forked from mindspore-Ecosystem/mindspore
array_ops error recti and others
This commit is contained in:
parent
dc45c64a78
commit
9a8c1b3c73
|
@ -493,11 +493,12 @@ class Validator:
|
||||||
if addition_error_info is None:
|
if addition_error_info is None:
|
||||||
addition_error_info = ''
|
addition_error_info = ''
|
||||||
type_str = (type(type_).__name__ if isinstance(type_, (tuple, list)) else "") + str(type_)
|
type_str = (type(type_).__name__ if isinstance(type_, (tuple, list)) else "") + str(type_)
|
||||||
raise TypeError(f'For \'{prim_name}\', the type of `{arg_name}` should be subclass'
|
raise TypeError(f"For '{prim_name}', the type of '{arg_name}'"
|
||||||
f' of {", ".join((str(x) for x in template_types))}, but got {type_str}'
|
f" should be {'one of ' if len(template_types) > 1 else ''}"
|
||||||
f' {addition_error_info}. This message is only for reference. The supported data types'
|
f"{', '.join((str(x) for x in template_types))}, but got {type_str}"
|
||||||
f' depend on the hardware that executes the operator'
|
f" {addition_error_info}. The supported data types depend on the hardware that"
|
||||||
f' and it is a subset of the data types above.')
|
f" executes the operator, please refer the official api document to get"
|
||||||
|
f" more information about the data type.")
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def check_valid_input(arg_name, arg_value, prim_name):
|
def check_valid_input(arg_name, arg_value, prim_name):
|
||||||
|
|
|
@ -607,10 +607,11 @@ class PReLU(Cell):
|
||||||
f"float32 when the 'w' is a tensor, but got {w.dtype}.")
|
f"float32 when the 'w' is a tensor, but got {w.dtype}.")
|
||||||
if len(w.shape) != 1 or w.shape[0] != channel:
|
if len(w.shape) != 1 or w.shape[0] != channel:
|
||||||
raise ValueError(f"For '{self.cls_name}', the dimension of 'w' should be 1, and the elements number "
|
raise ValueError(f"For '{self.cls_name}', the dimension of 'w' should be 1, and the elements number "
|
||||||
f"should be equal to the 'channel' when the 'w' is a tensor, but got 'w' shape {w}, "
|
f"should be equal to the 'channel' when the 'w' is a tensor, "
|
||||||
f"the 'channel' {channel}.")
|
f"but got 'w' shape {w.shape}, the 'channel' {channel}.")
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"For '{self.cls_name}', the 'w' only supported float, list and tensor, but got {type(w)}.")
|
raise TypeError(f"For '{self.cls_name}', the 'w' only supported float, list and tensor, "
|
||||||
|
f"but got {type(w).__name__}.")
|
||||||
self.w = Parameter(w, name='a')
|
self.w = Parameter(w, name='a')
|
||||||
self.prelu = P.PReLU()
|
self.prelu = P.PReLU()
|
||||||
self.relu = P.ReLU()
|
self.relu = P.ReLU()
|
||||||
|
|
|
@ -313,7 +313,7 @@ class Dense(Cell):
|
||||||
self.activation = get_activation(activation) if isinstance(activation, str) else activation
|
self.activation = get_activation(activation) if isinstance(activation, str) else activation
|
||||||
if activation is not None and not isinstance(self.activation, (Cell, Primitive)):
|
if activation is not None and not isinstance(self.activation, (Cell, Primitive)):
|
||||||
raise TypeError(f"For '{self.cls_name}', the 'activation' must be str or Cell or Primitive, but got "
|
raise TypeError(f"For '{self.cls_name}', the 'activation' must be str or Cell or Primitive, but got "
|
||||||
f"{type(activation)}.")
|
f"{type(activation).__name__}.")
|
||||||
self.activation_flag = self.activation is not None
|
self.activation_flag = self.activation is not None
|
||||||
|
|
||||||
def construct(self, x):
|
def construct(self, x):
|
||||||
|
@ -800,7 +800,8 @@ class Pad(Cell):
|
||||||
self.paddings = paddings
|
self.paddings = paddings
|
||||||
Validator.check_string(self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], 'mode', self.cls_name)
|
Validator.check_string(self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], 'mode', self.cls_name)
|
||||||
if not isinstance(paddings, tuple):
|
if not isinstance(paddings, tuple):
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'paddings' must be tuple, but got {type(paddings)}.")
|
raise TypeError(f"For '{self.cls_name}', the type of 'paddings' must be tuple, "
|
||||||
|
f"but got {type(paddings).__name__}.")
|
||||||
for item in paddings:
|
for item in paddings:
|
||||||
if len(item) != 2:
|
if len(item) != 2:
|
||||||
raise ValueError(f"For '{self.cls_name}', the dimension of 'paddings' must be (n, 2), "
|
raise ValueError(f"For '{self.cls_name}', the dimension of 'paddings' must be (n, 2), "
|
||||||
|
@ -827,14 +828,15 @@ def bilinear(shape, size, scale, align_corners, prim_name=None):
|
||||||
"""Check input and calculate shape"""
|
"""Check input and calculate shape"""
|
||||||
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
|
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
|
||||||
if not isinstance(align_corners, bool):
|
if not isinstance(align_corners, bool):
|
||||||
raise TypeError(f"{msg_prefix} type of 'align_corners' should be boolean, but got {type(align_corners)}.")
|
raise TypeError(f"{msg_prefix} type of 'align_corners' should be boolean, "
|
||||||
|
f"but got {type(align_corners).__name__}.")
|
||||||
if size is None and scale is None:
|
if size is None and scale is None:
|
||||||
raise ValueError(f"{msg_prefix} 'size' and 'scale' both none.")
|
raise ValueError(f"{msg_prefix} 'size' and 'scale' both none.")
|
||||||
if size is not None and scale is not None:
|
if size is not None and scale is not None:
|
||||||
raise ValueError(f"{msg_prefix} 'size' and 'scale' both not none.")
|
raise ValueError(f"{msg_prefix} 'size' and 'scale' both not none.")
|
||||||
if size is not None:
|
if size is not None:
|
||||||
if not isinstance(size, (tuple, list)):
|
if not isinstance(size, (tuple, list)):
|
||||||
raise ValueError(f"{msg_prefix} 'size' must be tuple or list, but got {type(size)}.")
|
raise ValueError(f"{msg_prefix} 'size' must be tuple or list, but got {type(size).__name__}.")
|
||||||
Validator.check_int(len(size), 2, Rel.EQ, "size", "bilinear")
|
Validator.check_int(len(size), 2, Rel.EQ, "size", "bilinear")
|
||||||
Validator.check_int(size[0], 1, Rel.GE, "size[0]", "bilinear")
|
Validator.check_int(size[0], 1, Rel.GE, "size[0]", "bilinear")
|
||||||
Validator.check_int(size[1], 1, Rel.GE, "size[1]", "bilinear")
|
Validator.check_int(size[1], 1, Rel.GE, "size[1]", "bilinear")
|
||||||
|
|
|
@ -299,8 +299,9 @@ class EmbeddingLookup(Cell):
|
||||||
self.embeddinglookup.shard(((1, 1), indices_strategy))
|
self.embeddinglookup.shard(((1, 1), indices_strategy))
|
||||||
else:
|
else:
|
||||||
if is_auto_parallel:
|
if is_auto_parallel:
|
||||||
Support_mode = ["field_slice", "table_row_slice", "table_column_slice", "batch_slice"]
|
support_mode = ["field_slice", "table_row_slice", "table_column_slice", "batch_slice"]
|
||||||
validator.check_string(slice_mode, Support_mode, "slice_mode", self.cls_name)
|
raise ValueError("For '{}', the 'slice_mode' must be in {}, "
|
||||||
|
"but got {}.".format(self.cls_name, support_mode, slice_mode))
|
||||||
if self.cache_enable and not enable_ps:
|
if self.cache_enable and not enable_ps:
|
||||||
if parallel_mode != ParallelMode.STAND_ALONE:
|
if parallel_mode != ParallelMode.STAND_ALONE:
|
||||||
raise ValueError(f"For '{self.cls_name}', parallel mode haven't supported cache enable yet.")
|
raise ValueError(f"For '{self.cls_name}', parallel mode haven't supported cache enable yet.")
|
||||||
|
|
|
@ -46,7 +46,7 @@ def _check_input_dtype(input_dtype, param_name, allow_dtypes, cls_name):
|
||||||
@constexpr
|
@constexpr
|
||||||
def _check_input_3d(input_shape, param_name, func_name):
|
def _check_input_3d(input_shape, param_name, func_name):
|
||||||
if len(input_shape) != 3:
|
if len(input_shape) != 3:
|
||||||
raise ValueError(f"For '{func_name}', the {param_name} should be 3d, but got the length of input_shape:"
|
raise ValueError(f"For '{func_name}', the '{param_name}' should be 3d, but got the length of input_shape:"
|
||||||
f" {len(input_shape)}.")
|
f" {len(input_shape)}.")
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -180,7 +180,7 @@ class _BatchNorm(Cell):
|
||||||
validator.check_int_range(rid, 0, rank_size, Rel.INC_LEFT, "rank id in process_groups")
|
validator.check_int_range(rid, 0, rank_size, Rel.INC_LEFT, "rank id in process_groups")
|
||||||
if rid in seen:
|
if rid in seen:
|
||||||
raise ValueError(f"For '{self.cls_name}', rank id in 'process_groups' should not be duplicated, "
|
raise ValueError(f"For '{self.cls_name}', rank id in 'process_groups' should not be duplicated, "
|
||||||
f"but got {rid}.")
|
f"but got {process_groups}.")
|
||||||
seen.add(rid)
|
seen.add(rid)
|
||||||
|
|
||||||
def _create_global_groups(self):
|
def _create_global_groups(self):
|
||||||
|
@ -241,7 +241,7 @@ class _BatchNorm(Cell):
|
||||||
def _channel_check(channel, num_channel, prim_name=None):
|
def _channel_check(channel, num_channel, prim_name=None):
|
||||||
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
|
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
|
||||||
if channel != num_channel:
|
if channel != num_channel:
|
||||||
raise ValueError(f"{msg_prefix} channel should be equal with num_channel, but got channel: "
|
raise ValueError(f"{msg_prefix} channel should be equal to num_channel, but got channel: "
|
||||||
f"{channel}, num_channel: {num_channel}.")
|
f"{channel}, num_channel: {num_channel}.")
|
||||||
|
|
||||||
|
|
||||||
|
@ -888,7 +888,7 @@ class LayerNorm(Cell):
|
||||||
super(LayerNorm, self).__init__()
|
super(LayerNorm, self).__init__()
|
||||||
if not isinstance(normalized_shape, (tuple, list)):
|
if not isinstance(normalized_shape, (tuple, list)):
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'normalized_shape' should be tuple[int] or list[int], "
|
raise TypeError(f"For '{self.cls_name}', the type of 'normalized_shape' should be tuple[int] or list[int], "
|
||||||
f"but got '{normalized_shape}' and the type is {type(normalized_shape)}.")
|
f"but got {normalized_shape} and the type is {type(normalized_shape)}.")
|
||||||
self.normalized_shape = normalized_shape
|
self.normalized_shape = normalized_shape
|
||||||
self.begin_norm_axis = begin_norm_axis
|
self.begin_norm_axis = begin_norm_axis
|
||||||
self.begin_params_axis = begin_params_axis
|
self.begin_params_axis = begin_params_axis
|
||||||
|
@ -1037,7 +1037,7 @@ class InstanceNorm2d(Cell):
|
||||||
val = args_dict[key]
|
val = args_dict[key]
|
||||||
if not isinstance(val, (Tensor, numbers.Number, str, Initializer)):
|
if not isinstance(val, (Tensor, numbers.Number, str, Initializer)):
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of args_dict['{key}'] should be in "
|
raise TypeError(f"For '{self.cls_name}', the type of args_dict['{key}'] should be in "
|
||||||
f"[Tensor, numbers.Number, str, Initializer], but got type {type(val)}.")
|
f"[Tensor, numbers.Number, str, Initializer], but got type {type(val).__name__}.")
|
||||||
if isinstance(val, Tensor) and val.dtype != mstype.float32:
|
if isinstance(val, Tensor) and val.dtype != mstype.float32:
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of args_dict['{key}'] should be float32, "
|
raise TypeError(f"For '{self.cls_name}', the type of args_dict['{key}'] should be float32, "
|
||||||
f"but got {val.dtype}.")
|
f"but got {val.dtype}.")
|
||||||
|
|
|
@ -409,7 +409,7 @@ class FakeQuantWithMinMaxObserver(UniformQuantObserver):
|
||||||
max_array = self._get_init_array(self.max_init)
|
max_array = self._get_init_array(self.max_init)
|
||||||
if not np.greater(max_array, min_array).all():
|
if not np.greater(max_array, min_array).all():
|
||||||
raise ValueError(f"For '{self.cls_name}', the 'max_init' should be greater than 'min_init', "
|
raise ValueError(f"For '{self.cls_name}', the 'max_init' should be greater than 'min_init', "
|
||||||
f"but got 'max_array': {max_array}, 'min_init': {min_init}.")
|
f"but got 'max_init': {max_init}, 'min_init': {min_init}.")
|
||||||
if self.mode == "DEFAULT":
|
if self.mode == "DEFAULT":
|
||||||
self._default_init(min_array, max_array)
|
self._default_init(min_array, max_array)
|
||||||
elif self.mode == "LEARNED_SCALE":
|
elif self.mode == "LEARNED_SCALE":
|
||||||
|
@ -708,7 +708,7 @@ class Conv2dBnFoldQuantOneConv(Cell):
|
||||||
self.padding = padding
|
self.padding = padding
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), but got "
|
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), but got "
|
||||||
f"{type(padding)}!")
|
f"{type(padding).__name__}!")
|
||||||
self.group = Validator.check_positive_int(group)
|
self.group = Validator.check_positive_int(group)
|
||||||
self.eps = eps
|
self.eps = eps
|
||||||
self.momentum = 1 - momentum
|
self.momentum = 1 - momentum
|
||||||
|
@ -950,7 +950,7 @@ class Conv2dBnFoldQuant(Cell):
|
||||||
self.padding = padding
|
self.padding = padding
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), "
|
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), "
|
||||||
f"but got {type(padding)}!")
|
f"but got {type(padding).__name__}!")
|
||||||
self.group = Validator.check_positive_int(group)
|
self.group = Validator.check_positive_int(group)
|
||||||
self.eps = eps
|
self.eps = eps
|
||||||
self.momentum = momentum
|
self.momentum = momentum
|
||||||
|
@ -1162,7 +1162,7 @@ class Conv2dBnWithoutFoldQuant(Cell):
|
||||||
self.padding = padding
|
self.padding = padding
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), "
|
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), "
|
||||||
f"but got {type(padding)}!")
|
f"but got {type(padding).__name__}!")
|
||||||
self.group = Validator.check_positive_int(group)
|
self.group = Validator.check_positive_int(group)
|
||||||
self.bias_add = P.BiasAdd()
|
self.bias_add = P.BiasAdd()
|
||||||
if Validator.check_bool(has_bias):
|
if Validator.check_bool(has_bias):
|
||||||
|
@ -1306,7 +1306,7 @@ class Conv2dQuant(Cell):
|
||||||
self.padding = padding
|
self.padding = padding
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), "
|
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), "
|
||||||
f"but got {type(padding)}!")
|
f"but got {type(padding).__name__}!")
|
||||||
self.group = Validator.check_positive_int(group)
|
self.group = Validator.check_positive_int(group)
|
||||||
|
|
||||||
weight_shape = [out_channels, in_channels // group, *self.kernel_size]
|
weight_shape = [out_channels, in_channels // group, *self.kernel_size]
|
||||||
|
|
|
@ -217,7 +217,7 @@ class _ConvThor(Cell):
|
||||||
self.padding = padding
|
self.padding = padding
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), but got "
|
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), but got "
|
||||||
f"{type(padding)}.")
|
f"{type(padding).__name__}.")
|
||||||
|
|
||||||
self.dilation = dilation
|
self.dilation = dilation
|
||||||
self.group = Validator.check_positive_int(group)
|
self.group = Validator.check_positive_int(group)
|
||||||
|
@ -766,7 +766,7 @@ class EmbeddingLookupThor(Cell):
|
||||||
f"when 'slice_mode' is 'field_slice'.")
|
f"when 'slice_mode' is 'field_slice'.")
|
||||||
if not isinstance(manual_shapes, tuple):
|
if not isinstance(manual_shapes, tuple):
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'manual_shapes' must be tuple(int), but got "
|
raise TypeError(f"For '{self.cls_name}', the type of 'manual_shapes' must be tuple(int), but got "
|
||||||
f"type {type(manual_shapes)}.")
|
f"type {type(manual_shapes).__name__}.")
|
||||||
for dim in manual_shapes:
|
for dim in manual_shapes:
|
||||||
Validator.check_positive_int(dim, 'manual shape dim', self.cls_name)
|
Validator.check_positive_int(dim, 'manual shape dim', self.cls_name)
|
||||||
self.gatherv2.add_prim_attr("manual_split", manual_shapes)
|
self.gatherv2.add_prim_attr("manual_split", manual_shapes)
|
||||||
|
|
|
@ -104,8 +104,8 @@ class TimeDistributed(Cell):
|
||||||
def __init__(self, layer, time_axis, reshape_with_axis=None):
|
def __init__(self, layer, time_axis, reshape_with_axis=None):
|
||||||
"""Initialize TimeDistributed."""
|
"""Initialize TimeDistributed."""
|
||||||
if not isinstance(layer, (Cell, Primitive)):
|
if not isinstance(layer, (Cell, Primitive)):
|
||||||
raise TypeError(f"For '{self.cls_name}', the type of 'layer' should be mindspore.nn.Cell or "
|
raise TypeError(f"For '{self.cls_name}', the 'layer' should be Cell or Primitive instance, "
|
||||||
"mindspore.ops.Primitive instance, but got type: {type(layer)}.")
|
f"but got type: {type(layer).__name__}.")
|
||||||
super(TimeDistributed, self).__init__()
|
super(TimeDistributed, self).__init__()
|
||||||
Validator.check_is_int(time_axis)
|
Validator.check_is_int(time_axis)
|
||||||
if reshape_with_axis is not None:
|
if reshape_with_axis is not None:
|
||||||
|
|
|
@ -665,8 +665,8 @@ def _check_weights(weight_shape, label_shape, prim_name=None):
|
||||||
"""Internal function, used to check whether the reduced shape meets the requirements."""
|
"""Internal function, used to check whether the reduced shape meets the requirements."""
|
||||||
msg_prefix = f'For \'{prim_name}\', the' if prim_name else "The"
|
msg_prefix = f'For \'{prim_name}\', the' if prim_name else "The"
|
||||||
if weight_shape != label_shape:
|
if weight_shape != label_shape:
|
||||||
raise ValueError(f"{msg_prefix} weight shape[0] should be equal to label.shape[1], "
|
raise ValueError(f"{msg_prefix} weight_shape[0] should be equal to label_shape[1], "
|
||||||
f"but got weight_shape: {weight_shape} and label_shape: {label_shape}.")
|
f"but got weight_shape[0]: {weight_shape} and label_shape[1]: {label_shape}.")
|
||||||
|
|
||||||
|
|
||||||
class MultiClassDiceLoss(LossBase):
|
class MultiClassDiceLoss(LossBase):
|
||||||
|
|
|
@ -64,7 +64,9 @@ def get_broadcast_shape(x_shape, y_shape, prim_name, shape_type=""):
|
||||||
elif shape_type == "max_shape":
|
elif shape_type == "max_shape":
|
||||||
broadcast_shape_back.append(min(x_shape[i], y_shape[i]))
|
broadcast_shape_back.append(min(x_shape[i], y_shape[i]))
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"For '{prim_name}', the x_shape {x_shape} and y_shape {y_shape} can not broadcast.")
|
raise ValueError(f"For '{prim_name}', x_shape and y_shape can broadcast means that "
|
||||||
|
f"x_shape[i] = 1 or -1 or y_shape[i] = 1 or -1 or x_shape[i] = y_shape[i], "
|
||||||
|
f"but got i: {i}, x_shape: {x_shape}, y_shape: {y_shape}.")
|
||||||
|
|
||||||
broadcast_shape_front = y_shape[0: y_len - length] if length == x_len else x_shape[0: x_len - length]
|
broadcast_shape_front = y_shape[0: y_len - length] if length == x_len else x_shape[0: x_len - length]
|
||||||
broadcast_shape = list(broadcast_shape_front) + broadcast_shape_back
|
broadcast_shape = list(broadcast_shape_front) + broadcast_shape_back
|
||||||
|
|
|
@ -319,14 +319,13 @@ class GradOperation(GradOperation_):
|
||||||
def __init__(self, get_all=False, get_by_list=False, sens_param=False):
|
def __init__(self, get_all=False, get_by_list=False, sens_param=False):
|
||||||
"""Initialize GradOperation."""
|
"""Initialize GradOperation."""
|
||||||
if not isinstance(get_all, bool):
|
if not isinstance(get_all, bool):
|
||||||
raise TypeError(f"For 'GradOperation', the arg 'get_all' should be bool, but got {get_all} with type "
|
raise TypeError(f"For 'GradOperation', the 'get_all' should be bool, but got {type(get_all).__name__}")
|
||||||
f"{type(get_all)}")
|
|
||||||
if not isinstance(get_by_list, bool):
|
if not isinstance(get_by_list, bool):
|
||||||
raise TypeError(f"For 'GradOperation', the arg 'get_by_list' should be bool, but got {get_by_list} with "
|
raise TypeError(f"For 'GradOperation', the 'get_by_list' should be bool, "
|
||||||
f"type {type(get_by_list)}")
|
f"but got {type(get_by_list).__name__}")
|
||||||
if not isinstance(sens_param, bool):
|
if not isinstance(sens_param, bool):
|
||||||
raise TypeError(f"For 'GradOperation', the arg 'sens_param' should be bool, but got {sens_param} with type "
|
raise TypeError(f"For 'GradOperation', the 'sens_param' should be bool, "
|
||||||
f"{type(sens_param)}")
|
f"but got {type(sens_param).__name__}")
|
||||||
self.get_all = get_all
|
self.get_all = get_all
|
||||||
self.get_by_list = get_by_list
|
self.get_by_list = get_by_list
|
||||||
self.sens_param = sens_param
|
self.sens_param = sens_param
|
||||||
|
|
|
@ -488,7 +488,7 @@ def _check_axes_for_batch_dot(x1_shape, x2_shape, axes, prim_name=None):
|
||||||
axes = [axes, axes]
|
axes = [axes, axes]
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"{msg_prefix} type of axes must be one of those: int, tuple(int), list(int), "
|
raise ValueError(f"{msg_prefix} type of axes must be one of those: int, tuple(int), list(int), "
|
||||||
f"but got {type(axes)}.")
|
f"but got {type(axes).__name__}.")
|
||||||
return axes
|
return axes
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -17,12 +17,11 @@
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
|
|
||||||
"""Operators for array."""
|
"""Operators for array."""
|
||||||
|
from collections import Counter
|
||||||
import copy
|
import copy
|
||||||
import functools
|
import functools
|
||||||
import itertools
|
import itertools
|
||||||
import numbers
|
import numbers
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from mindspore import log as logger
|
from mindspore import log as logger
|
||||||
|
@ -87,7 +86,8 @@ class _ScatterOpDynamic(PrimitiveWithCheck):
|
||||||
def _check_scatter_shape(self, x_shape, indices_shape, updates_shape, prim_name):
|
def _check_scatter_shape(self, x_shape, indices_shape, updates_shape, prim_name):
|
||||||
# x_shape cannot be dynamic
|
# x_shape cannot be dynamic
|
||||||
if np.any(np.array(x_shape) == -1):
|
if np.any(np.array(x_shape) == -1):
|
||||||
raise ValueError(f"x does not support dynamic shape")
|
raise ValueError(f"For '{prim_name}', the 'input_x' does not support dynamic shape, "
|
||||||
|
f"but got the shape of 'input_x' is {x_shape}.")
|
||||||
# support indices and updates dynamic
|
# support indices and updates dynamic
|
||||||
if np.any(np.array(indices_shape) == -1) or np.any(np.array(updates_shape) == -1):
|
if np.any(np.array(indices_shape) == -1) or np.any(np.array(updates_shape) == -1):
|
||||||
pass
|
pass
|
||||||
|
@ -492,7 +492,8 @@ class Reshape(PrimitiveWithInfer):
|
||||||
validator.check_value_type("shape[%d]" % i, shp_i, [int], self.name)
|
validator.check_value_type("shape[%d]" % i, shp_i, [int], self.name)
|
||||||
if shp_i == -1:
|
if shp_i == -1:
|
||||||
if neg_index != -1:
|
if neg_index != -1:
|
||||||
raise ValueError(f'The shape can only has one -1 at most, but {shape_v}.')
|
raise ValueError(f"For '{self.name}', the 'input_shape' can only has one -1 at most, "
|
||||||
|
f"but got {shape_v}.")
|
||||||
neg_index = i
|
neg_index = i
|
||||||
else:
|
else:
|
||||||
dim_prod *= shp_i
|
dim_prod *= shp_i
|
||||||
|
@ -514,25 +515,27 @@ class Reshape(PrimitiveWithInfer):
|
||||||
max_shape[neg_index] = int(max_arr_prod / dim_prod)
|
max_shape[neg_index] = int(max_arr_prod / dim_prod)
|
||||||
min_shape[neg_index] = int(min_arr_prod / dim_prod)
|
min_shape[neg_index] = int(min_arr_prod / dim_prod)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'For dynamic shape, Reshape must have neg index')
|
raise ValueError(f"For '{self.name}', the 'input_shape' must have -1 in the case of dynamic shape, "
|
||||||
|
f"but got {shape_v}.")
|
||||||
out = {'shape': shape['value'],
|
out = {'shape': shape['value'],
|
||||||
'dtype': x['dtype'],
|
'dtype': x['dtype'],
|
||||||
'value': None,
|
'value': None,
|
||||||
'max_shape': tuple(max_shape),
|
'max_shape': tuple(max_shape),
|
||||||
'min_shape': tuple(min_shape)}
|
'min_shape': tuple(min_shape)}
|
||||||
else:
|
else:
|
||||||
if dim_prod <= 0 or arr_prod % dim_prod != 0:
|
if dim_prod <= 0:
|
||||||
raise ValueError(f'For \'{self.name}\' input_x\'s shape is {x_shp}, input_shape\'s value is {shape_v}.'
|
raise ValueError(f"For '{self.name}', the shape of 'input_x' is {x_shp}, "
|
||||||
f'The product of input_x\'s shape should > 0, '
|
f"the value of 'input_shape' is {shape_v}. "
|
||||||
f'and can be divided by product of input_shape, but '
|
f"The product of shape of 'input_shape' should > 0, but got {dim_prod}.")
|
||||||
f'product of input_x\'s shape is {arr_prod}, product of input_shape is {dim_prod}.')
|
|
||||||
if neg_index != -1:
|
if neg_index != -1:
|
||||||
shape_v[neg_index] = int(arr_prod / dim_prod)
|
shape_v[neg_index] = int(arr_prod / dim_prod)
|
||||||
dim_prod *= shape_v[neg_index]
|
dim_prod *= shape_v[neg_index]
|
||||||
if dim_prod != arr_prod:
|
if dim_prod != arr_prod:
|
||||||
raise ValueError(f'For \'{self.name}\' input_x\'s shape is {x_shp}, input_shape\'s value is {shape_v}.'
|
raise ValueError(f"For '{self.name}', the shape of 'input_x' is {x_shp}, "
|
||||||
f'The product of input_x\'s shape should be equal to product of input_shape, but '
|
f"the value of 'input_shape' value is {shape_v}. "
|
||||||
f'product of input_x\'s shape is {arr_prod}, product of input_shape is {dim_prod}.')
|
f"The product of the shape of 'input_x' should be equal to product of 'input_shape', "
|
||||||
|
f"but product of the shape of 'input_x' is {arr_prod} "
|
||||||
|
f", product of 'input_shape' is {dim_prod}.")
|
||||||
value = None
|
value = None
|
||||||
if x['value'] is not None:
|
if x['value'] is not None:
|
||||||
value = Tensor(x['value'].asnumpy().reshape(shape_v))
|
value = Tensor(x['value'].asnumpy().reshape(shape_v))
|
||||||
|
@ -675,7 +678,8 @@ class Squeeze(PrimitiveWithInfer):
|
||||||
for a in axis:
|
for a in axis:
|
||||||
validator.check_int_range(a, -ndim, ndim - 1, Rel.INC_BOTH, 'axis or its elements', self.name)
|
validator.check_int_range(a, -ndim, ndim - 1, Rel.INC_BOTH, 'axis or its elements', self.name)
|
||||||
if x_shape[a] != 1:
|
if x_shape[a] != 1:
|
||||||
raise ValueError('Cannot select an axis to squeeze out which has size not equal to one.')
|
raise ValueError(f"For '{self.name}', the shape of 'input_x' at {a} dimension should be 1, "
|
||||||
|
f"but got {x_shape[a]}.")
|
||||||
ret = [x_shape[i] for i in range(ndim) if not (i in axis or (i - ndim) in axis)]
|
ret = [x_shape[i] for i in range(ndim) if not (i in axis or (i - ndim) in axis)]
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
@ -1077,8 +1081,9 @@ class Split(PrimitiveWithCheck):
|
||||||
# only validate when shape fully known
|
# only validate when shape fully known
|
||||||
output_valid_check = x_shape[self.axis] % self.output_num
|
output_valid_check = x_shape[self.axis] % self.output_num
|
||||||
if output_valid_check != 0:
|
if output_valid_check != 0:
|
||||||
raise ValueError(f"x_shape[{self.axis}] {x_shape[self.axis]} must be divide exactly by"
|
raise ValueError(f"For '{self.name}', the shape of 'input_x' is {x_shape}, 'axis' is {self.axis}, "
|
||||||
f" output_num {self.output_num}")
|
f"the shape of 'input_x' in 'axis' {self.axis} is {x_shape[self.axis]}, "
|
||||||
|
f"which must be divide exactly by 'output_num': {self.output_num}.")
|
||||||
size_splits = [x_shape[self.axis] // self.output_num] * self.output_num
|
size_splits = [x_shape[self.axis] // self.output_num] * self.output_num
|
||||||
self.add_prim_attr('size_splits', size_splits)
|
self.add_prim_attr('size_splits', size_splits)
|
||||||
|
|
||||||
|
@ -1449,7 +1454,7 @@ class TupleToArray(PrimitiveWithInfer):
|
||||||
for i, item in enumerate(x):
|
for i, item in enumerate(x):
|
||||||
validator.check_value_type(f"x[{i}]", item, [numbers.Number], self.name)
|
validator.check_value_type(f"x[{i}]", item, [numbers.Number], self.name)
|
||||||
if not all(isinstance(item, dtype) for item in x):
|
if not all(isinstance(item, dtype) for item in x):
|
||||||
raise TypeError("For \'{self.name}\' all elements of input x must be have same type.")
|
raise TypeError(f"For \'{self.name}\', all elements of 'input_x' must be have same type.")
|
||||||
if isinstance(x[0], int):
|
if isinstance(x[0], int):
|
||||||
ret = np.array(x, np.int32)
|
ret = np.array(x, np.int32)
|
||||||
else:
|
else:
|
||||||
|
@ -1591,14 +1596,14 @@ class InvertPermutation(PrimitiveWithInfer):
|
||||||
x_shp = x['shape']
|
x_shp = x['shape']
|
||||||
x_value = x['value']
|
x_value = x['value']
|
||||||
if x_value is None:
|
if x_value is None:
|
||||||
raise ValueError(f'For \'{self.name}\' the input value must be const.')
|
raise ValueError(f"For '{self.name}', the value of 'input_x' can not be None, but got {x_value}.")
|
||||||
validator.check_value_type("shape", x_shp, [tuple, list], self.name)
|
validator.check_value_type("shape", x_shp, [tuple, list], self.name)
|
||||||
if mstype.issubclass_(x['dtype'], mstype.tensor):
|
if mstype.issubclass_(x['dtype'], mstype.tensor):
|
||||||
raise ValueError(f'For \'{self.name}\' the input value must be non-Tensor.')
|
raise ValueError(f"For \'{self.name}\', the value of 'input_x' must be non-Tensor, but got {x['dtype']}")
|
||||||
for shp in x_shp:
|
for shp in x_shp:
|
||||||
if shp:
|
if shp:
|
||||||
x_rank = len(np.array(x_value, np.int64).shape)
|
x_rank = len(np.array(x_value, np.int64).shape)
|
||||||
raise ValueError(f'For \'{self.name}\' the rank of input must be 1, but got {x_rank}.')
|
raise ValueError(f"For \'{self.name}\', the length of 'input_x' must be 1, but got {x_rank}.")
|
||||||
for i, value in enumerate(x_value):
|
for i, value in enumerate(x_value):
|
||||||
validator.check_value_type("input[%d]" % i, value, [int], self.name)
|
validator.check_value_type("input[%d]" % i, value, [int], self.name)
|
||||||
z = [x_value[i] for i in range(len(x_value))]
|
z = [x_value[i] for i in range(len(x_value))]
|
||||||
|
@ -1606,7 +1611,8 @@ class InvertPermutation(PrimitiveWithInfer):
|
||||||
|
|
||||||
for i in range(1, len(z)):
|
for i in range(1, len(z)):
|
||||||
if z[i - 1] == z[i]:
|
if z[i - 1] == z[i]:
|
||||||
raise ValueError(f"For {self.name}, {z[i]} is duplicated in the input.")
|
raise ValueError(f"For '{self.name}', the 'input_x' can not contain duplicate values, "
|
||||||
|
f"but got duplicated {z[i]} in the 'input_x'.")
|
||||||
validator.check(f'value min', min(x_value), '', 0, Rel.EQ, self.name)
|
validator.check(f'value min', min(x_value), '', 0, Rel.EQ, self.name)
|
||||||
validator.check(f'value max', max(x_value), '', len(x_value) - 1, Rel.EQ, self.name)
|
validator.check(f'value max', max(x_value), '', len(x_value) - 1, Rel.EQ, self.name)
|
||||||
|
|
||||||
|
@ -1949,7 +1955,8 @@ class Tile(PrimitiveWithInfer):
|
||||||
|
|
||||||
def check_elim(self, base_tensor, multiplier):
|
def check_elim(self, base_tensor, multiplier):
|
||||||
if (not isinstance(base_tensor, Tensor)) or (not isinstance(multiplier, tuple)):
|
if (not isinstance(base_tensor, Tensor)) or (not isinstance(multiplier, tuple)):
|
||||||
raise TypeError("Expecting (Tensor, tuple), got: ({}, {})".format(base_tensor, multiplier))
|
raise TypeError(f"For '{self.name}', the type of ('input_x', 'multiples') should be (Tensor, tuple), "
|
||||||
|
f"but got ({type(base_tensor).__name__}, {type(multiplier).__name__}).")
|
||||||
if all(v == 1 for v in multiplier):
|
if all(v == 1 for v in multiplier):
|
||||||
return (True, base_tensor)
|
return (True, base_tensor)
|
||||||
return (False, None)
|
return (False, None)
|
||||||
|
@ -1970,8 +1977,8 @@ class Tile(PrimitiveWithInfer):
|
||||||
x_shp.insert(0, 1)
|
x_shp.insert(0, 1)
|
||||||
multiples_w = multiples_v
|
multiples_w = multiples_v
|
||||||
elif len_sub < 0:
|
elif len_sub < 0:
|
||||||
raise ValueError(f'For \'{self.name}\' the length of multiples can not be smaller than '
|
raise ValueError(f"For '{self.name}', the length of 'multiples' can not be smaller than "
|
||||||
f'the length of dimension in input_x.')
|
f"the length of dimension in 'input_x'.")
|
||||||
for i, a in enumerate(multiples_w):
|
for i, a in enumerate(multiples_w):
|
||||||
x_shp[i] *= a
|
x_shp[i] *= a
|
||||||
value = None
|
value = None
|
||||||
|
@ -2073,7 +2080,9 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
|
||||||
output_min_shape = list(num_segments['min_value'])
|
output_min_shape = list(num_segments['min_value'])
|
||||||
else:
|
else:
|
||||||
if isinstance(num_segments_type, type(mstype.tensor)):
|
if isinstance(num_segments_type, type(mstype.tensor)):
|
||||||
raise ValueError("Num_segments only support int type when it is not a dynamic value")
|
raise ValueError(f"For '{self.name}', the dtype of 'num_segments' only support int type "
|
||||||
|
f"when it is not a dynamic value, but got type of 'num_segments': "
|
||||||
|
f"{num_segments_type}.")
|
||||||
output_max_shape = [num_segments_v]
|
output_max_shape = [num_segments_v]
|
||||||
output_min_shape = [num_segments_v]
|
output_min_shape = [num_segments_v]
|
||||||
if 'max_shape' in x and 'min_shape' in x:
|
if 'max_shape' in x and 'min_shape' in x:
|
||||||
|
@ -2727,8 +2736,8 @@ class Slice(PrimitiveWithInfer):
|
||||||
validator.check_non_negative_int(begin_v[i], f'input begin[{i}]')
|
validator.check_non_negative_int(begin_v[i], f'input begin[{i}]')
|
||||||
if x_shape[i] < begin_v[i] + size_v[i]:
|
if x_shape[i] < begin_v[i] + size_v[i]:
|
||||||
y = begin_v[i] + size_v[i]
|
y = begin_v[i] + size_v[i]
|
||||||
raise ValueError("For '%s' slice shape can not bigger than origin shape %d, %d." %
|
raise ValueError(f"For '{self.name}', the sliced shape can not greater than origin shape, but got "
|
||||||
(self.name, x_shape[i], y))
|
f"sliced shape is {y}, and origin shape is {x_shape}.")
|
||||||
return {'shape': size_v,
|
return {'shape': size_v,
|
||||||
'dtype': x['dtype'],
|
'dtype': x['dtype'],
|
||||||
'value': None}
|
'value': None}
|
||||||
|
@ -2794,7 +2803,9 @@ class ReverseV2(PrimitiveWithInfer):
|
||||||
normalized_axis.append(v)
|
normalized_axis.append(v)
|
||||||
|
|
||||||
if len(normalized_axis) != len(set(normalized_axis)):
|
if len(normalized_axis) != len(set(normalized_axis)):
|
||||||
raise ValueError('axis cannot contain duplicate dimensions.')
|
duplicated = [item for item, count in Counter(normalized_axis).items() if count > 1]
|
||||||
|
raise ValueError(f"For '{self.name}', the 'axis' cannot contain duplicate dimensions,"
|
||||||
|
f" but got duplicated elements {duplicated}.")
|
||||||
|
|
||||||
return x_shape
|
return x_shape
|
||||||
|
|
||||||
|
@ -2913,8 +2924,9 @@ class Select(Primitive):
|
||||||
def _compute_slicing_length(begin, end, stride, x_shape, i):
|
def _compute_slicing_length(begin, end, stride, x_shape, i):
|
||||||
"""Computes the length of the slicing."""
|
"""Computes the length of the slicing."""
|
||||||
if i >= len(x_shape):
|
if i >= len(x_shape):
|
||||||
raise ValueError(f"For 'StridedSlice', When their is no new axis, the index length must be less or "
|
raise ValueError(f"For 'StridedSlice', the index length must be less than or equal to "
|
||||||
f"equal than the dim of x.")
|
f"the dimension of 'input_x' when there is no new axis, but got "
|
||||||
|
f"the dimension of 'input_x': {len(x_shape)} and the index length: {i}.")
|
||||||
x_dim = x_shape[i]
|
x_dim = x_shape[i]
|
||||||
if stride > 0:
|
if stride > 0:
|
||||||
# When slicing forward, convert begin and end to positive numbers.
|
# When slicing forward, convert begin and end to positive numbers.
|
||||||
|
@ -3143,15 +3155,16 @@ class StridedSlice(PrimitiveWithInfer):
|
||||||
validator.check_value_type("strides", strides_v, [tuple], self.name)
|
validator.check_value_type("strides", strides_v, [tuple], self.name)
|
||||||
|
|
||||||
if tuple(filter(lambda x: not isinstance(x, int), begin_v + end_v + strides_v)):
|
if tuple(filter(lambda x: not isinstance(x, int), begin_v + end_v + strides_v)):
|
||||||
raise TypeError(f"For {self.name}, both the begins, ends, and strides must be a tuple of int, "
|
raise TypeError(f"For {self.name}, both the 'begin', 'end', and 'strides' must be a tuple of int, "
|
||||||
f"but got begins: {begin_v}, ends: {end_v}, strides: {strides_v}.")
|
f"but got 'begin': {begin_v}, 'end': {end_v}, 'strides': {strides_v}.")
|
||||||
|
|
||||||
if tuple(filter(lambda x: x == 0, strides_v)):
|
if tuple(filter(lambda x: x == 0, strides_v)):
|
||||||
raise ValueError(f"For '{self.name}', the strides cannot contain 0, but got strides: {strides_v}.")
|
raise ValueError(f"For '{self.name}', the 'strides' cannot contain 0, but got 'strides': {strides_v}.")
|
||||||
|
|
||||||
if len(end_v) != len(begin_v) or len(strides_v) != len(begin_v):
|
if len(end_v) != len(begin_v) or len(strides_v) != len(begin_v):
|
||||||
raise ValueError(f"For '{self.name}' the length of begin index: {begin_v}, end index: {end_v} and "
|
raise ValueError(f"For '{self.name}', the length of 'begin' index and the length of 'end' index "
|
||||||
f"strides: {strides_v} must be equal.")
|
f"must be the same as 'strides', but got the length of 'begin': {begin_v}, "
|
||||||
|
f"'end' index: {end_v} and 'strides': {strides_v}.")
|
||||||
|
|
||||||
ret_shape = self._compute_slicing_shape(x['shape'], begin_v, end_v, strides_v)
|
ret_shape = self._compute_slicing_shape(x['shape'], begin_v, end_v, strides_v)
|
||||||
|
|
||||||
|
@ -3219,9 +3232,9 @@ class StridedSlice(PrimitiveWithInfer):
|
||||||
continue
|
continue
|
||||||
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
||||||
if (not -x_shape[i] <= begin < x_shape[i]) or stride < 0:
|
if (not -x_shape[i] <= begin < x_shape[i]) or stride < 0:
|
||||||
raise IndexError(f"For {self.name}, when shrink axis, the stride cannot be negative number, "
|
raise IndexError(f"For '{self.name}', the 'strides' cannot be negative number and "
|
||||||
f"and begin should be in [-{x_shape[i]}, {x_shape[i]}), "
|
f"'begin' should be in [-{x_shape[i]}, {x_shape[i]}) when shrink axis, "
|
||||||
f"but got stride: {stride}, begin: {begin}.")
|
f"but got 'strides': {stride}, 'begin': {begin}.")
|
||||||
j += 1
|
j += 1
|
||||||
i += 1
|
i += 1
|
||||||
continue
|
continue
|
||||||
|
@ -3253,9 +3266,9 @@ class StridedSlice(PrimitiveWithInfer):
|
||||||
continue
|
continue
|
||||||
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
||||||
if (not -x_shape[i] <= begin < x_shape[i]) or stride < 0:
|
if (not -x_shape[i] <= begin < x_shape[i]) or stride < 0:
|
||||||
raise ValueError(f"For {self.name}, when shrink axis, the stride cannot be negative number, "
|
raise IndexError(f"For '{self.name}', the 'strides' cannot be negative number and "
|
||||||
f"and begin should be in [-{x_shape[i]}, {x_shape[i]}), "
|
f"'begin' should be in [-{x_shape[i]}, {x_shape[i]}) when shrink axis, "
|
||||||
f"but got stride: {stride}, begin: {begin}.")
|
f"but got 'strides': {stride}, 'begin': {begin}.")
|
||||||
j += 1
|
j += 1
|
||||||
i += 1
|
i += 1
|
||||||
continue
|
continue
|
||||||
|
@ -3369,8 +3382,8 @@ class DiagPart(PrimitiveWithInfer):
|
||||||
def infer_shape(self, x_shape):
|
def infer_shape(self, x_shape):
|
||||||
if len(x_shape) % 2 != 0 or \
|
if len(x_shape) % 2 != 0 or \
|
||||||
not x_shape:
|
not x_shape:
|
||||||
raise ValueError(f"For \'{self.name}\' input rank must be non-zero and even, but got rank {len(x_shape)}, "
|
raise ValueError(f"For \'{self.name}\', the rank of 'input_x' must be non-zero and even, "
|
||||||
f"with shapes {x_shape}")
|
f"but got rank {len(x_shape)}, with shapes {x_shape}.")
|
||||||
length = len(x_shape) // 2
|
length = len(x_shape) // 2
|
||||||
for i in range(length):
|
for i in range(length):
|
||||||
validator.check('input_shape[i + len(input_shape)/2]', x_shape[i + length],
|
validator.check('input_shape[i + len(input_shape)/2]', x_shape[i + length],
|
||||||
|
@ -3533,7 +3546,9 @@ class ScatterNd(PrimitiveWithInfer):
|
||||||
|
|
||||||
indices_shape, update_shape = indices["shape"], update["shape"]
|
indices_shape, update_shape = indices["shape"], update["shape"]
|
||||||
if indices_shape[0] != update_shape[0]:
|
if indices_shape[0] != update_shape[0]:
|
||||||
raise ValueError(f'For \'{self.name}\' The indices_shape[0] and update_shape[0] must be equal.')
|
raise ValueError(f"For '{self.name}', the first shape of 'indices' must be the same as the first shape of "
|
||||||
|
f"'updates', but got the first shape of 'indices': {indices_shape[0]}, "
|
||||||
|
f"the first shape of 'updates': {update_shape[0]}.")
|
||||||
|
|
||||||
return {'shape': shp,
|
return {'shape': shp,
|
||||||
'dtype': update['dtype'],
|
'dtype': update['dtype'],
|
||||||
|
@ -3704,15 +3719,22 @@ class TensorScatterUpdate(PrimitiveWithInfer):
|
||||||
|
|
||||||
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
||||||
if len(indices_shape) < 2:
|
if len(indices_shape) < 2:
|
||||||
raise ValueError("For 'TensorScatterUpdate', rank of indices cannot be less than 2.")
|
raise ValueError(f"For '{self.name}', the dimension of 'indices' cannot be less than 2,"
|
||||||
|
f" but got {len(indices_shape)}.")
|
||||||
|
|
||||||
if indices_shape[-1] > len(input_x_shape):
|
if indices_shape[-1] > len(input_x_shape):
|
||||||
raise ValueError("For 'TensorScatterUpdate', indices.shape[-1] cannot be greater than rank of input_x.")
|
raise ValueError(f"For '{self.name}', the last dimension of 'indices' must be less than or equal to "
|
||||||
|
f"the dimension of 'input_x', but got the "
|
||||||
|
f"last dimension of 'indices': {indices_shape[-1]} and the dimension of 'input_x': "
|
||||||
|
f"{len(indices_shape)}.")
|
||||||
|
|
||||||
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
||||||
if updates_shape_check != updates_shape:
|
if updates_shape_check != updates_shape:
|
||||||
raise ValueError("For 'TensorScatterUpdate', input_x.shape, "\
|
raise ValueError(f"For '{self.name}', the shape of 'update' must be equal to "
|
||||||
"indices.shape and updates.shape are incompatible.")
|
f"the shape of updates_shape_check, but got the shape of 'update': {updates_shape},"
|
||||||
|
f"and the shape of updates_shape_check: {updates_shape_check}. Please check the shape of "
|
||||||
|
f"'indices' and 'input_x', they should be meeting followings formula:\n"
|
||||||
|
f" updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:].")
|
||||||
|
|
||||||
return input_x_shape
|
return input_x_shape
|
||||||
|
|
||||||
|
@ -3782,14 +3804,22 @@ class TensorScatterAdd(PrimitiveWithInfer):
|
||||||
|
|
||||||
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
||||||
if len(indices_shape) < 2:
|
if len(indices_shape) < 2:
|
||||||
raise ValueError("For 'TensorScatterAdd', rank of indices cannot be less than 2.")
|
raise ValueError(f"For '{self.name}', the dimension of 'indices' cannot be less than 2,"
|
||||||
|
f" but got {len(indices_shape)}.")
