more understandable op explanation1

This commit is contained in:
lilinjie 2022-04-06 18:01:15 +08:00
parent e611ca2907
commit a1d932ec0a
3 changed files with 10 additions and 8 deletions

View File

@ -5452,7 +5452,7 @@ class Invert(Primitive):
.. math::
out_i = -x_{i}
out_i = ~x_{i}
Inputs:
- **x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.

View File

@ -6666,8 +6666,7 @@ class Dropout(PrimitiveWithCheck):
Seed1 (int): Seed1 value for random generating. Default: 0.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, with float16 or float32 data type.
- **x** (Tensor) - The input of Dropout, a Tensor of any shape with data type of float16 or float32.
Outputs:
- **output** (Tensor) - With the same shape and data type as `x`.

View File

@ -222,12 +222,14 @@ class CheckValid(PrimitiveWithInfer):
specifying the valid boundary (heights x ratio, weights x ratio).
Inputs:
- **bboxes** (Tensor) - Bounding boxes tensor with shape (N, 4). Data type must be float16 or float32.
- **img_metas** (Tensor) - Raw image size information with the format of (height, width, ratio).
Data type must be float16 or float32.
- **bboxes** (Tensor) - Bounding boxes tensor with shape (N, 4). "N" indicates the number of
bounding boxes, the value "4" indicates "x0", "x1", "y0", and "y1". Data type must be float16 or float32.
- **img_metas** (Tensor) - Raw image size information with the format of (height, width, ratio), specifying
the valid boundary(height * ratio, width * ratio). Data type must be float16 or float32.
Outputs:
Tensor, with shape of (N,) and dtype of bool.
Tensor, with shape of (N,) and dtype of bool, specifying whether the bounding boxes is in the image.
"True" indicates valid, while "False" indicates invalid.
Raises:
TypeError: If `bboxes` or `img_metas` is not a Tensor.
@ -609,7 +611,8 @@ class ConfusionMatrix(PrimitiveWithInfer):
class PopulationCount(PrimitiveWithInfer):
r"""
Calculates population count.
Computes element-wise population count(a.k.a bitsum, bitcount).
For each entry in `input` , calculates the number of 1 bits in the binary representation of that entry.
Inputs:
- **input** (Tensor) - The data type must be int16 or uint16.