forked from mindspore-Ecosystem/mindspore
add CPU l2loss op
This commit is contained in:
parent
ed5fa7ba73
commit
9e5618a5b8
|
@ -0,0 +1,56 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "backend/kernel_compiler/cpu/l2loss_cpu_kernel.h"
|
||||||
|
#include "runtime/device/cpu/cpu_device_address.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
template <typename T>
|
||||||
|
void L2LossCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||||
|
CheckParam(kernel_node);
|
||||||
|
std::vector<size_t> x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||||
|
for (const size_t &d : x_shape) {
|
||||||
|
tensor_size_ *= d;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
bool L2LossCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &,
|
||||||
|
const std::vector<kernel::AddressPtr> &outputs) {
|
||||||
|
auto input_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||||
|
auto result_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||||
|
*result_addr = (T)0;
|
||||||
|
for (size_t i = 0; i < tensor_size_; i++) {
|
||||||
|
*result_addr += input_addr[i] * input_addr[i];
|
||||||
|
}
|
||||||
|
*result_addr = *result_addr / 2;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void L2LossCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
|
||||||
|
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||||
|
if (input_num != 1) {
|
||||||
|
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but L2LossCPUKernel needs 1 input.";
|
||||||
|
}
|
||||||
|
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||||
|
if (output_num != 1) {
|
||||||
|
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but L2LossCPUKernel needs 1 output.";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,47 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_L2_LOSS_CPU_KERNEL_H_
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_L2_LOSS_CPU_KERNEL_H_
|
||||||
|
#include <memory>
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <vector>
|
||||||
|
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||||
|
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
template <typename T>
|
||||||
|
class L2LossCPUKernel : public CPUKernel {
|
||||||
|
public:
|
||||||
|
L2LossCPUKernel() = default;
|
||||||
|
~L2LossCPUKernel() override = default;
|
||||||
|
|
||||||
|
void InitKernel(const CNodePtr &kernel_node) override;
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||||
|
const std::vector<AddressPtr> &outputs) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
void CheckParam(const CNodePtr &kernel_node);
|
||||||
|
size_t tensor_size_{1};
|
||||||
|
};
|
||||||
|
|
||||||
|
MS_REG_CPU_KERNEL_T(L2Loss, KernelAttr(), L2LossCPUKernel, float16);
|
||||||
|
MS_REG_CPU_KERNEL_T(L2Loss, KernelAttr(), L2LossCPUKernel, float);
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_L2_LOSS_CPU_KERNEL_H_
|
|
@ -64,3 +64,4 @@ from .one_hot import _one_hot_cpu
|
||||||
from .pad import _pad_cpu
|
from .pad import _pad_cpu
|
||||||
from .range import _range_cpu
|
from .range import _range_cpu
|
||||||
from .tensor_copy_slices import _tensor_copy_slices_cpu
|
from .tensor_copy_slices import _tensor_copy_slices_cpu
|
||||||
|
from .l2loss import _l2loss_cpu
|
||||||
|
|
|
@ -0,0 +1,30 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""L2Loss op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, CpuRegOp, DataType
|
||||||
|
|
||||||
|
l2loss_op_info = CpuRegOp("L2Loss") \
|
||||||
|
.input(0, "x", "required") \
|
||||||
|
.output(0, "y", "required") \
|
||||||
|
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||||
|
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(l2loss_op_info)
|
||||||
|
def _l2loss_cpu():
|
||||||
|
"""L2Loss cpu register"""
|
||||||
|
return
|
|
@ -2679,7 +2679,7 @@ class L2Loss(PrimitiveWithInfer):
|
||||||
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16)
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16)
|
||||||
|
|
|
@ -0,0 +1,143 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
import mindspore as ms
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
|
||||||
|
|
||||||
|
class L2LossNet(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(L2LossNet, self).__init__()
|
||||||
|
self.l2_loss = P.L2Loss()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
return self.l2_loss(x)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_l2loss_pynative_fp32_2x2():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float32)
|
||||||
|
expect = np.array(15, np.float32)
|
||||||
|
output = P.L2Loss()(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_l2loss_pynative_fp16_2x2():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float16)
|
||||||
|
expect = np.array(15, np.float16)
|
||||||
|
output = P.L2Loss()(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_l2loss_pynative_fp32_1x4():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([1., 2., 3., 4.]), ms.float32)
|
||||||
|
expect = np.array(15, np.float32)
|
||||||
|
output = P.L2Loss()(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_l2loss_pynative_fp16_1x4():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([1., 2., 3., 4.]), ms.float16)
|
||||||
|
expect = np.array(15, np.float16)
|
||||||
|
output = P.L2Loss()(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_l2loss_graph_fp32_1x4():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([1., 2., 3., 4.]), ms.float32)
|
||||||
|
expect = np.array(15, np.float32)
|
||||||
|
l2_loss = L2LossNet()
|
||||||
|
output = l2_loss(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_l2loss_graph_fp16_1x4():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([1., 2., 3., 4.]), ms.float16)
|
||||||
|
expect = np.array(15, np.float16)
|
||||||
|
l2_loss = L2LossNet()
|
||||||
|
output = l2_loss(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
class GradNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(GradNet, self).__init__()
|
||||||
|
self.net = net
|
||||||
|
self.grad_op = C.GradOperation(get_all=True)
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
gradient_function = self.grad_op(self.net)
|
||||||
|
return gradient_function(x)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_l2loss_grad_fp32():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
x = Tensor(np.array([2.4, 3.2, 1.2, 5.9, 9.]).astype(np.float32))
|
||||||
|
error = 1e-4
|
||||||
|
net = L2LossNet()
|
||||||
|
output = GradNet(net)(x)[0]
|
||||||
|
expect = x
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_l2loss_grad_fp16():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
x = Tensor(np.array([[2.4, 3.2, 4.8], [1.2, 5.9, 9.]]).astype(np.float16))
|
||||||
|
error = 1e-4
|
||||||
|
net = L2LossNet()
|
||||||
|
output = GradNet(net)(x)[0]
|
||||||
|
expect = x
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
Loading…
Reference in New Issue