|
||||||
|
|
||||||
if indices_shape[-1] > len(input_x_shape):
|
if indices_shape[-1] > len(input_x_shape):
|
||||||
raise ValueError("For 'TensorScatterAdd', indices.shape[-1] cannot be greater than rank of input_x.")
|
raise ValueError(f"For '{self.name}', the last dimension of 'indices' must be less than or equal to "
|
||||||
|
f"the dimension of 'input_x', but got the "
|
||||||
|
f"last dimension of 'indices': {indices_shape[-1]} and the dimension of 'input_x': "
|
||||||
|
f"{len(indices_shape)}.")
|
||||||
|
|
||||||
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
||||||
if updates_shape_check != updates_shape:
|
if updates_shape_check != updates_shape:
|
||||||
raise ValueError("For 'TensorScatterAdd', input_x.shape, indices.shape and updates.shape are incompatible.")
|
raise ValueError(f"For '{self.name}', the shape of 'update' must be equal to "
|
||||||
|
f"the shape of updates_shape_check, but got the shape of 'update': {updates_shape},"
|
||||||
|
f"and the shape of updates_shape_check: {updates_shape_check}. Please check the shape of "
|
||||||
|
f"'indices' and 'input_x', they should be meeting followings formula:\n"
|
||||||
|
f" updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:].")
|
||||||
|
|
||||||
return input_x_shape
|
return input_x_shape
|
||||||
|
|
||||||
|
@ -4719,8 +4749,11 @@ class SpaceToDepth(PrimitiveWithInfer):
|
||||||
out_shape = copy.deepcopy(x_shape)
|
out_shape = copy.deepcopy(x_shape)
|
||||||
for i in range(2):
|
for i in range(2):
|
||||||
if out_shape[i + 2] % self.block_size != 0:
|
if out_shape[i + 2] % self.block_size != 0:
|
||||||
raise ValueError(f'For \'{self.name}\' input shape[{i + 2}] {out_shape[i + 2]} should be '
|
msg_prefix = "2nd" if i + 2 == 2 else "3rd"
|
||||||
f'fully divided by block_size {self.block_size}')
|
raise ValueError(f"For '{self.name}', the shape of output with index {i + 2} must be divided "
|
||||||
|
f"exactly by 'block_size', but got the {msg_prefix} dimension "
|
||||||
|
f"of output: {out_shape[i + 2]} and "
|
||||||
|
f"'block_size': {self.block_size}.")
|
||||||
out_shape[i + 2] //= self.block_size
|
out_shape[i + 2] //= self.block_size
|
||||||
|
|
||||||
out_shape[1] *= self.block_size * self.block_size
|
out_shape[1] *= self.block_size * self.block_size
|
||||||
|
@ -4876,8 +4909,11 @@ class SpaceToBatch(PrimitiveWithInfer):
|
||||||
for i in range(2):
|
for i in range(2):
|
||||||
padded = out_shape[i + 2] + self.paddings[i][0] + self.paddings[i][1]
|
padded = out_shape[i + 2] + self.paddings[i][0] + self.paddings[i][1]
|
||||||
if padded % self.block_size != 0:
|
if padded % self.block_size != 0:
|
||||||
raise ValueError(f'For \'{self.name}\' padded[{i}] {padded} should be divisible by '
|
msg_ndim = "2nd" if i + 2 == 2 else "3rd"
|
||||||
f'block_size {self.block_size}')
|
raise ValueError(f"For '{self.name}', the shape of the output tensor should be "
|
||||||
|
f"divisible by 'block_size', but got the {msg_ndim} dimension of output: {padded} and "
|
||||||
|
f"'block_size': {self.block_size}. Please check the official homepage "
|
||||||
|
f"for more information about the output tensor.")
|
||||||
out_shape[i + 2] = padded // self.block_size
|
out_shape[i + 2] = padded // self.block_size
|
||||||
out_shape[0] *= self.block_size * self.block_size
|
out_shape[0] *= self.block_size * self.block_size
|
||||||
return out_shape
|
return out_shape
|
||||||
|
@ -4964,8 +5000,9 @@ class BatchToSpace(PrimitiveWithInfer):
|
||||||
out_shape[i + 2] = x_block_prod - crops_sum
|
out_shape[i + 2] = x_block_prod - crops_sum
|
||||||
block_size_prod = self.block_size * self.block_size
|
block_size_prod = self.block_size * self.block_size
|
||||||
if out_shape[0] % block_size_prod != 0:
|
if out_shape[0] % block_size_prod != 0:
|
||||||
raise ValueError(f'For \'{self.name}\' input_x dimension 0 {out_shape[0]} should be divisible by '
|
raise ValueError(f"For '{self.name}', the shape of output with index 0 must be divided exactly "
|
||||||
f'block_size_prod {block_size_prod}')
|
f"by block_size_prod, but got the shape of output: {out_shape} and "
|
||||||
|
f"block_size_prod: {block_size_prod}.")
|
||||||
out_shape[0] = out_shape[0] // block_size_prod
|
out_shape[0] = out_shape[0] // block_size_prod
|
||||||
return out_shape
|
return out_shape
|
||||||
|
|
||||||
|
@ -5066,8 +5103,11 @@ class SpaceToBatchND(PrimitiveWithInfer):
|
||||||
padded = out_shape[i + offset] + self.paddings[i][0] + \
|
padded = out_shape[i + offset] + self.paddings[i][0] + \
|
||||||
self.paddings[i][1]
|
self.paddings[i][1]
|
||||||
if padded % self.block_shape[i] != 0:
|
if padded % self.block_shape[i] != 0:
|
||||||
raise ValueError(f'For \'{self.name}\' padded[{i}] {padded} should be divisible by '
|
msg_ndim = "2nd" if i + 2 == 2 else "3rd"
|
||||||
f'block_shape[{i}] {self.block_shape[i]}')
|
raise ValueError(f"For '{self.name}', the 2nd and 3rd dimension of the output tensor should be "
|
||||||
|
f"divisible by 'block_shape', but got the {msg_ndim} dimension of output: {padded} "
|
||||||
|
f"and the {i} dimension block_shape: {self.block_shape}. Please check the "
|
||||||
|
f"official homepage for more information about the output tensor.")
|
||||||
out_shape[i + offset] = padded // self.block_shape[i]
|
out_shape[i + offset] = padded // self.block_shape[i]
|
||||||
block_shape_prod = block_shape_prod * self.block_shape[i]
|
block_shape_prod = block_shape_prod * self.block_shape[i]
|
||||||
out_shape[0] *= block_shape_prod
|
out_shape[0] *= block_shape_prod
|
||||||
|
@ -5170,8 +5210,9 @@ class BatchToSpaceND(PrimitiveWithInfer):
|
||||||
out_shape[i + offset] = x_block_prod - crops_sum
|
out_shape[i + offset] = x_block_prod - crops_sum
|
||||||
|
|
||||||
if out_shape[0] % block_shape_prod != 0:
|
if out_shape[0] % block_shape_prod != 0:
|
||||||
raise ValueError(f'For \'{self.name}\' input_x dimension 0 {out_shape[0]} should be divisible by '
|
raise ValueError(f"For '{self.name}', the 0th dimension of the output tensor should be "
|
||||||
f'block_shape_prod {block_shape_prod}')
|
f"divisible by block_shape_prod, but got 0th dimension of the output tensor: "
|
||||||
|
f"{out_shape[0]} and the block_shape_prod: {block_shape_prod}.")
|
||||||
out_shape[0] = out_shape[0] // block_shape_prod
|
out_shape[0] = out_shape[0] // block_shape_prod
|
||||||
return out_shape
|
return out_shape
|
||||||
|
|
||||||
|
@ -5317,8 +5358,7 @@ class Meshgrid(PrimitiveWithInfer):
|
||||||
def __init__(self, indexing="xy"):
|
def __init__(self, indexing="xy"):
|
||||||
"""Initialize Meshgrid."""
|
"""Initialize Meshgrid."""
|
||||||
validator.check_value_type("indexing", indexing, (str), self.name)
|
validator.check_value_type("indexing", indexing, (str), self.name)
|
||||||
if indexing not in ("xy", "ij"):
|
validator.check_string(indexing.lower(), ["xy", "ij"], "indexing", self.name)
|
||||||
raise ValueError("indexing parameter must be either 'xy' or 'ij'")
|
|
||||||
self.indexing = indexing
|
self.indexing = indexing
|
||||||
|
|
||||||
def infer_shape(self, x_shape):
|
def infer_shape(self, x_shape):
|
||||||
|
@ -5401,7 +5441,8 @@ class InplaceUpdate(PrimitiveWithInfer):
|
||||||
Rel.EQ, self.name)
|
Rel.EQ, self.name)
|
||||||
for i in self.indices:
|
for i in self.indices:
|
||||||
if i < 0 or i >= x_shape[0]:
|
if i < 0 or i >= x_shape[0]:
|
||||||
raise ValueError(f'The value of indices must be in [0, {x_shape[0]}), but got {i}.')
|
raise ValueError(f"For '{self.name}', the value of indices must be in [0, {x_shape[0]}), "
|
||||||
|
f"but got {i}.")
|
||||||
x_rank = len(x_shape)
|
x_rank = len(x_shape)
|
||||||
for idx in range(x_rank)[1:]:
|
for idx in range(x_rank)[1:]:
|
||||||
validator.check('v dim %d' % idx, v_shape[idx], "x dim %d" % idx, x_shape[idx], Rel.EQ, self.name)
|
validator.check('v dim %d' % idx, v_shape[idx], "x dim %d" % idx, x_shape[idx], Rel.EQ, self.name)
|
||||||
|
@ -5731,10 +5772,11 @@ class EmbeddingLookup(PrimitiveWithCheck):
|
||||||
validator.check_subclass("offset", offset['dtype'], mstype.int_, self.name)
|
validator.check_subclass("offset", offset['dtype'], mstype.int_, self.name)
|
||||||
indices_shp = indices['shape']
|
indices_shp = indices['shape']
|
||||||
if not indices_shp:
|
if not indices_shp:
|
||||||
raise ValueError("'indices' should NOT be a scalar.")
|
raise ValueError(f"For '{self.name}', the 'input_indices' should not be a scalar, but got {indices_shp}.")
|
||||||
params_shp = params['shape']
|
params_shp = params['shape']
|
||||||
if len(params_shp) > 2:
|
if len(params_shp) > 2:
|
||||||
raise ValueError("The dimension of 'params' in EmbeddingLookup must <= 2, but got %d." % len(params_shp))
|
raise ValueError(f"For '{self.name}', the dimension of 'input_params' must <= 2, "
|
||||||
|
f"but got {len(params_shp)}.")
|
||||||
|
|
||||||
|
|
||||||
class GatherD(Primitive):
|
class GatherD(Primitive):
|
||||||
|
@ -6014,9 +6056,11 @@ class SearchSorted(PrimitiveWithInfer):
|
||||||
|
|
||||||
def infer_shape(self, sequence_shape, values_shape):
|
def infer_shape(self, sequence_shape, values_shape):
|
||||||
if len(sequence_shape) != 1 and sequence_shape[:-1] != values_shape[:-1]:
|
if len(sequence_shape) != 1 and sequence_shape[:-1] != values_shape[:-1]:
|
||||||
raise ValueError(f"Sequence should be 1 dimensional or has all but the last dimension matching "
|
raise ValueError(f"For '{self.name}', the 'sequence' should be 1 dimensional or "
|
||||||
f" the dimensions of values, but got sequence's dimensions: {sequence_shape} "
|
f"all dimensions except the last dimension of 'sequence' "
|
||||||
f"and values' dimensions: {values_shape}.")
|
f"must be the same as all dimensions except the last dimension of 'values'. "
|
||||||
|
f"but got dimension of 'sequence': {sequence_shape} "
|
||||||
|
f"and dimension of 'values': {values_shape}.")
|
||||||
return values_shape
|
return values_shape
|
||||||
|
|
||||||
def infer_dtype(self, sequence_dtype, values_dtype):
|
def infer_dtype(self, sequence_dtype, values_dtype):
|
||||||
|
@ -6081,14 +6125,22 @@ class TensorScatterMax(PrimitiveWithInfer):
|
||||||
|
|
||||||
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
||||||
if len(indices_shape) < 2:
|
if len(indices_shape) < 2:
|
||||||
raise ValueError("For 'TensorScatterMax', rank of indices cannot be less than 2.")
|
raise ValueError(f"For '{self.name}', the dimension of 'indices' cannot be less than 2,"
|
||||||
|
f" but got {len(indices_shape)}.")
|
||||||
|
|
||||||
if indices_shape[-1] > len(input_x_shape):
|
if indices_shape[-1] > len(input_x_shape):
|
||||||
raise ValueError("For 'TensorScatterMax', indices.shape[-1] cannot be greater than rank of input_x.")
|
raise ValueError(f"For '{self.name}', the last dimension of 'indices' must be less than or equal to "
|
||||||
|
f"the dimension of 'input_x', but got the "
|
||||||
|
f"last dimension of 'indices': {indices_shape[-1]} and the dimension of 'input_x': "
|
||||||
|
f"{len(indices_shape)}.")
|
||||||
|
|
||||||
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
||||||
if updates_shape_check != updates_shape:
|
if updates_shape_check != updates_shape:
|
||||||
raise ValueError("For 'TensorScatterMax', input_x.shape, indices.shape and updates.shape are incompatible.")
|
raise ValueError(f"For '{self.name}', the shape of 'update' must be equal to "
|
||||||
|
f"the shape of updates_shape_check, but got the shape of 'update': {updates_shape},"
|
||||||
|
f"and the shape of updates_shape_check: {updates_shape_check}. Please check the shape of "
|
||||||
|
f"'indices' and 'input_x', they should be meeting followings formula:\n"
|
||||||
|
f" updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:].")
|
||||||
|
|
||||||
return input_x_shape
|
return input_x_shape
|
||||||
|
|
||||||
|
@ -6157,14 +6209,22 @@ class TensorScatterMin(PrimitiveWithInfer):
|
||||||
|
|
||||||
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
||||||
if len(indices_shape) < 2:
|
if len(indices_shape) < 2:
|
||||||
raise ValueError("For 'TensorScatterMin', rank of indices cannot be less than 2.")
|
raise ValueError(f"For '{self.name}', the dimension of 'indices' cannot be less than 2,"
|
||||||
|
f" but got {len(indices_shape)}.")
|
||||||
|
|
||||||
if indices_shape[-1] > len(input_x_shape):
|
if indices_shape[-1] > len(input_x_shape):
|
||||||
raise ValueError("For 'TensorScatterMin', indices.shape[-1] cannot be greater than rank of input_x.")
|
raise ValueError(f"For '{self.name}', the last dimension of 'indices' must be less than or equal to "
|
||||||
|
f"the dimension of 'input_x', but got the "
|
||||||
|
f"last dimension of 'indices': {indices_shape[-1]} and the dimension of 'input_x': "
|
||||||
|
f"{len(indices_shape)}.")
|
||||||
|
|
||||||
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
||||||
if updates_shape_check != updates_shape:
|
if updates_shape_check != updates_shape:
|
||||||
raise ValueError("For 'TensorScatterMin', input_x.shape, indices.shape and updates.shape are incompatible.")
|
raise ValueError(f"For '{self.name}', the shape of 'update' must be equal to "
|
||||||
|
f"the shape of updates_shape_check, but got the shape of 'update': {updates_shape},"
|
||||||
|
f"and the shape of updates_shape_check: {updates_shape_check}. Please check the shape of "
|
||||||
|
f"'indices' and 'input_x', they should be meeting followings formula:\n"
|
||||||
|
f" updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:].")
|
||||||
|
|
||||||
return input_x_shape
|
return input_x_shape
|
||||||
|
|
||||||
|
@ -6234,14 +6294,22 @@ class TensorScatterSub(PrimitiveWithInfer):
|
||||||
|
|
||||||
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
def infer_shape(self, input_x_shape, indices_shape, updates_shape):
|
||||||
if len(indices_shape) < 2:
|
if len(indices_shape) < 2:
|
||||||
raise ValueError("For 'TensorScatterSub', rank of indices cannot be less than 2.")
|
raise ValueError(f"For '{self.name}', the dimension of 'indices' cannot be less than 2,"
|
||||||
|
f" but got {len(indices_shape)}.")
|
||||||
|
|
||||||
if indices_shape[-1] > len(input_x_shape):
|
if indices_shape[-1] > len(input_x_shape):
|
||||||
raise ValueError("For 'TensorScatterSub', indices.shape[-1] cannot be greater than rank of input_x.")
|
raise ValueError(f"For '{self.name}', the last dimension of 'indices' must be less than or equal to "
|
||||||
|
f"the dimension of 'input_x', but got the "
|
||||||
|
f"last dimension of 'indices': {indices_shape[-1]} and the dimension of 'input_x': "
|
||||||
|
f"{len(indices_shape)}.")
|
||||||
|
|
||||||
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:]
|
||||||
if updates_shape_check != updates_shape:
|
if updates_shape_check != updates_shape:
|
||||||
raise ValueError("For 'TensorScatterSub', input_x.shape, indices.shape and updates.shape are incompatible.")
|
raise ValueError(f"For '{self.name}', the shape of 'update' must be equal to "
|
||||||
|
f"the shape of updates_shape_check, but got the shape of 'update': {updates_shape},"
|
||||||
|
f"and the shape of updates_shape_check: {updates_shape_check}. Please check the shape of "
|
||||||
|
f"'indices' and 'input_x', they should be meeting followings formula:\n"
|
||||||
|
f" updates_shape_check = indices_shape[:-1] + input_x_shape[indices_shape[-1]:].")
|
||||||
|
|
||||||
return input_x_shape
|
return input_x_shape
|
||||||
|
|
||||||
|
|
|
@ -147,7 +147,7 @@ class AllReduce(PrimitiveWithInfer):
|
||||||
def __init__(self, op=ReduceOp.SUM, group=GlobalComm.WORLD_COMM_GROUP):
|
def __init__(self, op=ReduceOp.SUM, group=GlobalComm.WORLD_COMM_GROUP):
|
||||||
"""Initialize AllReduce."""
|
"""Initialize AllReduce."""
|
||||||
if not isinstance(op, type(ReduceOp.SUM)):
|
if not isinstance(op, type(ReduceOp.SUM)):
|
||||||
raise TypeError(f"For '{self.name}', the 'op' of AllReduce should be str, but got {type(op)}.")
|
raise TypeError(f"For '{self.name}', the 'op' of AllReduce should be str, but got {type(op).__name__}.")
|
||||||
if not isinstance(_get_group(group), str):
|
if not isinstance(_get_group(group), str):
|
||||||
raise TypeError(f"For '{self.name}', the 'group' of AllReduce should be str, "
|
raise TypeError(f"For '{self.name}', the 'group' of AllReduce should be str, "
|
||||||
f"but got {type(_get_group(group))}.")
|
f"but got {type(_get_group(group))}.")
|
||||||
|
@ -563,7 +563,7 @@ class Broadcast(PrimitiveWithInfer):
|
||||||
|
|
||||||
def infer_dtype(self, x_dtype):
|
def infer_dtype(self, x_dtype):
|
||||||
if not isinstance(x_dtype, tuple):
|
if not isinstance(x_dtype, tuple):
|
||||||
raise TypeError(f"For '{self.name}', the 'input_x' should be a tuple, but got {type(x_dtype)}!")
|
raise TypeError(f"For '{self.name}', the 'input_x' should be a tuple, but got {type(x_dtype).__name__}!")
|
||||||
for _ele in x_dtype:
|
for _ele in x_dtype:
|
||||||
validator.check_tensor_dtype_valid('x', _ele, target_dtypes, self.name)
|
validator.check_tensor_dtype_valid('x', _ele, target_dtypes, self.name)
|
||||||
return x_dtype
|
return x_dtype
|
||||||
|
|
|
@ -227,7 +227,7 @@ class HistogramSummary(PrimitiveWithInfer):
|
||||||
# In the summary, the histogram value should be a tensor whose shape is not [].
|
# In the summary, the histogram value should be a tensor whose shape is not [].
|
||||||
if not v_shape:
|
if not v_shape:
|
||||||
raise ValueError(f"For '{self.name}', the type of 'value' should be tensor, "
|
raise ValueError(f"For '{self.name}', the type of 'value' should be tensor, "
|
||||||
f"and whose shape should not be [], but got {v_shape}.")
|
f"its shape should not be [], but got {v_shape}.")
|
||||||
|
|
||||||
return SUMMARY_RETURN_VALUE
|
return SUMMARY_RETURN_VALUE
|
||||||
|
|
||||||
|
@ -343,7 +343,7 @@ class HookBackward(PrimitiveWithInfer):
|
||||||
self.add_prim_attr("cell_id", cell_id)
|
self.add_prim_attr("cell_id", cell_id)
|
||||||
self.init_attrs["cell_id"] = cell_id
|
self.init_attrs["cell_id"] = cell_id
|
||||||
if not isinstance(hook_fn, (FunctionType, MethodType)):
|
if not isinstance(hook_fn, (FunctionType, MethodType)):
|
||||||
raise TypeError(f"For '{self.name}', the tye of 'hook_fn' should be python function, "
|
raise TypeError(f"For '{self.name}', the type of 'hook_fn' should be python function, "
|
||||||
f"but got {type(hook_fn)}.")
|
f"but got {type(hook_fn)}.")
|
||||||
self.register_hook(hook_fn)
|
self.register_hook(hook_fn)
|
||||||
self.cell_id = cell_id
|
self.cell_id = cell_id
|
||||||
|
|
|
@ -2366,7 +2366,7 @@ class Minimum(_MathBinaryOp):
|
||||||
>>> # case 1 : same data type
|
>>> # case 1 : same data type
|
||||||
>>> x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
|
>>> x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
|
||||||
>>> y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
|
>>> y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
|
||||||
>>> minimum = ops.Minimum
|
>>> minimum = ops.Minimum()
|
||||||
>>> output = minimum(x, y)
|
>>> output = minimum(x, y)
|
||||||
>>> print(output)
|
>>> print(output)
|
||||||
[1. 2. 3.]
|
[1. 2. 3.]
|
||||||
|
@ -2540,7 +2540,7 @@ class Div(_MathBinaryOp):
|
||||||
>>> print(output)
|
>>> print(output)
|
||||||
[-2. 2.5 3.]
|
[-2. 2.5 3.]
|
||||||
>>> print(output.dtype)
|
>>> print(output.dtype)
|
||||||
Flaot32
|
Float32
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def infer_value(self, x, y):
|
def infer_value(self, x, y):
|
||||||
|
|
|
@ -1264,7 +1264,9 @@ class BatchNorm(PrimitiveWithInfer):
|
||||||
validator.check_float_range(momentum, 0, 1, Rel.INC_BOTH, 'momentum', self.name)
|
validator.check_float_range(momentum, 0, 1, Rel.INC_BOTH, 'momentum', self.name)
|
||||||
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
|
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
|
||||||
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
||||||
raise ValueError("NHWC format only support in GPU target.")
|
raise ValueError(f"For '{self.name}', the \"NHWC\" format only support in GPU target, "
|
||||||
|
f"but got the format is {self.format} and "
|
||||||
|
f"the platform is {context.get_context('device_target')}.")
|
||||||
self.add_prim_attr('data_format', self.format)
|
self.add_prim_attr('data_format', self.format)
|
||||||
self.init_prim_io_names(inputs=['x', 'scale', 'offset', 'mean', 'variance'],
|
self.init_prim_io_names(inputs=['x', 'scale', 'offset', 'mean', 'variance'],
|
||||||
outputs=['y', 'batch_mean', 'batch_variance', 'reserve_space_1', 'reserve_space_2'])
|
outputs=['y', 'batch_mean', 'batch_variance', 'reserve_space_1', 'reserve_space_2'])
|
||||||
|
@ -1331,7 +1333,7 @@ class Conv2D(Primitive):
|
||||||
mode (int): Modes for different convolutions. 0 Math convolutiuon, 1 cross-correlation convolution ,
|
mode (int): Modes for different convolutions. 0 Math convolutiuon, 1 cross-correlation convolution ,
|
||||||
2 deconvolution, 3 depthwise convolution. Default: 1.
|
2 deconvolution, 3 depthwise convolution. Default: 1.
|
||||||
pad_mode (str): Specifies padding mode. The optional values are
|
pad_mode (str): Specifies padding mode. The optional values are
|
||||||
"same", "valid", "pad". Default: "valid".
|
"same", "valid", "pad", not case sensitive. Default: "valid".
|
||||||
|
|
||||||
- same: Adopts the way of completion. The height and width of the output will be the same as
|
- same: Adopts the way of completion. The height and width of the output will be the same as
|
||||||
the input `x`. The total number of padding will be calculated in horizontal and vertical
|
the input `x`. The total number of padding will be calculated in horizontal and vertical
|
||||||
|
@ -1413,10 +1415,11 @@ class Conv2D(Primitive):
|
||||||
validator.check_equal_int(len(pad), 4, 'pad size', self.name)
|
validator.check_equal_int(len(pad), 4, 'pad size', self.name)
|
||||||
self.add_prim_attr("pad", pad)
|
self.add_prim_attr("pad", pad)
|
||||||
self.padding = pad
|
self.padding = pad
|
||||||
self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
||||||
|
|
||||||
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
|
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', padding must be zero when pad_mode is '{pad_mode}'.")
|
raise ValueError(f"For '{self.name}', the 'pad' must be zero when 'pad_mode' is not \"pad\", "
|
||||||
|
f"but got 'pad' and 'pad_mode' is {pad_mode}.")
|
||||||
if self.pad_mode == 'pad':
|
if self.pad_mode == 'pad':
|
||||||
for item in pad:
|
for item in pad:
|
||||||
validator.check_non_negative_int(item, 'pad item', self.name)
|
validator.check_non_negative_int(item, 'pad item', self.name)
|
||||||
|
@ -1424,7 +1427,9 @@ class Conv2D(Primitive):
|
||||||
self.mode = validator.check_equal_int(mode, 1, 'mode', self.name)
|
self.mode = validator.check_equal_int(mode, 1, 'mode', self.name)
|
||||||
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
|
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
|
||||||
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
||||||
raise ValueError("NHWC format only support in GPU target.")
|
raise ValueError(f"For '{self.name}', the \"NHWC\" format only support in GPU target, "
|
||||||
|
f"but got the format is {self.format} "
|
||||||
|
f"and platform is {context.get_context('device_target')}.")
|
||||||
self.add_prim_attr('data_format', self.format)
|
self.add_prim_attr('data_format', self.format)
|
||||||
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
|
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
|
||||||
self.group = validator.check_positive_int(group, 'group', self.name)
|
self.group = validator.check_positive_int(group, 'group', self.name)
|
||||||
|
@ -1454,7 +1459,7 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
||||||
mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution ,
|
mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution ,
|
||||||
2 deconvolution, 3 depthwise convolution. Default: 3.
|
2 deconvolution, 3 depthwise convolution. Default: 3.
|
||||||
pad_mode (str): Specifies padding mode. The optional values are
|
pad_mode (str): Specifies padding mode. The optional values are
|
||||||
"same", "valid", "pad". Default: "valid".
|
"same", "valid", "pad". Default: "valid", not case sensitive.
|
||||||
|
|
||||||
- same: Adopts the way of completion. The height and width of the output will be the same as
|
- same: Adopts the way of completion. The height and width of the output will be the same as
|
||||||
the input `x`. The total number of padding will be calculated in horizontal and vertical
|
the input `x`. The total number of padding will be calculated in horizontal and vertical
|
||||||
|
@ -1541,9 +1546,10 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
||||||
validator.check_equal_int(len(pad), 4, 'pad size', self.name)
|
validator.check_equal_int(len(pad), 4, 'pad size', self.name)
|
||||||
self.add_prim_attr("pad", pad)
|
self.add_prim_attr("pad", pad)
|
||||||
self.padding = pad
|
self.padding = pad
|
||||||
self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
||||||
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
|
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', padding must be zero when pad_mode is '{pad_mode}'.")
|
raise ValueError(f"For '{self.name}', the 'pad' must be zero when 'pad_mode' is not \"pad\", "
|
||||||
|
f"but got 'pad' is {pad} and 'pad_mode' is {pad_mode}")
|
||||||
if self.pad_mode == 'pad':
|
if self.pad_mode == 'pad':
|
||||||
for item in pad:
|
for item in pad:
|
||||||
validator.check_non_negative_int(item, 'pad item', self.name)
|
validator.check_non_negative_int(item, 'pad item', self.name)
|
||||||
|
@ -1563,7 +1569,7 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
||||||
_, _, stride_h, stride_w = self.stride
|
_, _, stride_h, stride_w = self.stride
|
||||||
_, _, dilation_h, dilation_w = self.dilation
|
_, _, dilation_h, dilation_w = self.dilation
|
||||||
if kernel_size_n != 1:
|
if kernel_size_n != 1:
|
||||||
raise ValueError(f"The batch of input weight should be 1, but got {kernel_size_n}")
|
raise ValueError(f"For '{self.name}', the batch of input weight should be 1, but got {kernel_size_n}")
|
||||||
if self.pad_mode == "valid":
|
if self.pad_mode == "valid":
|
||||||
h_out = math.ceil((x_shape[2] - dilation_h * (kernel_size_h - 1)) / stride_h)
|
h_out = math.ceil((x_shape[2] - dilation_h * (kernel_size_h - 1)) / stride_h)
|
||||||
w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w)
|
w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w)
|
||||||
|
@ -1630,7 +1636,9 @@ class _Pool(PrimitiveWithInfer):
|
||||||
self.is_maxpoolwithargmax = (self.name == "MaxPoolWithArgmax")
|
self.is_maxpoolwithargmax = (self.name == "MaxPoolWithArgmax")
|
||||||
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
|
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
|
||||||
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
||||||
raise ValueError("NHWC format only support in GPU target.")
|
raise ValueError(f"For '{self.name}', the \"NHWC\" format only support in GPU target, "
|
||||||
|
f"but got the format is {self.format} and "
|
||||||
|
f"the platform is {context.get_context('device_target')}.")
|
||||||
if not self.is_maxpoolwithargmax:
|
if not self.is_maxpoolwithargmax:
|
||||||
self.add_prim_attr('data_format', self.format)
|
self.add_prim_attr('data_format', self.format)
|
||||||
|
|
||||||
|
@ -1666,8 +1674,8 @@ class _Pool(PrimitiveWithInfer):
|
||||||
|
|
||||||
for shape_value in out_shape:
|
for shape_value in out_shape:
|
||||||
if shape_value <= 0:
|
if shape_value <= 0:
|
||||||
raise ValueError(f"For '{self.name}', the kernel size is not valid, "
|
raise ValueError(f"For '{self.name}', the each element of the output shape must be larger than 0, "
|
||||||
f"the input shape: {x_shape}, strides shape: {self.strides}.")
|
f"but got one of shape in output shape is {shape_value}.")
|
||||||
return out_shape
|
return out_shape
|
||||||
|
|
||||||
def infer_dtype(self, x_dtype):
|
def infer_dtype(self, x_dtype):
|
||||||
|
@ -1925,10 +1933,11 @@ class MaxPool3D(PrimitiveWithInfer):
|
||||||
if len(self.pad_list) == 3:
|
if len(self.pad_list) == 3:
|
||||||
self.pad_list = (pad_list[0], pad_list[0], pad_list[1], pad_list[1], pad_list[2], pad_list[2])
|
self.pad_list = (pad_list[0], pad_list[0], pad_list[1], pad_list[1], pad_list[2], pad_list[2])
|
||||||
if len(self.pad_list) != 3 and len(self.pad_list) != 6:
|
if len(self.pad_list) != 3 and len(self.pad_list) != 6:
|
||||||
raise ValueError(f"For `maxpool3d` attr 'pad_list' should be an positive int number or a tuple of "
|
raise ValueError(f"For '{self.name}', attr 'pad_list' should be an positive int number or a tuple of "
|
||||||
f"three or six positive int numbers, but got `{len(self.pad_list)}` numbers.")
|
f"three or six positive int numbers, but got {len(self.pad_list)} numbers.")
|
||||||
if self.pad_mode != 'CALCULATED' and self.pad_list != (0, 0, 0, 0, 0, 0):
|
if self.pad_mode != 'CALCULATED' and self.pad_list != (0, 0, 0, 0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', when pad_list is not 0, pad_mode should be set as 'pad'.")
|
raise ValueError(f"For '{self.name}', the 'pad_list' must be zero when 'pad_mode' is not \"CALCULATED\", "
|
||||||
|
f"but got 'pad_list' is {self.pad_list} and 'pad_mode' is {pad_mode}.")
