ascend 310 inference for ssd-resnet50

This commit is contained in:
yuzhenhua 2021-06-19 14:36:35 +08:00
parent 43c61ff4f0
commit 9b564c70ae
4 changed files with 214 additions and 25 deletions
model_zoo/research/cv/ssd_resnet50

View File

@ -16,7 +16,10 @@
- [Evaluation Process](#evaluation-process)
- [Evaluation on Ascend](#evaluation-on-ascend)
- [Performance](#performance)
- [Export MindIR](#export-mindir)
- [Export Process](#Export-process)
- [Export](#Export)
- [Inference Process](#Inference-process)
- [Inference](#Inference)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
@ -150,9 +153,11 @@ Then you can run everything just like on ascend.
└─ cv
└─ ssd
├─ README.md # descriptions about SSD
├─ ascend310_infer # application for 310 inference
├─ scripts
├─ run_distribute_train.sh # shell script for distributed on ascend
└─ run_eval.sh # shell script for eval on ascend
├─ run_eval.sh # shell script for eval on ascend
└─ run_infer_310.sh # shell script for 310 inference
├─ src
├─ __init__.py # init file
├─ box_utils.py # bbox utils
@ -165,6 +170,7 @@ Then you can run everything just like on ascend.
├─ eval.py # eval scripts
├─ train.py # train scripts
├─ export.py # export mindir script
├─ postprogress.py # post process for 310 inference
└─ mindspore_hub_conf.py # mindspore hub interface
```
@ -275,6 +281,47 @@ mAP: 0.32719216721918915
```
## [Export Process](#contents)
### [Export](#content)
```shell
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT]
```
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
## [Inference Process](#contents)
### [Inference](#content)
Before performing inference, we need to export model first. Air model can only be exported in Ascend 910 environment, mindir model can be exported in any environment.
Current batch_ Size can only be set to 1.
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
```
Inference result will be stored in the example path, you can find result like the followings in acc.log.
```shell
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.327
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.475
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.358
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.115
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.353
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.455
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.314
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.485
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.509
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.200
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.554
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.692
mAP: 0.3266651054070853
```
### [Performance](#contents)
| 参数 | Ascend |

View File

@ -16,7 +16,10 @@
- [评估过程](#评估过程)
- [Ascend处理器环境评估](#ascend处理器环境评估)
- [性能](#性能)
- [导出MindIR](#导出MindIR)
- [导出过程](#导出过程)
- [导出](#导出)
- [推理过程](#推理过程)
- [推理](#推理)
- [随机情况说明](#随机情况说明)
- [ModelZoo主页](#modelzoo主页)
@ -112,8 +115,10 @@ sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
└─ cv
└─ ssd
├─ README.md ## SSD相关说明
├─ ascend310_infer ## 实现310推理源代码
├─ scripts
├─ run_distribute_train.sh ## Ascend分布式shell脚本
├─ run_infer_310.sh ## Ascend推理shell脚本
└─ run_eval.sh ## Ascend评估shell脚本
├─ src
├─ __init__.py ## 初始化文件
@ -125,6 +130,8 @@ sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
├─ lr_schedule.py ## 学习率生成器
└─ ssd.py ## SSD架构
├─ eval.py ## 评估脚本
├─ export.py ## 导出 AIR,MINDIR模型的脚本
├─ postprogress.py ## 310推理后处理脚本
├─ train.py ## 训练脚本
└─ mindspore_hub_conf.py ## MindSpore Hub接口
```
@ -233,6 +240,39 @@ mAP: 0.32719216721918915
```
## 导出过程
### 导出
```shell
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT]
```
`EXPORT_FORMAT`可选 ["AIR", "MINDIR"]
## 推理过程
### 推理
在还行推理之前我们需要先导出模型。Air模型只能在昇腾910环境上导出mindir可以在任意环境上导出。batch_size只支持1。
```shell
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.327
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.475
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.358
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.115
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.353
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.455
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.314
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.485
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.509
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.200
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.554
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.692
mAP: 0.3266651054070853
```
### 性能
| 参数 | Ascend |
@ -245,12 +285,6 @@ mAP: 0.32719216721918915
| mAP | IoU=0.50: 32.7% |
| 模型大小 | 281M.ckpt文件 |
## 导出MindIR
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
参数ckpt_file为必填项
`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中选择。

View File

@ -22,20 +22,20 @@
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/model.h"
#include "include/api/context.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/minddata/dataset/include/vision_ascend.h"
#include "include/minddata/dataset/include/execute.h"
#include "include/minddata/dataset/include/vision.h"
#include "include/dataset/vision_ascend.h"
#include "include/dataset/execute.h"
#include "include/dataset/vision.h"
#include "inc/utils.h"
using mindspore::GlobalContext;
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::ModelContext;
using mindspore::Status;
using mindspore::ModelType;
using mindspore::GraphCell;
@ -64,21 +64,24 @@ int main(int argc, char **argv) {
return 1;
}
GlobalContext::SetGlobalDeviceTarget(mindspore::kDeviceTypeAscend310);
GlobalContext::SetGlobalDeviceID(FLAGS_device_id);
auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR);
auto model_context = std::make_shared<mindspore::ModelContext>();
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
ascend310->SetBufferOptimizeMode("off_optimize");
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
if (FLAGS_cpu_dvpp == "DVPP") {
if (RealPath(FLAGS_aipp_path).empty()) {
std::cout << "Invalid aipp path" << std::endl;
return 1;
} else {
ModelContext::SetInsertOpConfigPath(model_context, FLAGS_aipp_path);
ascend310->SetInsertOpConfigPath(FLAGS_aipp_path);
}
}
Model model(GraphCell(graph), model_context);
Status ret = model.Build();
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
@ -142,7 +145,7 @@ int main(int argc, char **argv) {
}
double average = 0.0;
int inferCount = 0;
char tmpCh[256] = {0};
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
@ -150,12 +153,12 @@ int main(int argc, char **argv) {
inferCount++;
}
average = average / inferCount;
snprintf(tmpCh, sizeof(tmpCh), \
"NN inference cost average time: %4.3f ms of infer_count %d \n", average, inferCount);
std::stringstream timeCost;
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << tmpCh;
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;

View File

@ -0,0 +1,105 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 3 || $# -gt 4 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
DVPP is mandatory, and must choose from [DVPP|CPU], it's case-insensitive
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
data_path=$(get_real_path $2)
DVPP=${3^^}
device_id=0
if [ $# == 4 ]; then
device_id=$4
fi
echo "mindir name: "$model
echo "dataset path: "$data_path
echo "image process mode: "$DVPP
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function compile_app()
{
cd ../ascend310_infer || exit
bash build.sh &> build.log
}
function infer()
{
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
if [ "$DVPP" == "DVPP" ];then
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --cpu_dvpp=$DVPP --aipp_path=../ascend310_infer/aipp.cfg --image_height=640 --image_width=640 &> infer.log
elif [ "$DVPP" == "CPU" ]; then
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --cpu_dvpp=$DVPP --device_id=$device_id --image_height=300 --image_width=300 &> infer.log
else
echo "image process mode must be in [DVPP|CPU]"
exit 1
fi
}
function cal_acc()
{
python3.7 ../postprocess.py --result_path=./result_Files --img_path=$data_path --drop &> acc.log &
}
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi