损失 | 1.6 |
|
||||
| 准确率 |78%|
|
||||
| 总时长 | 19h |
|
||||
| 参数(M) | batch_size=256, epoch=150 |
|
||||
| 微调检查点 ||
|
||||
| 推理模型 ||
|
||||
|
||||
| 参数 | GENet_Res50 θ+version (mlp=True & extra=True) |
|
||||
| -------------------------- | ---------------------------------------------------------- |
|
||||
| 模型版本 | V1 |
|
||||
| 资源 | Ascend 910 八卡; CPU 2.60GHz,192核;内存 2048G;系统 Euler2.8 |
|
||||
| 上传日期 | 2021-04-26 |
|
||||
| MindSpore版本 | 1.1.1 |
|
||||
| 数据集 | ImageNet |
|
||||
| 训练参数 | src/config.py |
|
||||
| 优化器 | Momentum |
|
||||
| 损失函数 | SoftmaxCrossEntropy |
|
||||
| 输出 | ckpt file |
|
||||
| 损失 | 1.6 |
|
||||
| 准确率 |78.47%|
|
||||
| 总时长 | 19h |
|
||||
| 参数(M) | batch_size=256, epoch=150 |
|
||||
| 微调检查点 ||
|
||||
| 推理模型 ||
|
||||
|
||||
### 评估性能
|
||||
|
||||
| 参数列表 | GENet |
|
||||
| -------------------------- | ----------------------------- |
|
||||
| 模型版本 | V1 |
|
||||
| 资源 | Ascend 910;系统 Euler2.8 |
|
||||
| 上传日期 | 2021-04-26 |
|
||||
| MindSpore版本 | 1.1.1 |
|
||||
| 数据集 | ImageNet 2012 |
|
||||
| batch_size | 256(1卡) |
|
||||
| 输出 | 概率 |
|
||||
| 准确率 | θ-:ACC1[77.8%] θ-:ACC1[78%] θ+:ACC1[78.47%] |
|
||||
| 速度 | |
|
||||
| 总时间 | 3分钟 |
|
||||
| 推理模型 ||
|
||||
|
||||
## 随机情况说明
|
||||
|
||||
dataset.py中设置了“create_dataset”函数内的种子,同时还使用了train.py中的随机种子。
|
||||
|
||||
## ModelZoo主页
|
||||
|
||||
请浏览官网[主页](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)。
|
|
@ -0,0 +1,120 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""train GENet."""
|
||||
import os
|
||||
import argparse
|
||||
from mindspore import context
|
||||
from mindspore.common import set_seed
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from src.CrossEntropySmooth import CrossEntropySmooth
|
||||
from src.GENet import GE_resnet50 as Net
|
||||
from src.dataset import create_dataset
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--train_url', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
|
||||
help="Device target, support Ascend, GPU and CPU.")
|
||||
parser.add_argument('--extra', type=str, default="False",
|
||||
help='whether to use Depth-wise conv to down sample')
|
||||
parser.add_argument('--mlp', type=str, default="True",
|
||||
help='bottleneck . whether to use 1*1 conv')
|
||||
parser.add_argument('--is_modelarts', type=str, default="False", help='is train on modelarts')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
if args_opt.extra.lower() == "false":
|
||||
from src.config import config3 as config
|
||||
else:
|
||||
if args_opt.mlp.lower() == "false":
|
||||
from src.config import config2 as config
|
||||
else:
|
||||
from src.config import config1 as config
|
||||
|
||||
if args_opt.is_modelarts == "True":
|
||||
import moxing as mox
|
||||
|
||||
set_seed(1)
|
||||
|
||||
def trans_char_to_bool(str_):
|
||||
"""
|
||||
Args:
|
||||
str_: string
|
||||
|
||||
Returns:
|
||||
bool
|
||||
"""
|
||||
result = False
|
||||
if str_.lower() == "true":
|
||||
result = True
|
||||
return result
|
||||
|
||||
if __name__ == '__main__':
|
||||
target = args_opt.device_target
|
||||
local_data_url = args_opt.data_url
|
||||
local_pretrained_url = args_opt.checkpoint_path
|
||||
|
||||
if args_opt.is_modelarts == "True":
|
||||
local_data_url = "/cache/data"
|
||||
mox.file.copy_parallel(args_opt.data_url, local_data_url)
|
||||
local_pretrained_path = "/cache/pretrained"
|
||||
mox.file.make_dirs(local_pretrained_path)
|
||||
filename = "pretrained.ckpt"
|
||||
local_pretrained_url = os.path.join(local_pretrained_path, filename)
|
||||
mox.file.copy(args_opt.checkpoint_path, local_pretrained_url)
|
||||
|
||||
# init context
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target=target,
|
||||
save_graphs=False)
|
||||
|
||||
if target == "Ascend":
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(device_id=device_id)
|
||||
|
||||
# create dataset
|
||||
dataset = create_dataset(dataset_path=local_data_url,
|
||||
do_train=False,
|
||||
batch_size=config.batch_size,
|
||||
target=target)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# define net
|
||||
mlp = trans_char_to_bool(args_opt.mlp)
|
||||
extra = trans_char_to_bool(args_opt.extra)
|
||||
# define net
|
||||
net = Net(class_num=config.class_num, extra=extra, mlp=mlp)
|
||||
|
||||
# load checkpoint
|
||||
param_dict = load_checkpoint(local_pretrained_url)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
# define loss, model
|
||||
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropySmooth(sparse=True,
|
||||
reduction='mean',
|
||||
smooth_factor=config.label_smooth_factor,
|
||||
num_classes=config.class_num)
|
||||
|
||||
# define model
|
||||
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
|
||||
|
||||
# eval model
|
||||
res = model.eval(dataset)
|
||||
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
|
@ -0,0 +1,64 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Export GENet_Res50 on ImageNet"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
|
||||
from src.GENet import GE_resnet50 as net
|
||||
from src.config import config1 as config
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
|
||||
help="Device target, support Ascend, GPU and CPU.")
|
||||
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
||||
parser.add_argument('--extra', type=str, default="True",
|
||||
help='whether to use Depth-wise conv to down sample')
|
||||
parser.add_argument('--mlp', type=str, default="True", help='bottleneck . whether to use 1*1 conv')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
def trans_char_to_bool(str_):
|
||||
"""
|
||||
Args:
|
||||
str_: string
|
||||
|
||||
Returns:
|
||||
bool
|
||||
"""
|
||||
result = False
|
||||
if str_.lower() == "true":
|
||||
result = True
|
||||
return result
|
||||
|
||||
if __name__ == '__main__':
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target,
|
||||
save_graphs=False)
|
||||
# define fusion network
|
||||
mlp = trans_char_to_bool(args_opt.mlp)
|
||||
extra = trans_char_to_bool(args_opt.extra)
|
||||
network = net(class_num=config.class_num, extra=extra, mlp=mlp)
|
||||
|
||||
# load checkpoint
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
not_load_param = load_param_into_net(network, param_dict)
|
||||
if not_load_param:
|
||||
raise ValueError("Load param into network fail!")
|
||||
# export network
|
||||
print("============== Starting export ==============")
|
||||
inputs = Tensor(np.ones([1, 3, 224, 224]))
|
||||
export(network, inputs, file_name="GENet_Res50")
|
||||
print("============== End export ==============")
|
|
@ -0,0 +1,87 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 4 ] && [ $# != 5 ]
|
||||
then
|
||||
echo "Usage: bash run_distribute_train.sh [RANK_TABLE_FILE] [DATASET_PATH] [MLP] [EXTRA] [PRETRAINED_CKPT_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $2)
|
||||
|
||||
if [ $# == 5 ]
|
||||
then
|
||||
PATH3=$(get_real_path $5)
|
||||
fi
|
||||
|
||||
if [ ! -f $PATH1 ]
|
||||
then
|
||||
echo "error: RANK_TABLE_FILE=$PATH1 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH2 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH2 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# == 5 ] && [ ! -f $PATH3 ]
|
||||
then
|
||||
echo "error: PRETRAINED_CKPT_PATH=$PATH3 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
export SERVER_ID=0
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=8
|
||||
rank_start=$((DEVICE_NUM * SERVER_ID))
|
||||
first_device=0
|
||||
export RANK_TABLE_FILE=$PATH1
|
||||
|
||||
for((i=0; i<${DEVICE_NUM}; i++))
|
||||
do
|
||||
export DEVICE_ID=$((first_device+i))
|
||||
export RANK_ID=$((rank_start + i))
|
||||
rm -rf ./train_parallel$i
|
||||
mkdir ./train_parallel$i
|
||||
cp ../*.py ./train_parallel$i
|
||||
cp *.sh ./train_parallel$i
|
||||
cp -r ../src ./train_parallel$i
|
||||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
if [ $# == 4 ]
|
||||
then
|
||||
python train.py --data_url=$PATH2 --mlp=$3 --extra=$4 &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 5 ]
|
||||
then
|
||||
python train.py --data_url=$PATH2 --mlp=$3 --extra=$4 --pre_trained=$PATH3 &> log &
|
||||
fi
|
||||
|
||||
cd ..
|
||||
done
|
|
@ -0,0 +1,66 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 5 ]
|
||||
then
|
||||
echo "Usage: bash run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH] [MLP] [EXTRA] [DEVICE_ID]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $2)
|
||||
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: CHECKPOINT_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export DEVICE_ID=$5
|
||||
export RANK_SIZE=1
|
||||
export RANK_ID=0
|
||||
|
||||
if [ -d "eval" ];
|
||||
then
|
||||
rm -rf ./eval
|
||||
fi
|
||||
mkdir ./eval
|
||||
cp ../*.py ./eval
|
||||
cp *.sh ./eval
|
||||
cp -r ../src ./eval
|
||||
cd ./eval || exit
|
||||
env > env.log
|
||||
echo "start evaluation for device $DEVICE_ID"
|
||||
python eval.py --data_url=$PATH1 --checkpoint_path=$PATH2 --mlp=$3 --extra=$4 &> log &
|
||||
|
||||
cd ..
