forked from mindspore-Ecosystem/mindspore
add CPU l2loss op
This commit is contained in:
parent
ed5fa7ba73
commit
9e5618a5b8
|
@ -0,0 +1,56 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/l2loss_cpu_kernel.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
void L2LossCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
std::vector<size_t> x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (const size_t &d : x_shape) {
|
||||
tensor_size_ *= d;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool L2LossCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto input_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto result_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
*result_addr = (T)0;
|
||||
for (size_t i = 0; i < tensor_size_; i++) {
|
||||
*result_addr += input_addr[i] * input_addr[i];
|
||||
}
|
||||
*result_addr = *result_addr / 2;
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void L2LossCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but L2LossCPUKernel needs 1 input.";
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but L2LossCPUKernel needs 1 output.";
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,47 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_L2_LOSS_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_L2_LOSS_CPU_KERNEL_H_
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class L2LossCPUKernel : public CPUKernel {
|
||||
public:
|
||||
L2LossCPUKernel() = default;
|
||||
~L2LossCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
size_t tensor_size_{1};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T(L2Loss, KernelAttr(), L2LossCPUKernel, float16);
|
||||
MS_REG_CPU_KERNEL_T(L2Loss, KernelAttr(), L2LossCPUKernel, float);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_L2_LOSS_CPU_KERNEL_H_
|
|
@ -64,3 +64,4 @@ from .one_hot import _one_hot_cpu
|
|||
from .pad import _pad_cpu
|
||||
from .range import _range_cpu
|
||||
from .tensor_copy_slices import _tensor_copy_slices_cpu
|
||||
from .l2loss import _l2loss_cpu
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""L2Loss op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, CpuRegOp, DataType
|
||||
|
||||
l2loss_op_info = CpuRegOp("L2Loss") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(l2loss_op_info)
|
||||
def _l2loss_cpu():
|
||||
"""L2Loss cpu register"""
|
||||
return
|
|
@ -2679,7 +2679,7 @@ class L2Loss(PrimitiveWithInfer):
|
|||
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16)
|
||||
|
|
|
@ -0,0 +1,143 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore as ms
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
|
||||
class L2LossNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(L2LossNet, self).__init__()
|
||||
self.l2_loss = P.L2Loss()
|
||||
|
||||
def construct(self, x):
|
||||
return self.l2_loss(x)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2loss_pynative_fp32_2x2():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||
error = 1e-4
|
||||
x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float32)
|
||||
expect = np.array(15, np.float32)
|
||||
output = P.L2Loss()(x)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2loss_pynative_fp16_2x2():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||
error = 1e-4
|
||||
x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float16)
|
||||
expect = np.array(15, np.float16)
|
||||
output = P.L2Loss()(x)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2loss_pynative_fp32_1x4():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||
error = 1e-4
|
||||
x = Tensor(np.array([1., 2., 3., 4.]), ms.float32)
|
||||
expect = np.array(15, np.float32)
|
||||
output = P.L2Loss()(x)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2loss_pynative_fp16_1x4():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||
error = 1e-4
|
||||
x = Tensor(np.array([1., 2., 3., 4.]), ms.float16)
|
||||
expect = np.array(15, np.float16)
|
||||
output = P.L2Loss()(x)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2loss_graph_fp32_1x4():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
error = 1e-4
|
||||
x = Tensor(np.array([1., 2., 3., 4.]), ms.float32)
|
||||
expect = np.array(15, np.float32)
|
||||
l2_loss = L2LossNet()
|
||||
output = l2_loss(x)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2loss_graph_fp16_1x4():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
error = 1e-4
|
||||
x = Tensor(np.array([1., 2., 3., 4.]), ms.float16)
|
||||
expect = np.array(15, np.float16)
|
||||
l2_loss = L2LossNet()
|
||||
output = l2_loss(x)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
self.grad_op = C.GradOperation(get_all=True)
|
||||
|
||||
def construct(self, x):
|
||||
gradient_function = self.grad_op(self.net)
|
||||
return gradient_function(x)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2loss_grad_fp32():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
x = Tensor(np.array([2.4, 3.2, 1.2, 5.9, 9.]).astype(np.float32))
|
||||
error = 1e-4
|
||||
net = L2LossNet()
|
||||
output = GradNet(net)(x)[0]
|
||||
expect = x
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2loss_grad_fp16():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
x = Tensor(np.array([[2.4, 3.2, 4.8], [1.2, 5.9, 9.]]).astype(np.float16))
|
||||
error = 1e-4
|
||||
net = L2LossNet()
|
||||
output = GradNet(net)(x)[0]
|
||||
expect = x
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
Loading…
Reference in New Issue