|
||||||
if self.pad_mode == 'CALCULATED':
|
if self.pad_mode == 'CALCULATED':
|
||||||
for item in self.pad_list:
|
for item in self.pad_list:
|
||||||
validator.check_non_negative_int(item, 'pad_list item', self.name)
|
validator.check_non_negative_int(item, 'pad_list item', self.name)
|
||||||
|
@ -2069,7 +2078,8 @@ class Conv2DBackpropInput(Primitive):
|
||||||
and width of the 2D convolution window. Single int means the value is for both the height and the width of
|
and width of the 2D convolution window. Single int means the value is for both the height and the width of
|
||||||
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
|
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
|
||||||
width of the kernel.
|
width of the kernel.
|
||||||
pad_mode (str): Modes to fill padding. It could be "valid", "same", or "pad". Default: "valid".
|
pad_mode (str): Modes to fill padding. It could be "valid", "same", or "pad", not case sensitive.
|
||||||
|
Default: "valid".
|
||||||
pad (Union[int, tuple[int]]): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
|
pad (Union[int, tuple[int]]): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
|
||||||
top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four integers, the
|
top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four integers, the
|
||||||
padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3] correspondingly.
|
padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3] correspondingly.
|
||||||
|
@ -2146,7 +2156,9 @@ class Conv2DBackpropInput(Primitive):
|
||||||
self.add_prim_attr('kernel_size', self.kernel_size)
|
self.add_prim_attr('kernel_size', self.kernel_size)
|
||||||
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
|
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
|
||||||
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
||||||
raise ValueError("NHWC format only support in GPU target.")
|
raise ValueError(f"For '{self.name}', the \"NHWC\" format only support in GPU target, "
|
||||||
|
f"but got the format is {self.format} and "
|
||||||
|
f"the platform is {context.get_context('device_target')}.")
|
||||||
self.add_prim_attr('data_format', self.format)
|
self.add_prim_attr('data_format', self.format)
|
||||||
self.stride = _check_positive_int_or_tuple('stride', stride, self.name, allow_four=True, ret_four=True)
|
self.stride = _check_positive_int_or_tuple('stride', stride, self.name, allow_four=True, ret_four=True)
|
||||||
self.stride = _update_attr_by_format(self.stride, self.format)
|
self.stride = _update_attr_by_format(self.stride, self.format)
|
||||||
|
@ -2161,9 +2173,10 @@ class Conv2DBackpropInput(Primitive):
|
||||||
validator.check_equal_int(len(pad), 4, 'pad size', self.name)
|
validator.check_equal_int(len(pad), 4, 'pad size', self.name)
|
||||||
self.add_prim_attr("pad", pad)
|
self.add_prim_attr("pad", pad)
|
||||||
self.padding = pad
|
self.padding = pad
|
||||||
self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
||||||
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
|
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', padding must be zero when pad_mode is '{pad_mode}'.")
|
raise ValueError(f"For '{self.name}', the 'pad' must be zero when 'pad_mode' is not \"pad\", "
|
||||||
|
f"but got 'pad' is {pad} and 'pad_mode' is {pad_mode}.")
|
||||||
if self.pad_mode == 'pad':
|
if self.pad_mode == 'pad':
|
||||||
for item in pad:
|
for item in pad:
|
||||||
validator.check_non_negative_int(item, 'pad item', self.name)
|
validator.check_non_negative_int(item, 'pad item', self.name)
|
||||||
|
@ -2284,7 +2297,9 @@ class BiasAdd(Primitive):
|
||||||
self.init_prim_io_names(inputs=['x', 'b'], outputs=['output'])
|
self.init_prim_io_names(inputs=['x', 'b'], outputs=['output'])
|
||||||
self.format = validator.check_string(data_format, ['NCHW', 'NHWC', 'NCDHW'], 'format', self.name)
|
self.format = validator.check_string(data_format, ['NCHW', 'NHWC', 'NCDHW'], 'format', self.name)
|
||||||
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
||||||
raise ValueError("NHWC format only support in GPU target.")
|
raise ValueError(f"For '{self.name}', the \"NHWC\" format only support in GPU target, "
|
||||||
|
f"but got the format is {self.format} and "
|
||||||
|
f"the platform is {context.get_context('device_target')}.")
|
||||||
self.add_prim_attr('data_format', self.format)
|
self.add_prim_attr('data_format', self.format)
|
||||||
|
|
||||||
|
|
||||||
|
@ -2388,7 +2403,8 @@ class NLLLoss(PrimitiveWithInfer):
|
||||||
\end{array}\right.
|
\end{array}\right.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
reduction (str): Apply specific reduction method to the output: 'none', 'mean', 'sum'. Default: "mean".
|
reduction (str): Apply specific reduction method to the output: 'none', 'mean', 'sum', not case sensitive.
|
||||||
|
Default: "mean".
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type only support float32 or float16.
|
- **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type only support float32 or float16.
|
||||||
|
@ -2432,7 +2448,7 @@ class NLLLoss(PrimitiveWithInfer):
|
||||||
def __init__(self, reduction="mean"):
|
def __init__(self, reduction="mean"):
|
||||||
"""Initialize NLLLoss"""
|
"""Initialize NLLLoss"""
|
||||||
self.init_prim_io_names(inputs=['x', 'target', "weight"], outputs=['loss'])
|
self.init_prim_io_names(inputs=['x', 'target', "weight"], outputs=['loss'])
|
||||||
self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
|
self.reduction = validator.check_string(reduction.lower(), ['none', 'sum', 'mean'], 'reduction', self.name)
|
||||||
self.add_prim_attr('reduction', self.reduction)
|
self.add_prim_attr('reduction', self.reduction)
|
||||||
|
|
||||||
def infer_shape(self, x_shape, t_shape, w_shape):
|
def infer_shape(self, x_shape, t_shape, w_shape):
|
||||||
|
@ -2640,8 +2656,8 @@ class ApplyMomentum(PrimitiveWithInfer):
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, use_nesterov=False, use_locking=False, gradient_scale=1.0):
|
def __init__(self, use_nesterov=False, use_locking=False, gradient_scale=1.0):
|
||||||
"""Initialize ApplyMomentum."""
|
"""Initialize ApplyMomentum."""
|
||||||
self.use_nesterov = validator.check_bool(use_nesterov)
|
self.use_nesterov = validator.check_bool(use_nesterov, "use_nesterov", self.name)
|
||||||
self.use_locking = validator.check_bool(use_locking)
|
self.use_locking = validator.check_bool(use_locking, "use_locking", self.name)
|
||||||
validator.check_value_type('gradient_scale', gradient_scale, [float], self.name)
|
validator.check_value_type('gradient_scale', gradient_scale, [float], self.name)
|
||||||
self.init_prim_io_names(inputs=['variable', 'accumulation', 'learning_rate', 'gradient', 'momentum'],
|
self.init_prim_io_names(inputs=['variable', 'accumulation', 'learning_rate', 'gradient', 'momentum'],
|
||||||
outputs=['output'])
|
outputs=['output'])
|
||||||
|
@ -2746,7 +2762,8 @@ class SoftMarginLoss(Primitive):
|
||||||
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
|
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
reduction (str): Apply specific reduction method to the output: 'none', 'mean', 'sum'. Default: "mean".
|
reduction (str): Apply specific reduction method to the output: 'none', 'mean', 'sum', not case sensitive.
|
||||||
|
Default: "mean".
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **logits** (Tensor) - Predict data. Data type must be float16 or float32.
|
- **logits** (Tensor) - Predict data. Data type must be float16 or float32.
|
||||||
|
@ -2778,7 +2795,7 @@ class SoftMarginLoss(Primitive):
|
||||||
def __init__(self, reduction="mean"):
|
def __init__(self, reduction="mean"):
|
||||||
"""Initialize SoftMarginLoss"""
|
"""Initialize SoftMarginLoss"""
|
||||||
self.init_prim_io_names(inputs=['predict', 'label'], outputs=['loss'])
|
self.init_prim_io_names(inputs=['predict', 'label'], outputs=['loss'])
|
||||||
self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
|
self.reduction = validator.check_string(reduction.lower(), ['none', 'sum', 'mean'], 'reduction', self.name)
|
||||||
|
|
||||||
|
|
||||||
class L2Loss(PrimitiveWithInfer):
|
class L2Loss(PrimitiveWithInfer):
|
||||||
|
@ -3000,7 +3017,8 @@ class SGD(PrimitiveWithCheck):
|
||||||
"""Initialize SGD."""
|
"""Initialize SGD."""
|
||||||
validator.check_value_type("nesterov", nesterov, [bool], self.name)
|
validator.check_value_type("nesterov", nesterov, [bool], self.name)
|
||||||
if nesterov and dampening != 0:
|
if nesterov and dampening != 0:
|
||||||
raise ValueError(f"Nesterov need zero dampening!")
|
raise ValueError(f"For '{self.name}', the 'dampening' must be 0 when 'nesterov' is True, "
|
||||||
|
f"but got 'dampening' is {dampening} and 'nesterov' is {nesterov}.")
|
||||||
self.init_prim_io_names(inputs=['parameters', 'gradient', 'learning_rate', 'accum', 'momentum', 'stat'],
|
self.init_prim_io_names(inputs=['parameters', 'gradient', 'learning_rate', 'accum', 'momentum', 'stat'],
|
||||||
outputs=['output'])
|
outputs=['output'])
|
||||||
self.add_prim_attr('side_effect_mem', True)
|
self.add_prim_attr('side_effect_mem', True)
|
||||||
|
@ -3128,7 +3146,8 @@ class ApplyRMSProp(PrimitiveWithInfer):
|
||||||
|
|
||||||
def infer_value(self, var, mean_square, moment, learning_rate, grad, decay, momentum, epsilon):
|
def infer_value(self, var, mean_square, moment, learning_rate, grad, decay, momentum, epsilon):
|
||||||
if decay is None or momentum is None or epsilon is None:
|
if decay is None or momentum is None or epsilon is None:
|
||||||
raise ValueError(f"For {self.name}, decay, momentum, epsilon must be const.")
|
raise ValueError(f"For '{self.name}', 'decay', 'momentum' and 'epsilon' can not be None, "
|
||||||
|
f"but got 'decay': {decay}, 'momentum': {momentum} and 'epsilon':{epsilon}.")
|
||||||
|
|
||||||
|
|
||||||
class ApplyCenteredRMSProp(PrimitiveWithInfer):
|
class ApplyCenteredRMSProp(PrimitiveWithInfer):
|
||||||
|
@ -3362,7 +3381,8 @@ class L2Normalize(PrimitiveWithInfer):
|
||||||
self.add_prim_attr('axis', axis)
|
self.add_prim_attr('axis', axis)
|
||||||
self.init_attrs['axis'] = axis
|
self.init_attrs['axis'] = axis
|
||||||
if len(axis) != 1:
|
if len(axis) != 1:
|
||||||
raise TypeError("The length of axis must be 1, later will support multiple axis!")
|
raise TypeError(f"For '{self.name}', the dimension of 'axis' must be 1, but got {len(axis)}, "
|
||||||
|
f"later will support multiple axis!")
|
||||||
self.axis = axis
|
self.axis = axis
|
||||||
|
|
||||||
def infer_shape(self, input_x):
|
def infer_shape(self, input_x):
|
||||||
|
@ -3842,17 +3862,18 @@ class PReLU(PrimitiveWithInfer):
|
||||||
input_x_dim = len(input_x_shape)
|
input_x_dim = len(input_x_shape)
|
||||||
if input_x_dim in (0, 1):
|
if input_x_dim in (0, 1):
|
||||||
if context.get_context("device_target") == "Ascend":
|
if context.get_context("device_target") == "Ascend":
|
||||||
raise ValueError(f"For '{self.name}', the 0-D or 1-D 'input_x' is not supported on Ascend.")
|
raise ValueError(f"For '{self.name}', the dimension of 'x' can not be 0-D or 1-D when the platform is "
|
||||||
|
f"\"Ascend\", but got dimension of 'x' is {input_x_dim}.")
|
||||||
channel_num = 1
|
channel_num = 1
|
||||||
else:
|
else:
|
||||||
channel_num = input_x_shape[1]
|
channel_num = input_x_shape[1]
|
||||||
|
|
||||||
weight_dim = len(weight_shape)
|
weight_dim = len(weight_shape)
|
||||||
if weight_dim != 1:
|
if weight_dim != 1:
|
||||||
raise ValueError(f"For '{self.name}', the weight dimension should be 1, while got {weight_dim}.")
|
raise ValueError(f"For '{self.name}', the dimension of 'x' should be 1, while got {weight_dim}.")
|
||||||
if weight_shape[0] != 1 and weight_shape[0] != channel_num:
|
if weight_shape[0] != 1 and weight_shape[0] != channel_num:
|
||||||
raise ValueError(f"For '{self.name}', the weight shape should be (1,) or "
|
raise ValueError(f"For '{self.name}', the first dimension of 'weight' should be (1,) or "
|
||||||
f"matched with input channel ({channel_num},), but got {weight_shape}")
|
f"it should be equal to number of channels: {channel_num}, but got {weight_shape}")
|
||||||
return input_x_shape
|
return input_x_shape
|
||||||
|
|
||||||
def infer_dtype(self, input_x_dtype, weight_dtype):
|
def infer_dtype(self, input_x_dtype, weight_dtype):
|
||||||
|
@ -4055,8 +4076,8 @@ class BCEWithLogitsLoss(PrimitiveWithInfer):
|
||||||
and the third method is to calculate the sum of all losses.
|
and the third method is to calculate the sum of all losses.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
reduction (str): Type of reduction to be applied to loss. The optional values are 'mean', 'sum', and 'none'.
|
reduction (str): Type of reduction to be applied to loss. The optional values are 'mean', 'sum', and 'none',
|
||||||
If 'none', do not perform reduction. Default:'mean'.
|
not case sensitive. If 'none', do not perform reduction. Default:'mean'.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **logits** (Tensor) - Input logits. Data type must be float16 or float32.
|
- **logits** (Tensor) - Input logits. Data type must be float16 or float32.
|
||||||
|
@ -4095,36 +4116,36 @@ class BCEWithLogitsLoss(PrimitiveWithInfer):
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, reduction='mean'):
|
def __init__(self, reduction='mean'):
|
||||||
"""Initialize BCEWithLogitsLoss"""
|
"""Initialize BCEWithLogitsLoss"""
|
||||||
self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
|
self.reduction = validator.check_string(reduction.lower(), ['none', 'sum', 'mean'], 'reduction', self.name)
|
||||||
|
|
||||||
def infer_shape(self, predict, target, weight, pos_weight):
|
def infer_shape(self, logits, label, weight, pos_weight):
|
||||||
validator.check('predict_shape', predict, 'target_shape', target, Rel.EQ, self.name)
|
validator.check('logits_shape', logits, 'label_shape', label, Rel.EQ, self.name)
|
||||||
reversed_weight_shape = tuple(reversed(weight))
|
reversed_weight_shape = tuple(reversed(weight))
|
||||||
reversed_target = tuple(reversed(predict))
|
reversed_label = tuple(reversed(logits))
|
||||||
for i, v in enumerate(reversed_weight_shape):
|
for i, v in enumerate(reversed_weight_shape):
|
||||||
if v not in (reversed_target[i], 1):
|
if v not in (reversed_label[i], 1):
|
||||||
raise ValueError(f"For {self.name}, shapes can not broadcast. "
|
raise ValueError(f"For {self.name}, the shapes of 'logits' and 'weight' can not broadcast. "
|
||||||
f"predict: {tuple(predict)}, weight shape {tuple(weight)}.")
|
f"'logits': {tuple(logits)}, 'weight' shape {tuple(weight)}.")
|
||||||
|
|
||||||
reversed_pos_shape = tuple(reversed(pos_weight))
|
reversed_pos_shape = tuple(reversed(pos_weight))
|
||||||
reversed_target = tuple(reversed(predict))
|
reversed_label = tuple(reversed(logits))
|
||||||
for i, v in enumerate(reversed_pos_shape):
|
for i, v in enumerate(reversed_pos_shape):
|
||||||
if v not in (reversed_target[i], 1):
|
if v not in (reversed_label[i], 1):
|
||||||
raise ValueError(f"For {self.name}, shapes can not broadcast. "
|
raise ValueError(f"For {self.name}, the shapes of 'logits' and 'pos_weight' can not broadcast. "
|
||||||
f"predict: {tuple(predict)}, pos_weight shape {tuple(pos_weight)}.")