|
|
@ -0,0 +1,74 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 5 ] && [ $# != 4 ]
|
||||
then
|
||||
echo "Usage: bash run_train.sh [DATASET_PATH] [MLP] [EXTRA] [DEVICE_ID] [PRETRAINED_CKPT_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
PATH1=$(get_real_path $1)
|
||||
|
||||
if [ $# == 5 ]
|
||||
then
|
||||
PATH2=$(get_real_path $5)
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# == 5 ] && [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: CHECKPOINT_FILE=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
ulimit -u unlimited
|
||||
|
||||
export DEVICE_NUM=1
|
||||
export RANK_SIZE=1
|
||||
export DEVICE_ID=$4
|
||||
export RANK_ID=0
|
||||
|
||||
rm -rf ./train_standalone
|
||||
mkdir ./train_standalone
|
||||
cp ../*.py ./train_standalone
|
||||
cp *.sh ./train_standalone
|
||||
cp -r ../src ./train_standalone
|
||||
cd ./train_standalone || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
if [ $# == 4 ]
|
||||
then
|
||||
python train.py --data_url=$PATH1 --mlp=$2 --extra=$3 &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 5 ]
|
||||
then
|
||||
python train.py --data_url=$PATH1 --mlp=$2 --extra=$3 --pre_trained=$PATH2 &> log &
|
||||
fi
|
||||
|
||||
cd ..
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.sparse = sparse
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / num_classes, mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
|
||||
|
||||
def construct(self, logit, label):
|
||||
if self.sparse:
|
||||
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss = self.ce(logit, label)
|
||||
return loss
|
|
@ -0,0 +1,133 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" GEBlock."""
|
||||
import mindspore.nn as nn
|
||||
import mindspore as ms
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
class GEBlock(nn.Cell):
|
||||
"""
|
||||
Args:
|
||||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
spatial(int) : output_size of block
|
||||
extra_params(bool) : Whether to use DW Conv to down-sample
|
||||
mlp(bool) : Whether to combine SENet (using 1*1 conv)
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
Examples:
|
||||
>>> GEBlock(3, 128, 2, 56, True, True)
|
||||
"""
|
||||
|
||||
def __init__(self, in_channel, out_channel, stride, spatial, extra_params, mlp):
|
||||
super().__init__()
|
||||
expansion = 4
|
||||
|
||||
self.mlp = mlp
|
||||
self.extra_params = extra_params
|
||||
|
||||
# middle channel num
|
||||
channel = out_channel // expansion
|
||||
self.conv1 = nn.Conv2dBnAct(in_channel, channel, kernel_size=1, stride=1,
|
||||
has_bn=True, pad_mode="same", activation='relu')
|
||||
|
||||
self.conv2 = nn.Conv2dBnAct(channel, channel, kernel_size=3, stride=stride,
|
||||
has_bn=True, pad_mode="same", activation='relu')
|
||||
|
||||
self.conv3 = nn.Conv2dBnAct(channel, out_channel, kernel_size=1, stride=1, pad_mode='same',
|
||||
has_bn=True)
|
||||
|
||||
# whether down-sample identity
|
||||
self.down_sample = False
|
||||
if stride != 1 or in_channel != out_channel:
|
||||
self.down_sample = True
|
||||
|
||||
self.down_layer = None
|
||||
if self.down_sample:
|
||||
self.down_layer = nn.Conv2dBnAct(in_channel, out_channel,
|
||||
kernel_size=1, stride=stride,
|
||||
pad_mode='same', has_bn=True)
|
||||
|
||||
if extra_params:
|
||||
cellList = []
|
||||
# implementation of DW Conv has some bug while kernel_size is too big, so down sample
|
||||
if spatial >= 56:
|
||||
cellList.extend([nn.Conv2d(in_channels=out_channel,
|
||||
out_channels=out_channel,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
pad_mode="same"),
|
||||
nn.BatchNorm2d(out_channel)])
|
||||
spatial //= 2
|
||||
|
||||
cellList.extend([nn.Conv2d(in_channels=out_channel,
|
||||
out_channels=out_channel,
|
||||
kernel_size=spatial,
|
||||
group=out_channel,
|
||||
stride=1,
|
||||
padding=0,
|
||||
pad_mode="pad"),
|
||||
nn.BatchNorm2d(out_channel)])
|
||||
|
||||
self.downop = nn.SequentialCell(cellList)
|
||||
|
||||
else:
|
||||
|
||||
self.downop = P.ReduceMean(keep_dims=True)
|
||||
|
||||
if mlp:
|
||||
mlpLayer = []
|
||||
mlpLayer.append(nn.Conv2d(in_channels=out_channel,
|
||||
out_channels=out_channel//16,
|
||||
kernel_size=1))
|
||||
mlpLayer.append(nn.ReLU())
|
||||
mlpLayer.append(nn.Conv2d(in_channels=out_channel//16,
|
||||
out_channels=out_channel,
|
||||
kernel_size=1))
|
||||
self.mlpLayer = nn.SequentialCell(mlpLayer)
|
||||
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.add = ms.ops.Add()
|
||||
self.relu = nn.ReLU()
|
||||
self.mul = ms.ops.Mul()
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
"""
|
||||
Args:
|
||||
x : input Tensor.
|
||||
"""
|
||||
identity = x
|
||||
out = self.conv1(x)
|
||||
out = self.conv2(out)
|
||||
out = self.conv3(out)
|
||||
|
||||
if self.down_sample:
|
||||
identity = self.down_layer(identity)
|
||||
|
||||
if self.extra_params:
|
||||
out_ge = self.downop(out)
|
||||
else:
|
||||
out_ge = self.downop(out, (2, 3))
|
||||
|
||||
if self.mlp:
|
||||
out_ge = self.mlpLayer(out_ge)
|
||||
out_ge = self.sigmoid(out_ge)
|
||||
out = self.mul(out, out_ge)
|
||||
out = self.add(out, identity)
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
|
@ -0,0 +1,317 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""GENet."""
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.tensor import Tensor
|
||||
from src.GEBlock import GEBlock
|
||||
|
||||
def calculate_gain(nonlinearity, param=None):
|
||||
"""calculate_gain"""
|
||||
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d',
|
||||
'conv_transpose2d', 'conv_transpose3d']
|
||||
res = 0
|
||||
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
||||
res = 1
|
||||
elif nonlinearity == 'tanh':
|
||||
res = 5.0 / 3
|
||||
elif nonlinearity == 'relu':
|
||||
res = math.sqrt(2.0)
|
||||
elif nonlinearity == 'leaky_relu':
|
||||
if param is None:
|
||||
negative_slope = 0.01
|
||||
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
|
||||
# True/False are instances of int, hence check above
|
||||
negative_slope = param
|
||||
else:
|
||||
raise ValueError("negative_slope {} not a valid number".format(param))
|
||||
res = math.sqrt(2.0 / (1 + negative_slope ** 2))
|
||||
else:
|
||||
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
|
||||
return res
|
||||
|
||||
|
||||
def _calculate_fan_in_and_fan_out(tensor):
|
||||
"""
|
||||
_calculate_fan_in_and_fan_out
|
||||
"""
|
||||
dimensions = len(tensor)
|
||||
if dimensions < 2:
|
||||
raise ValueError("Fan in and fan out can not be computed for tensor"
|
||||
" with fewer than 2 dimensions")
|
||||
if dimensions == 2: # Linear
|
||||
fan_in = tensor[1]
|
||||
fan_out = tensor[0]
|
||||
else:
|
||||
num_input_fmaps = tensor[1]
|
||||
num_output_fmaps = tensor[0]
|
||||
receptive_field_size = 1
|
||||
if dimensions > 2:
|
||||
receptive_field_size = tensor[2] * tensor[3]
|
||||
fan_in = num_input_fmaps * receptive_field_size
|
||||
fan_out = num_output_fmaps * receptive_field_size
|
||||
return fan_in, fan_out
|
||||
|
||||
|
||||
def _calculate_correct_fan(tensor, mode):
|
||||
"""
|
||||
for pylint.
|
||||
"""
|
||||
mode = mode.lower()
|
||||
valid_modes = ['fan_in', 'fan_out']
|
||||
if mode not in valid_modes:
|
||||
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
|
||||
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
||||
return fan_in if mode == 'fan_in' else fan_out
|
||||
|
||||
|
||||
def kaiming_normal(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||
"""
|
||||
for pylint.
|
||||
"""
|
||||
fan = _calculate_correct_fan(inputs_shape, mode)
|
||||
gain = calculate_gain(nonlinearity, a)
|
||||
std = gain / math.sqrt(fan)
|
||||
return np.random.normal(0, std, size=inputs_shape).astype(np.float32)
|
||||
|
||||
|
||||
def kaiming_uniform(inputs_shape, a=0., mode='fan_in', nonlinearity='leaky_relu'):
|
||||
"""
|
||||
for pylint.
|
||||
"""
|
||||
fan = _calculate_correct_fan(inputs_shape, mode)
|
||||
gain = calculate_gain(nonlinearity, a)
|
||||
std = gain / math.sqrt(fan)
|
||||
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
|
||||
return np.random.uniform(-bound, bound, size=inputs_shape).astype(np.float32)
|
||||
|
||||
|
||||
def _conv3x3(in_channel, out_channel, stride=1):
|
||||
|
||||
weight_shape = (out_channel, in_channel, 3, 3)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
|
||||
return nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride,
|
||||
padding=0, pad_mode='same', weight_init=weight)
|
||||
|
||||
|
||||
def _conv1x1(in_channel, out_channel, stride=1):
|
||||
|
||||
weight_shape = (out_channel, in_channel, 1, 1)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
|
||||
return nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride,
|
||||
padding=0, pad_mode='same', weight_init=weight)
|
||||
|
||||
|
||||
def _conv7x7(in_channel, out_channel, stride=1):
|
||||
|
||||
weight_shape = (out_channel, in_channel, 7, 7)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
return nn.Conv2d(in_channel, out_channel,
|
||||
kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
||||
|
||||
|
||||
def _bn(channel):
|
||||
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.95,
|
||||
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
||||
|
||||
|
||||
def _bn_last(channel):
|
||||
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.95,
|
||||
gamma_init=0, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
||||
|
||||
|
||||
def _fc(in_channel, out_channel):
|
||||
weight_shape = (out_channel, in_channel)
|
||||
weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5)))
|
||||
return nn.Dense(in_channel, out_channel, has_bias=True, weight_init=weight, bias_init=0)
|
||||
|
||||
|
||||
class GENet(nn.Cell):
|
||||
"""
|
||||
GENet architecture.
|
||||
|
||||
Args:
|
||||
block (Cell): Block for network.
|
||||
layer_nums (list): Numbers of block in different layers.
|
||||
in_channels (list): Input channel in each layer.
|
||||
out_channels (list): Output channel in each layer.
|
||||
strides (list): Stride size in each layer.
|
||||
spatial(list): Numbers of output spatial size of different groups.
|
||||
num_classes (int): The number of classes that the training images are belonging to.
|
||||
extra_params(bool) : Whether to use DW Conv to down-sample
|
||||
mlp(bool) : Whether to combine SENet (using 1*1 conv)
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> GENet(GEBlock,
|
||||
>>> [3, 4, 6, 3],
|
||||
>>> [64, 256, 512, 1024],
|
||||
>>> [256, 512, 1024, 2048],
|
||||
>>> [1, 2, 2, 2],
|
||||
>>> [56,28,14,7]
|
||||
>>> 1001,True,True)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
block,
|
||||
layer_nums,
|
||||
in_channels,
|
||||
out_channels,
|
||||
strides,
|
||||
spatial,
|
||||
num_classes,
|
||||
extra_params,
|
||||
mlp):
|
||||
super(GENet, self).__init__()
|
||||
|
||||
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
|
||||
raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
|
||||
self.extra = extra_params
|
||||
|
||||
# initial stage
|
||||
self.conv1 = _conv7x7(3, 64, stride=2)
|
||||
self.bn1 = _bn(64)
|
||||
self.relu = P.ReLU()
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
||||
|
||||
self.layer1 = self._make_layer(block=block,
|
||||
layer_num=layer_nums[0],
|
||||
in_channel=in_channels[0],
|
||||
out_channel=out_channels[0],
|
||||
stride=strides[0],
|
||||
spatial=spatial[0],
|
||||
extra_params=extra_params,
|
||||
mlp=mlp)
|
||||
self.layer2 = self._make_layer(block=block,
|
||||
layer_num=layer_nums[1],
|
||||
in_channel=in_channels[1],
|
||||
out_channel=out_channels[1],
|
||||
stride=strides[1],
|
||||
spatial=spatial[1],
|
||||
extra_params=extra_params,
|
||||
mlp=mlp)
|
||||
self.layer3 = self._make_layer(block=block,
|
||||
layer_num=layer_nums[2],
|
||||
in_channel=in_channels[2],
|
||||
out_channel=out_channels[2],
|
||||
stride=strides[2],
|
||||
spatial=spatial[2],
|
||||
extra_params=extra_params,
|
||||
mlp=mlp)
|
||||
self.layer4 = self._make_layer(block=block,
|
||||
layer_num=layer_nums[3],
|
||||
in_channel=in_channels[3],
|
||||
out_channel=out_channels[3],
|
||||
stride=strides[3],
|
||||
spatial=spatial[3],
|
||||
extra_params=extra_params,
|
||||
mlp=mlp)
|
||||
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.flatten = nn.Flatten()
|
||||
self.end_point = _fc(out_channels[3], num_classes)
|
||||
|
||||
def _make_layer(self, block, layer_num, in_channel, out_channel,
|
||||
stride, spatial, extra_params, mlp):
|
||||
"""
|
||||
Make stage network of GENet.
|
||||
|
||||
Args:
|
||||
block (Cell): GENet block.
|
||||
layer_num (int): Layer number.
|
||||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer.
|
||||
spatial(int): output spatial size of every block in same group.
|
||||
extra_params(bool) : Whether to use DW Conv to down-sample
|
||||
mlp(bool) : Whether to combine SENet (using 1*1 conv)
|
||||
Returns:
|
||||
SequentialCell, the output layer.
|
||||
|
||||
"""
|
||||
layers = []
|
||||
|
||||
ge_block = block(in_channel=in_channel,
|
||||
out_channel=out_channel,
|
||||
stride=stride,
|
||||
spatial=spatial,
|
||||
extra_params=extra_params,
|
||||
mlp=mlp)
|
||||
layers.append(ge_block)
|
||||
for _ in range(1, layer_num):
|
||||
ge_block = block(in_channel=out_channel,
|
||||
out_channel=out_channel,
|
||||
stride=1,
|
||||
spatial=spatial,
|
||||
extra_params=extra_params,
|
||||
mlp=mlp)
|
||||
layers.append(ge_block)
|
||||
return nn.SequentialCell(layers)
|
||||
|
||||
def construct(self, x):
|
||||
"""
|
||||
Args:
|
||||
x : input Tensor.