|
f"'logits': {tuple(logits)}, 'pos_weight' shape {tuple(pos_weight)}.")
|
||||||
|
|
||||||
if self.reduction in ('mean', 'sum'):
|
if self.reduction in ('mean', 'sum'):
|
||||||
shape = []
|
shape = []
|
||||||
else:
|
else:
|
||||||
shape = predict
|
shape = logits
|
||||||
return shape
|
return shape
|
||||||
|
|
||||||
def infer_dtype(self, predict, target, weight, pos_weight):
|
def infer_dtype(self, logits, label, weight, pos_weight):
|
||||||
validator.check_tensor_dtype_valid('predict dtype', predict, [mstype.float16, mstype.float32], self.name)
|
validator.check_tensor_dtype_valid('logits dtype', logits, [mstype.float16, mstype.float32], self.name)
|
||||||
validator.check_tensor_dtype_valid('target dtype', target, [mstype.float16, mstype.float32], self.name)
|
validator.check_tensor_dtype_valid('label dtype', label, [mstype.float16, mstype.float32], self.name)
|
||||||
validator.check_tensor_dtype_valid('weight dtype', weight, [mstype.float16, mstype.float32], self.name)
|
validator.check_tensor_dtype_valid('weight dtype', weight, [mstype.float16, mstype.float32], self.name)
|
||||||
validator.check_tensor_dtype_valid('pos_weight dtype', pos_weight, [mstype.float16, mstype.float32], self.name)
|
validator.check_tensor_dtype_valid('pos_weight dtype', pos_weight, [mstype.float16, mstype.float32], self.name)
|
||||||
return predict
|
return logits
|
||||||
|
|
||||||
|
|
||||||
class Pad(PrimitiveWithInfer):
|
class Pad(PrimitiveWithInfer):
|
||||||
|
@ -4170,17 +4191,19 @@ class Pad(PrimitiveWithInfer):
|
||||||
"""Initialize Pad"""
|
"""Initialize Pad"""
|
||||||
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||||
if not isinstance(paddings, tuple):
|
if not isinstance(paddings, tuple):
|
||||||
raise TypeError('Paddings must be tuple type.')
|
raise TypeError(f"For '{self.name}', the type of 'paddings' must be tuple, "
|
||||||
|
f"but got {type(paddings)}.")
|
||||||
for item in paddings:
|
for item in paddings:
|
||||||
if len(item) != 2:
|
if len(item) != 2:
|
||||||
raise ValueError('The shape of paddings must be (n, 2).')
|
raise ValueError(f"For '{self.name}', the shape of paddings must be (n, 2), "
|
||||||
|
f"but got {item}.")
|
||||||
self.paddings = paddings
|
self.paddings = paddings
|
||||||
|
|
||||||
def infer_shape(self, x_shape):
|
def infer_shape(self, x_shape):
|
||||||
validator.check_int(len(self.paddings), len(x_shape), Rel.EQ, 'paddings.shape', self.name)
|
validator.check_int(len(self.paddings), len(x_shape), Rel.EQ, 'paddings.shape', self.name)
|
||||||
paddings = np.array(self.paddings)
|
paddings = np.array(self.paddings)
|
||||||
if not np.all(paddings >= 0):
|
if not np.all(paddings >= 0):
|
||||||
raise ValueError('All elements of paddings must be >= 0.')
|
raise ValueError(f"For '{self.name}', all elements of paddings must be >= 0.")
|
||||||
y_shape = ()
|
y_shape = ()
|
||||||
for i in range(int(paddings.size / 2)):
|
for i in range(int(paddings.size / 2)):
|
||||||
y_shape += ((x_shape[i] + paddings[i, 0] + paddings[i, 1]),)
|
y_shape += ((x_shape[i] + paddings[i, 0] + paddings[i, 1]),)
|
||||||
|
@ -4272,13 +4295,14 @@ class MirrorPad(PrimitiveWithInfer):
|
||||||
paddings_size = paddings_value.size
|
paddings_size = paddings_value.size
|
||||||
validator.check_int(paddings_size, len(x_shape) * 2, Rel.EQ, 'paddings.shape', self.name)
|
validator.check_int(paddings_size, len(x_shape) * 2, Rel.EQ, 'paddings.shape', self.name)
|
||||||
if not np.all(paddings_value >= 0):
|
if not np.all(paddings_value >= 0):
|
||||||
raise ValueError('All elements of paddings must be >= 0.')
|
raise ValueError(f"For '{self.name}', all elements of 'paddings' must be >= 0.")
|
||||||
adjust = 0
|
adjust = 0
|
||||||
if self.mode == 'SYMMETRIC':
|
if self.mode == 'SYMMETRIC':
|
||||||
adjust = 1
|
adjust = 1
|
||||||
for i in range(0, int(paddings_size / 2)):
|
for i in range(0, int(paddings_size / 2)):
|
||||||
if (paddings_value[i, 0] >= x_shape[i] + adjust) or (paddings_value[i, 1] >= x_shape[i] + adjust):
|
if (paddings_value[i, 0] >= x_shape[i] + adjust) or (paddings_value[i, 1] >= x_shape[i] + adjust):
|
||||||
raise ValueError('At least one dim has too high a padding value for this input and mode')
|
raise ValueError(f"For '{self.name}', both paddings[D, 0] and paddings[D, 1] must be no greater than "
|
||||||
|
f"the dimension corresponding to 'x'.")
|
||||||
y_shape = ()
|
y_shape = ()
|
||||||
for i in range(0, int(paddings_size / 2)):
|
for i in range(0, int(paddings_size / 2)):
|
||||||
y_shape += ((x_shape[i] + paddings_value[i, 0] + paddings_value[i, 1]),)
|
y_shape += ((x_shape[i] + paddings_value[i, 0] + paddings_value[i, 1]),)
|
||||||
|
@ -5307,7 +5331,7 @@ class KLDivLoss(PrimitiveWithInfer):
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
reduction (str): Specifies the reduction to be applied to the output.
|
reduction (str): Specifies the reduction to be applied to the output.
|
||||||
Its value must be one of 'none', 'mean', 'sum'. Default: 'mean'.
|
Its value must be one of 'none', 'mean', 'sum', not case sensitive. Default: 'mean'.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **logits** (Tensor) - The input Tensor. The data type must be float32.
|
- **logits** (Tensor) - The input Tensor. The data type must be float32.
|
||||||
|
@ -5345,7 +5369,7 @@ class KLDivLoss(PrimitiveWithInfer):
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, reduction='mean'):
|
def __init__(self, reduction='mean'):
|
||||||
"""Initialize KLDivLoss."""
|
"""Initialize KLDivLoss."""
|
||||||
self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name)
|
self.reduction = validator.check_string(reduction.lower(), ['none', 'mean', 'sum'], 'reduction', self.name)
|
||||||
|
|
||||||
def infer_shape(self, x_shape, y_shape):
|
def infer_shape(self, x_shape, y_shape):
|
||||||
validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name)
|
validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name)
|
||||||
|
@ -5389,7 +5413,7 @@ class BinaryCrossEntropy(PrimitiveWithInfer):
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
reduction (str): Specifies the reduction to be applied to the output.
|
reduction (str): Specifies the reduction to be applied to the output.
|
||||||
Its value must be one of 'none', 'mean', 'sum'. Default: 'mean'.
|
Its value must be one of 'none', 'mean', 'sum', not case sensitive. Default: 'mean'.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **logits** (Tensor) - The input Tensor. The data type must be float16 or float32,
|
- **logits** (Tensor) - The input Tensor. The data type must be float16 or float32,
|
||||||
|
@ -5432,7 +5456,7 @@ class BinaryCrossEntropy(PrimitiveWithInfer):
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, reduction='mean'):
|
def __init__(self, reduction='mean'):
|
||||||
"""Initialize BinaryCrossEntropy."""
|
"""Initialize BinaryCrossEntropy."""
|
||||||
self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name)
|
self.reduction = validator.check_string(reduction.lower(), ['none', 'mean', 'sum'], 'reduction', self.name)
|
||||||
|
|
||||||
def infer_shape(self, x_shape, y_shape, weight_shape):
|
def infer_shape(self, x_shape, y_shape, weight_shape):
|
||||||
validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name)
|
validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name)
|
||||||
|
@ -6002,7 +6026,6 @@ class SparseApplyAdagrad(PrimitiveWithInfer):
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, lr, update_slots=True, use_locking=False):
|
def __init__(self, lr, update_slots=True, use_locking=False):
|
||||||
"""Initialize SparseApplyAdagrad."""
|
"""Initialize SparseApplyAdagrad."""
|
||||||
validator.check_value_type("lr", lr, [float], self.name)
|
|
||||||
validator.check_is_float(lr, "lr", self.name)
|
validator.check_is_float(lr, "lr", self.name)
|
||||||
validator.check_value_type("update_slots", update_slots, [bool], self.name)
|
validator.check_value_type("update_slots", update_slots, [bool], self.name)
|
||||||
validator.check_value_type("use_locking", use_locking, [bool], self.name)
|
validator.check_value_type("use_locking", use_locking, [bool], self.name)
|
||||||
|
@ -7674,14 +7697,15 @@ class DynamicRNN(PrimitiveWithInfer):
|
||||||
validator.check_int(len(h_shape), 3, Rel.EQ, "h_shape", self.name)
|
validator.check_int(len(h_shape), 3, Rel.EQ, "h_shape", self.name)
|
||||||
validator.check_int(len(c_shape), 3, Rel.EQ, "c_shape", self.name)
|
validator.check_int(len(c_shape), 3, Rel.EQ, "c_shape", self.name)
|
||||||
if seq_shape is not None:
|
if seq_shape is not None:
|
||||||
raise ValueError(f"For {self.name}, seq_shape should be None.")
|
raise ValueError(f"For '{self.name}', the dimension of 'seq_length' should be None, but got {seq_shape}.")
|
||||||
|
|
||||||
num_step, batch_size, input_size = x_shape
|
num_step, batch_size, input_size = x_shape
|
||||||
hidden_size = w_shape[-1] // 4
|
hidden_size = w_shape[-1] // 4
|
||||||
|
|
||||||
validator.check("b_shape[-1]", b_shape[-1], "w_shape[-1]", w_shape[-1], Rel.EQ, self.name)
|
validator.check("b_shape[-1]", b_shape[-1], "w_shape[-1]", w_shape[-1], Rel.EQ, self.name)
|
||||||
if w_shape[-1] % 4 != 0:
|
if w_shape[-1] % 4 != 0:
|
||||||
raise ValueError(f"For {self.name}, w_shape[-1] should multiple of 4.")
|
raise ValueError(f"For '{self.name}', the last dimension of 'w' should be a multiple of 4, "
|
||||||
|
f"but got {w_shape[-1]}.")
|
||||||
validator.check("w_shape[0]", w_shape[0], "input_size + hidden_size",
|
validator.check("w_shape[0]", w_shape[0], "input_size + hidden_size",
|
||||||
input_size + hidden_size, Rel.EQ, self.name)
|
input_size + hidden_size, Rel.EQ, self.name)
|
||||||
validator.check("b_shape[0]", b_shape[0], "w_shape[1]", w_shape[1], Rel.EQ, self.name)
|
validator.check("b_shape[0]", b_shape[0], "w_shape[1]", w_shape[1], Rel.EQ, self.name)
|
||||||
|
@ -7841,7 +7865,8 @@ class DynamicGRUV2(PrimitiveWithInfer):
|
||||||
num_step, batch_size, input_size = x_shape
|
num_step, batch_size, input_size = x_shape
|
||||||
hidden_size = winput_shape[-1] // 3
|
hidden_size = winput_shape[-1] // 3
|
||||||
if winput_shape[-1] % 3 != 0:
|
if winput_shape[-1] % 3 != 0:
|
||||||
raise ValueError(f"For {self.name}, weight_input_shape[-1] should multiple of 3.")
|
raise ValueError(f"For '{self.name}', the last dimension of 'w' should be a multiple of 3, "
|
||||||
|
f"but got {winput_shape[-1]}.")
|
||||||
|
|
||||||
self.placeholder_index = [3, 4, 5]
|
self.placeholder_index = [3, 4, 5]
|
||||||
if binput_shape is not None:
|
if binput_shape is not None:
|
||||||
|
@ -7854,7 +7879,8 @@ class DynamicGRUV2(PrimitiveWithInfer):
|
||||||
"3 * hidden_shape", [3 * hidden_size], Rel.EQ, self.name)
|
"3 * hidden_shape", [3 * hidden_size], Rel.EQ, self.name)
|
||||||
self.placeholder_index.remove(4)
|
self.placeholder_index.remove(4)
|
||||||
if seq_shape is not None:
|
if seq_shape is not None:
|
||||||
raise ValueError(f"For {self.name}, seq_shape should be None.")
|
raise ValueError(f"For '{self.name}', the dimension of 'seq_length' should be None, "
|
||||||
|
f"but got {seq_shape}.")
|
||||||
|
|
||||||
validator.check_int(len(h_shape), 2, Rel.EQ, "init_h shape rank", self.name)
|
validator.check_int(len(h_shape), 2, Rel.EQ, "init_h shape rank", self.name)
|
||||||
validator.check("init_h_shape[0]", h_shape[0], "batch_size", batch_size, Rel.EQ, self.name)
|
validator.check("init_h_shape[0]", h_shape[0], "batch_size", batch_size, Rel.EQ, self.name)
|
||||||
|
@ -8036,8 +8062,8 @@ class AvgPool3D(Primitive):
|
||||||
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
the depth, height and width of movement are both strides, or a tuple of three int numbers that
|
the depth, height and width of movement are both strides, or a tuple of three int numbers that
|
||||||
represent depth, height and width of movement respectively. Default: 1.
|
represent depth, height and width of movement respectively. Default: 1.
|
||||||
pad_mode (str): The optional value for pad mode, is "same", "valid", "pad", not case sensitive.
|
pad_mode (str): The optional value for pad mode, is "SAME", "VALID", "PAD", not case sensitive.
|
||||||
Default: "valid".
|
Default: "VALID".
|
||||||
|
|
||||||
- same: Adopts the way of completion. The depth, height and width of the output will be the same as
|
- same: Adopts the way of completion. The depth, height and width of the output will be the same as
|
||||||
the input. The total number of padding will be calculated in depth, horizontal and vertical
|
the input. The total number of padding will be calculated in depth, horizontal and vertical
|
||||||
|
@ -8106,7 +8132,7 @@ class AvgPool3D(Primitive):
|
||||||
if isinstance(pad, int):
|
if isinstance(pad, int):
|
||||||
pad = (pad,) * 6
|
pad = (pad,) * 6
|
||||||
if len(pad) != 6:
|
if len(pad) != 6:
|
||||||
raise ValueError(f"For `AvgPool3D` attr 'pad' should be an positive int number or a tuple of "
|
raise ValueError(f"For '{self.name}', attr 'pad' should be an positive int number or a tuple of "
|
||||||
f"six positive int numbers, but got `{len(pad)}`.")
|
f"six positive int numbers, but got `{len(pad)}`.")
|
||||||
self.pad_list = pad
|
self.pad_list = pad
|
||||||
self.add_prim_attr('pad_list', self.pad_list)
|
self.add_prim_attr('pad_list', self.pad_list)
|
||||||
|
@ -8115,7 +8141,8 @@ class AvgPool3D(Primitive):
|
||||||
self.add_prim_attr('pad_mode', self.pad_mode)
|
self.add_prim_attr('pad_mode', self.pad_mode)
|
||||||
|
|
||||||
if self.pad_mode != 'PAD' and pad != (0, 0, 0, 0, 0, 0):
|
if self.pad_mode != 'PAD' and pad != (0, 0, 0, 0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', when pad is not 0, pad_mode should be set as 'pad'.")
|
raise ValueError(f"For '{self.name}', the 'pad' must be (0, 0, 0, 0, 0, 0) when 'pad_mode' is not \"pad\", "
|
||||||
|
f"but got 'pad' is {pad} and 'pad_mode' is {self.pad_mode}.")