|
||||
"""
|
||||
# initial stage
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
c1 = self.maxpool(x)
|
||||
|
||||
# four groups
|
||||
c2 = self.layer1(c1)
|
||||
c3 = self.layer2(c2)
|
||||
c4 = self.layer3(c3)
|
||||
c5 = self.layer4(c4)
|
||||
|
||||
out = self.mean(c5, (2, 3))
|
||||
out = self.flatten(out)
|
||||
out = self.end_point(out)
|
||||
|
||||
return out
|
||||
|
||||
def GE_resnet50(class_num=1000, extra=True, mlp=True):
|
||||
"""
|
||||
Get GE-ResNet50 neural network.
|
||||
Default : GE Theta+ version (best)
|
||||
|
||||
Args:
|
||||
class_num (int): Class number.
|
||||
extra(bool) : Whether to use DW Conv to down-sample
|
||||
mlp(bool) : Whether to combine SENet (using 1*1 conv)
|
||||
Returns:
|
||||
Cell, cell instance of GENet-ResNet50 neural network.
|
||||
|
||||
Examples:
|
||||
>>> net = GE_resnet50(1000)
|
||||
"""
|
||||
|
||||
return GENet(block=GEBlock,
|
||||
layer_nums=[3, 4, 6, 3],
|
||||
in_channels=[64, 256, 512, 1024],
|
||||
out_channels=[256, 512, 1024, 2048],
|
||||
strides=[1, 2, 2, 2],
|
||||
spatial=[56, 28, 14, 7],
|
||||
num_classes=class_num,
|
||||
extra_params=extra,
|
||||
mlp=mlp)
|
|
@ -0,0 +1,82 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in train.py and eval.py
|
||||
"""
|
||||
from easydict import EasyDict as ed
|
||||
# config optimizer for resnet50, imagenet2012. Momentum is default, Thor is optional.
|
||||
cfg = ed({
|
||||
'optimizer': 'Momentum',
|
||||
})
|
||||
|
||||
config1 = ed({
|
||||
"class_num": 1000,
|
||||
"batch_size": 256,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 150,
|
||||
"pretrain_epoch_size": 0,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 5,
|
||||
"keep_checkpoint_max": 5,
|
||||
"decay_mode": "linear",
|
||||
"save_checkpoint_path": "./checkpoints",
|
||||
"hold_epochs": 0,
|
||||
"use_label_smooth": True,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr_init": 0.8,
|
||||
"lr_end": 0.0
|
||||
})
|
||||
|
||||
config2 = ed({
|
||||
"class_num": 1000,
|
||||
"batch_size": 256,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 150,
|
||||
"pretrain_epoch_size": 0,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 5,
|
||||
"keep_checkpoint_max": 5,
|
||||
"decay_mode": "linear",
|
||||
"save_checkpoint_path": "./checkpoints",
|
||||
"hold_epochs": 0,
|
||||
"use_label_smooth": True,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr_init": 0.8,
|
||||
"lr_end": 0.0
|
||||
})
|
||||
|
||||
config3 = ed({
|
||||
"class_num": 1000,
|
||||
"batch_size": 256,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 220,
|
||||
"pretrain_epoch_size": 0,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 5,
|
||||
"keep_checkpoint_max": 5,
|
||||
"decay_mode": "cosine",
|
||||
"save_checkpoint_path": "./checkpoints",
|
||||
"hold_epochs": 0,
|
||||
"use_label_smooth": True,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr_init": 0.8,
|
||||
"lr_end": 0.0
|
||||
})
|
|
@ -0,0 +1,108 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
create train or eval dataset.
|
||||
"""
|
||||
import os
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.vision.c_transforms as C
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
|
||||
|
||||
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32,
|
||||
target="Ascend", distribute=False):
|
||||
"""
|
||||
create a train or eval imagenet2012 dataset for resnet50
|
||||
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
repeat_num(int): the repeat times of dataset. Default: 1
|
||||
batch_size(int): the batch size of dataset. Default: 32
|
||||
target(str): the device target. Default: Ascend
|
||||
distribute(bool): data for distribute or not. Default: False
|
||||
|
||||
Returns:
|
||||
dataset
|
||||
"""
|
||||
if target == "Ascend":
|
||||
device_num, rank_id = _get_rank_info()
|
||||
else:
|
||||
if distribute:
|
||||
init()
|
||||
rank_id = get_rank()
|
||||
device_num = get_group_size()
|
||||
else:
|
||||
device_num = 1
|
||||
|
||||
if device_num == 1:
|
||||
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
else:
|
||||
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||
num_shards=device_num, shard_id=rank_id)
|
||||
|
||||
image_size = 224
|
||||
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
||||
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
||||
|
||||
# define map operations
|
||||
if do_train:
|
||||
trans = [
|
||||
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
|
||||
C.RandomHorizontalFlip(prob=0.5),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
else:
|
||||
trans = [
|
||||
C.Decode(),
|
||||
C.Resize(256),
|
||||
C.CenterCrop(image_size),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
|
||||
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
|
||||
|
||||
# apply batch operations
|
||||
data_set = data_set.batch(batch_size, drop_remainder=True)
|
||||
|
||||
# apply dataset repeat operation
|
||||
data_set = data_set.repeat(repeat_num)
|
||||
|
||||
return data_set
|
||||
|
||||
|
||||
|
||||
def _get_rank_info():
|
||||
"""
|
||||
get rank size and rank id
|
||||
"""
|
||||
# rank_size = int(os.getenv("RANK_SIZE", default=1))
|
||||
rank_size = int(os.getenv("RANK_SIZE"))
|
||||
|
||||
if rank_size > 1:
|
||||
rank_size = get_group_size()
|
||||
rank_id = get_rank()
|
||||
else:
|
||||
rank_size = 1
|
||||
rank_id = 0
|
||||
|
||||
return rank_size, rank_id
|
|
@ -0,0 +1,84 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _generate_linear_lr(lr_init, lr_end, total_steps):
|
||||
"""
|
||||
Applies liner decay to generate learning rate array.
|
||||
|
||||
Args:
|
||||
lr_init(float): init learning rate.
|
||||
lr_end(float): end learning rate
|
||||
total_steps(int): all steps in training.
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array.
|
||||
"""
|
||||
lr_each_step = []
|
||||
for i in range(total_steps):
|
||||
lr = lr_init - (lr_init - lr_end) * (i) / (total_steps)
|
||||
lr_each_step.append(lr)
|
||||
|
||||
return lr_each_step
|
||||
|
||||
def _generate_cosine_lr(lr_init, total_steps):
|
||||
"""
|
||||
Applies cosine decay to generate learning rate array.
|
||||
|
||||
Args:
|
||||
lr_init(float): init learning rate.
|
||||
lr_end(float): end learning rate
|
||||
total_steps(int): all steps in training.
|
||||
warmup_steps(int): all steps in warmup epochs.
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array.
|
||||
"""
|
||||
decay_steps = total_steps
|
||||
lr_each_step = []
|
||||
for i in range(total_steps):
|
||||
linear_decay = (total_steps - i) / decay_steps
|
||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
|
||||
decayed = linear_decay * cosine_decay + 0.00001
|
||||
lr = lr_init * decayed
|
||||
lr_each_step.append(lr)
|
||||
return lr_each_step
|
||||
|
||||
def get_lr(lr_init, lr_end, total_epochs, steps_per_epoch, decay_mode):
|
||||
"""
|
||||
generate learning rate array
|
||||
|
||||
Args:
|
||||
lr_init(float): init learning rate
|
||||
lr_end(float): end learning rate
|
||||
total_epochs(int): total epoch of training
|
||||
steps_per_epoch(int): steps of one epoch
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
if decay_mode == "cosine":
|
||||
lr_each_step = _generate_cosine_lr(lr_init, total_steps)
|
||||
else:
|
||||
lr_each_step = _generate_linear_lr(lr_init, lr_end, total_steps)
|
||||
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
return lr_each_step
|
|
@ -0,0 +1,213 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""train GENet."""
|
||||
import os
|
||||
import argparse
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||
from mindspore.train.callback import LossMonitor, TimeMonitor
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.common import set_seed
|
||||
from mindspore.parallel import set_algo_parameters
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.initializer as weight_init
|
||||
from src.CrossEntropySmooth import CrossEntropySmooth
|
||||
from src.GENet import GE_resnet50 as net
|
||||
from src.lr_generator import get_lr
|
||||
from src.dataset import create_dataset
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
|
||||
parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--train_url', type=str, default=None, help='Train output path')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
|
||||
help="Device target, support Ascend, GPU and CPU.")
|
||||
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
||||
parser.add_argument('--extra', type=str, default="True",
|
||||
help='whether to use Depth-wise conv to down sample')
|
||||
parser.add_argument('--mlp', type=str, default="True", help='bottleneck . whether to use 1*1 conv')
|
||||
parser.add_argument('--is_modelarts', type=str, default="False", help='is train on modelarts')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
if args_opt.extra.lower() == "false":
|
||||
from src.config import config3 as config
|
||||
else:
|
||||
if args_opt.mlp.lower() == "false":
|
||||
from src.config import config2 as config
|
||||
else:
|
||||
from src.config import config1 as config
|
||||
|
||||
if args_opt.is_modelarts == "True":
|
||||
import moxing as mox
|
||||
|
||||
set_seed(1)
|
||||
|
||||
def filter_checkpoint_parameter_by_list(origin_dict, param_filter):
|
||||
"""remove useless parameters according to filter_list"""
|
||||
for key in list(origin_dict.keys()):
|
||||
for name in param_filter:
|
||||
if name in key:
|
||||
print("Delete parameter from checkpoint: ", key)
|
||||
del origin_dict[key]
|
||||
break
|
||||
|
||||
def trans_char_to_bool(str_):
|
||||
"""
|
||||
Args:
|
||||
str_: string
|
||||
|
||||
Returns:
|
||||
bool
|
||||
"""
|
||||
result = False
|
||||
if str_.lower() == "true":
|
||||
result = True
|
||||
return result
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
device_num = int(os.getenv("RANK_SIZE"))
|
||||
|
||||
ckpt_save_dir = config.save_checkpoint_path
|
||||
local_train_data_url = args_opt.data_url
|
||||
|
||||
if args_opt.is_modelarts == "True":
|
||||
local_summary_dir = "/cache/summary"
|
||||
local_data_url = "/cache/data"
|
||||
local_train_url = "/cache/ckpt"
|
||||
local_zipfolder_url = "/cache/tarzip"
|
||||
ckpt_save_dir = local_train_url
|
||||
mox.file.make_dirs(local_train_url)
|
||||
mox.file.make_dirs(local_summary_dir)
|
||||
filename = "imagenet_original.tar.gz"
|
||||
# transfer dataset
|
||||
local_data_url = os.path.join(local_data_url, str(device_id))
|
||||
mox.file.make_dirs(local_data_url)
|
||||
local_zip_path = os.path.join(local_zipfolder_url, str(device_id), filename)
|
||||
obs_zip_path = os.path.join(args_opt.data_url, filename)
|
||||
mox.file.copy(obs_zip_path, local_zip_path)
|
||||
unzip_command = "tar -xvf %s -C %s" % (local_zip_path, local_data_url)
|
||||
os.system(unzip_command)
|
||||
local_train_data_url = os.path.join(local_data_url, "imagenet_original", "train")
|
||||
|
||||
target = args_opt.device_target
|
||||
if target != 'Ascend':
|
||||
raise ValueError("Unsupported device target.")
|
||||
|
||||
run_distribute = False
|
||||
|
||||
if device_num > 1:
|
||||
run_distribute = True
|
||||
|
||||
# init context
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
|
||||
|
||||
if run_distribute:
|
||||
|
||||
context.set_context(device_id=device_id,
|
||||
enable_auto_mixed_precision=True)
|
||||
context.set_auto_parallel_context(device_num=device_num,
|
||||
parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
set_algo_parameters(elementwise_op_strategy_follow=True)
|
||||
context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
|
||||
init()
|
||||
|
||||
# create dataset
|
||||
dataset = create_dataset(dataset_path=local_train_data_url, do_train=True, repeat_num=1,
|
||||
batch_size=config.batch_size, target=target, distribute=run_distribute)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# define net
|
||||
mlp = trans_char_to_bool(args_opt.mlp)
|
||||
extra = trans_char_to_bool(args_opt.extra)
|
||||
|
||||
net = net(class_num=config.class_num, extra=extra, mlp=mlp)
|
||||
|
||||
# init weight
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
|
||||
load_param_into_net(net, param_dict)
|
||||
else:
|
||||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Conv2d):
|
||||
cell.weight.set_data(weight_init.initializer(weight_init.HeUniform(),
|
||||
cell.weight.shape,
|
||||
cell.weight.dtype))
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
|
||||
cell.weight.shape,
|
||||
cell.weight.dtype))
|
||||
|
||||
lr = get_lr(config.lr_init, config.lr_end, config.epoch_size, step_size, config.decay_mode)
|
||||
|
||||
lr = Tensor(lr)
|
||||
|
||||
# define opt
|
||||
decayed_params = []
|
||||
no_decayed_params = []
|
||||
for param in net.trainable_params():
|
||||
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
|
||||
decayed_params.append(param)
|
||||
else:
|
||||
no_decayed_params.append(param)
|
||||
|
||||
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
|
||||
{'params': no_decayed_params},
|
||||
{'order_params': net.trainable_params()}]
|
||||
|
||||
opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
|
||||
# define loss, model
|
||||
if target == "Ascend":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
|
||||
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
||||
smooth_factor=config.label_smooth_factor,
|
||||
num_classes=config.class_num)
|
||||
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale,
|
||||
metrics={'acc'}, amp_level="O2", keep_batchnorm_fp32=False)
|
||||
else:
|
||||
raise ValueError("Unsupported device target.")
|
||||
|
||||
# define callbacks
|
||||
time_cb = TimeMonitor(data_size=step_size)
|
||||
loss_cb = LossMonitor()
|
||||
rank_id = int(os.getenv("RANK_ID"))
|
||||
|
||||
cb = [time_cb, loss_cb]
|
||||
|
||||
if rank_id == 0:
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
ckpt_cb = ModelCheckpoint(prefix="GENet", directory=ckpt_save_dir, config=config_ck)
|
||||
cb += [ckpt_cb]
|
||||
|
||||
dataset_sink_mode = target != "CPU"
|
||||
model.train(config.epoch_size, dataset, callbacks=cb,
|
||||
sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)
|
||||
|
||||
if device_id == 0 and args_opt.is_modelarts == "True":
|
||||
mox.file.copy_parallel(ckpt_save_dir, args_opt.train_url)
|
Loading…
Reference in New Issue