|
||||||
if self.pad_mode == 'PAD':
|
if self.pad_mode == 'PAD':
|
||||||
for item in pad:
|
for item in pad:
|
||||||
validator.check_non_negative_int(item, 'pad or item of pad', self.name)
|
validator.check_non_negative_int(item, 'pad or item of pad', self.name)
|
||||||
|
@ -8250,7 +8277,7 @@ class Conv3D(PrimitiveWithInfer):
|
||||||
if isinstance(pad, int):
|
if isinstance(pad, int):
|
||||||
pad = (pad,) * 6
|
pad = (pad,) * 6
|
||||||
if len(pad) != 6:
|
if len(pad) != 6:
|
||||||
raise ValueError(f"For `conv3d` attr 'pad' should be an positive int number or a tuple of "
|
raise ValueError(f"For '{self.name}', attr 'pad' should be an positive int number or a tuple of "
|
||||||
f"six positive int numbers, but got `{len(pad)}`.")
|
f"six positive int numbers, but got `{len(pad)}`.")
|
||||||
self.add_prim_attr("pad", pad)
|
self.add_prim_attr("pad", pad)
|
||||||
self.padding = pad
|
self.padding = pad
|
||||||
|
@ -8259,7 +8286,8 @@ class Conv3D(PrimitiveWithInfer):
|
||||||
self.add_prim_attr('pad_mode', self.pad_mode)
|
self.add_prim_attr('pad_mode', self.pad_mode)
|
||||||
|
|
||||||
if self.pad_mode != 'pad' and pad != (0, 0, 0, 0, 0, 0):
|
if self.pad_mode != 'pad' and pad != (0, 0, 0, 0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', when pad is not 0, pad_mode should be set as 'pad'.")
|
raise ValueError(f"For '{self.name}', the 'pad' must be (0, 0, 0, 0, 0, 0) when 'pad_mode' is not \"pad\", "
|
||||||
|
f"but got 'pad' is {pad} and 'pad_mode' is {self.pad_mode}.")
|
||||||
if self.pad_mode == 'pad':
|
if self.pad_mode == 'pad':
|
||||||
for item in pad:
|
for item in pad:
|
||||||
validator.check_non_negative_int(item, 'pad item', self.name)
|
validator.check_non_negative_int(item, 'pad item', self.name)
|
||||||
|
@ -8277,7 +8305,7 @@ class Conv3D(PrimitiveWithInfer):
|
||||||
validator.check_equal_int(len(w_shape), 5, "weight rank", self.name)
|
validator.check_equal_int(len(w_shape), 5, "weight rank", self.name)
|
||||||
validator.check_equal_int(len(x_shape), 5, "x rank", self.name)
|
validator.check_equal_int(len(x_shape), 5, "x rank", self.name)
|
||||||
if b_shape is not None:
|
if b_shape is not None:
|
||||||
raise ValueError("Bias currently only support None.")
|
raise ValueError(f"For '{self.name}', the 'bias' currently only support None, but got {b_shape}.")
|
||||||
validator.check(f"x_shape[1] // group", x_shape[1] // self.group, "w_shape[1]", w_shape[1], Rel.EQ, self.name)
|
validator.check(f"x_shape[1] // group", x_shape[1] // self.group, "w_shape[1]", w_shape[1], Rel.EQ, self.name)
|
||||||
validator.check('out_channel', self.out_channel, 'w_shape[0]', w_shape[0], Rel.EQ, self.name)
|
validator.check('out_channel', self.out_channel, 'w_shape[0]', w_shape[0], Rel.EQ, self.name)
|
||||||
validator.check('kernel_size', self.kernel_size, 'w_shape[1:4]', tuple(w_shape[2:]), Rel.EQ, self.name)
|
validator.check('kernel_size', self.kernel_size, 'w_shape[1:4]', tuple(w_shape[2:]), Rel.EQ, self.name)
|
||||||
|
@ -8443,7 +8471,9 @@ class Conv3DBackpropInput(PrimitiveWithInfer):
|
||||||
|
|
||||||
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
||||||
if self.pad_mode != 'pad' and self.pad_list != (0, 0, 0, 0, 0, 0):
|
if self.pad_mode != 'pad' and self.pad_list != (0, 0, 0, 0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', when pad is not 0, pad_mode should be set as 'pad'.")
|
raise ValueError(f"For '{self.name}', the 'pad' must be (0, 0, 0, 0, 0, 0) "
|
||||||
|
f"when 'pad_mode' is not \"pad\", "
|
||||||
|
f"but got 'pad' is {self.pad_list} and 'pad_mode' is {self.pad_mode}.")
|
||||||
if self.pad_mode == 'pad':
|
if self.pad_mode == 'pad':
|
||||||
for item in pad:
|
for item in pad:
|
||||||
validator.check_non_negative_int(item, 'pad item', self.name)
|
validator.check_non_negative_int(item, 'pad item', self.name)
|
||||||
|
@ -8526,8 +8556,8 @@ class CTCLossV2(Primitive):
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
blank (int): The blank label. Default: 0.
|
blank (int): The blank label. Default: 0.
|
||||||
reduction (string): Apply specific reduction method to the output. Currently only support 'none'.
|
reduction (string): Apply specific reduction method to the output. Currently only support 'none',
|
||||||
Default: "none".
|
not case sensitive. Default: "none".
|
||||||
zero_infinity (bool): Whether to set infinite loss and correlation gradient to zero. Default: False.
|
zero_infinity (bool): Whether to set infinite loss and correlation gradient to zero. Default: False.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
|
@ -8557,7 +8587,7 @@ class CTCLossV2(Primitive):
|
||||||
self.add_prim_attr("blank", blank)
|
self.add_prim_attr("blank", blank)
|
||||||
validator.check_value_type("reduction", reduction, [str], self.name)
|
validator.check_value_type("reduction", reduction, [str], self.name)
|
||||||
self.reduction = self.reduction.lower()
|
self.reduction = self.reduction.lower()
|
||||||
validator.check_string(self.reduction, ['none'], 'reduction', self.name)
|
validator.check_string(self.reduction.lower(), ['none'], 'reduction', self.name)
|
||||||
self.add_prim_attr("reduction", self.reduction)
|
self.add_prim_attr("reduction", self.reduction)
|
||||||
validator.check_value_type("zero_infinity", zero_infinity, [bool], self.name)
|
validator.check_value_type("zero_infinity", zero_infinity, [bool], self.name)
|
||||||
self.add_prim_attr("zero_infinity", zero_infinity)
|
self.add_prim_attr("zero_infinity", zero_infinity)
|
||||||
|
@ -8640,7 +8670,7 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
other is for the width of the kernel.
|
other is for the width of the kernel.
|
||||||
mode (int): Modes for different convolutions. Default is 1. It is currently not used.
|
mode (int): Modes for different convolutions. Default is 1. It is currently not used.
|
||||||
pad_mode (str): Specifies padding mode. The optional values are
|
pad_mode (str): Specifies padding mode. The optional values are
|
||||||
"same", "valid", "pad". Default: "valid".
|
"same", "valid", "pad", not case sensitive. Default: "valid".
|
||||||
|
|
||||||
- same: Adopts the way of completion. The depth, height and width of the output will be the same as
|
- same: Adopts the way of completion. The depth, height and width of the output will be the same as
|
||||||
the input. The total number of padding will be calculated in depth, horizontal and vertical
|
the input. The total number of padding will be calculated in depth, horizontal and vertical
|
||||||
|
@ -8736,7 +8766,7 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
if isinstance(pad, int):
|
if isinstance(pad, int):
|
||||||
pad = (pad,) * 6
|
pad = (pad,) * 6
|
||||||
if len(pad) != 6:
|
if len(pad) != 6:
|
||||||
raise ValueError(f"For `Conv3DTranspose` attr 'pad' should be an positive int number or a tuple of "
|
raise ValueError(f"For '{self.name}', attr 'pad' should be an positive int number or a tuple of "
|
||||||
f"six positive int numbers, but got `{len(pad)}`.")
|
f"six positive int numbers, but got `{len(pad)}`.")
|
||||||
self.pad_list = pad
|
self.pad_list = pad
|
||||||
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
|
validator.check_value_type('pad_mode', pad_mode, [str], self.name)
|
||||||
|
@ -8744,7 +8774,8 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
self.add_prim_attr('pad_mode', self.pad_mode)
|
self.add_prim_attr('pad_mode', self.pad_mode)
|
||||||
|
|
||||||
if self.pad_mode != 'pad' and pad != (0, 0, 0, 0, 0, 0):
|
if self.pad_mode != 'pad' and pad != (0, 0, 0, 0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', when pad is not 0, pad_mode should be set as 'pad'.")
|
raise ValueError(f"For '{self.name}', the 'pad' must be (0, 0, 0, 0, 0, 0) when 'pad_mode' is not \"pad\", "
|
||||||
|
f"but got 'pad' is {pad} and 'pad_mode' is {self.pad_mode}.")
|
||||||
|
|
||||||
if self.pad_mode == 'pad':
|
if self.pad_mode == 'pad':
|
||||||
for item in self.pad_list:
|
for item in self.pad_list:
|
||||||
|
@ -8760,7 +8791,9 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
allow_five=False, ret_five=True, greater_zero=False)
|
allow_five=False, ret_five=True, greater_zero=False)
|
||||||
output_padding = (self.output_padding[2], self.output_padding[3], self.output_padding[4])
|
output_padding = (self.output_padding[2], self.output_padding[3], self.output_padding[4])
|
||||||
if self.pad_mode != 'pad' and output_padding != (0, 0, 0):
|
if self.pad_mode != 'pad' and output_padding != (0, 0, 0):
|
||||||
raise ValueError(f"For '{self.name}', when output_padding is not 0, pad_mode should be set as 'pad'.")
|
raise ValueError(f"For '{self.name}', the 'output_padding' must be (0, 0, 0) "
|
||||||
|
f"when 'pad_mode' is not \"pad\", "
|
||||||
|
f"but got 'output_padding' is {output_padding} and 'pad_mode' is {self.pad_mode}.")
|
||||||
validator.check_int_range(self.kernel_size[0] * self.kernel_size[1] * self.kernel_size[2], 1, 343, Rel.INC_BOTH,
|
validator.check_int_range(self.kernel_size[0] * self.kernel_size[1] * self.kernel_size[2], 1, 343, Rel.INC_BOTH,
|
||||||
'The product of height, width and depth of kernel_size belonging [1, 343]', self.name)
|
'The product of height, width and depth of kernel_size belonging [1, 343]', self.name)
|
||||||
validator.check_int_range(self.stride[0] * self.stride[1] * self.stride[2], 1, 343, Rel.INC_BOTH,
|
validator.check_int_range(self.stride[0] * self.stride[1] * self.stride[2], 1, 343, Rel.INC_BOTH,
|
||||||
|
@ -8777,7 +8810,7 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
def __infer__(self, x, w, b=None):
|
def __infer__(self, x, w, b=None):
|
||||||
args = {'x': x['dtype'], 'w': w['dtype']}
|
args = {'x': x['dtype'], 'w': w['dtype']}
|
||||||
if b is not None:
|
if b is not None:
|
||||||
raise ValueError("Bias currently only support None.")
|
raise ValueError(f"For '{self.name}', the 'bias' currently only support None, but got {b}.")
|
||||||
valid_dtypes = [mstype.float16, mstype.float32]
|
valid_dtypes = [mstype.float16, mstype.float32]
|
||||||
validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name)
|
validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name)
|
||||||
|
|
||||||
|
|
|
@ -552,10 +552,11 @@ class CheckBprop(PrimitiveWithInfer):
|
||||||
return xshapes
|
return xshapes
|
||||||
|
|
||||||
def infer_dtype(self, xdtypes, ydtypes):
|
def infer_dtype(self, xdtypes, ydtypes):
|
||||||
validator.check_value_type('grads', xdtypes, (tuple,), self.name)
|
tips = f'Bprop of {self.prim_to_check}'
|
||||||
validator.check_value_type('params', ydtypes, (tuple,), self.name)
|
validator.check_value_type('grads', xdtypes, (tuple,), tips)
|
||||||
|
validator.check_value_type('params', ydtypes, (tuple,), tips)
|
||||||
if len(xdtypes) < len(ydtypes):
|
if len(xdtypes) < len(ydtypes):
|
||||||
raise ValueError(f"For '{self.name}', the size of 'xdtypes' should not be less than {len(ydtypes)},"
|
raise ValueError(f"{tips}, the size of output should be {len(ydtypes)},"
|
||||||
f" but got {len(xdtypes)}.")
|
f" but got {len(xdtypes)}.")
|
||||||
checking_range = len(ydtypes)
|
checking_range = len(ydtypes)
|
||||||
for i in range(checking_range):
|
for i in range(checking_range):
|
||||||
|
@ -565,11 +566,11 @@ class CheckBprop(PrimitiveWithInfer):
|
||||||
continue
|
continue
|
||||||
if isinstance(ydtype, mstype.function_type):
|
if isinstance(ydtype, mstype.function_type):
|
||||||
if not isinstance(xdtype, mstype.env_type_type):
|
if not isinstance(xdtype, mstype.env_type_type):
|
||||||
raise TypeError(f"For '{self.name}', the dtype of {i}th 'xdtypes' should be {mstype.env_type_type},"
|
raise TypeError(f"{tips}, the dtype of {i}th output should be {mstype.env_type_type},"
|
||||||
f" but got {xdtype}.")
|
f" but got {xdtype}.")
|
||||||
continue
|
continue
|
||||||
if xdtype != ydtype:
|
if xdtype != ydtype:
|
||||||
raise TypeError(f"For '{self.name}', the shape of {i}th 'xdtypes' should be {ydtype},"
|
raise TypeError(f"{tips}, the dtype of {i}th output should be {ydtype},"
|
||||||
f" but got {xdtype}.")
|
f" but got {xdtype}.")
|
||||||
return xdtypes
|
return xdtypes
|
||||||
|
|
||||||
|
|
|
@ -69,7 +69,7 @@ class StandardNormal(PrimitiveWithInfer):
|
||||||
def __infer__(self, shape):
|
def __infer__(self, shape):
|
||||||
shape_v = shape["value"]
|
shape_v = shape["value"]
|
||||||
if shape_v is None:
|
if shape_v is None:
|
||||||
raise ValueError(f"For '{self.name}', the 'shape' cannot be None, but got {shape}.")
|
raise ValueError(f"For '{self.name}', the 'shape' cannot be None.")
|
||||||
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||||
for i, shape_i in enumerate(shape_v):
|
for i, shape_i in enumerate(shape_v):
|
||||||
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
||||||
|
@ -126,7 +126,7 @@ class StandardLaplace(PrimitiveWithInfer):
|
||||||
def __infer__(self, shape):
|
def __infer__(self, shape):
|
||||||
shape_v = shape["value"]
|
shape_v = shape["value"]
|
||||||
if shape_v is None:
|
if shape_v is None:
|
||||||
raise ValueError(f"For '{self.name}', the 'shape' cannot be None, but got {shape}.")
|
raise ValueError(f"For '{self.name}', the 'shape' cannot be None.")
|
||||||
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||||
for i, shape_i in enumerate(shape_v):
|
for i, shape_i in enumerate(shape_v):
|
||||||
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
||||||
|
@ -189,7 +189,7 @@ class Gamma(PrimitiveWithInfer):
|
||||||
def __infer__(self, shape, alpha, beta):
|
def __infer__(self, shape, alpha, beta):
|
||||||
shape_v = shape["value"]
|
shape_v = shape["value"]
|
||||||
if shape_v is None:
|
if shape_v is None:
|
||||||
raise ValueError(f"For '{self.name}', the 'shape' cannot be None, but got {shape}.")
|
raise ValueError(f"For '{self.name}', the 'shape' cannot be None.")
|
||||||
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||||
for i, shape_i in enumerate(shape_v):
|
for i, shape_i in enumerate(shape_v):
|
||||||
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
||||||
|
@ -253,7 +253,7 @@ class Poisson(PrimitiveWithInfer):
|
||||||
def __infer__(self, shape, mean):
|
def __infer__(self, shape, mean):
|
||||||
shape_v = shape["value"]
|
shape_v = shape["value"]
|
||||||
if shape_v is None:
|
if shape_v is None:
|
||||||
raise ValueError(f"For '{self.name}', the 'shape' cannot be None, but got {shape}.")
|
raise ValueError(f"For '{self.name}', the 'shape' cannot be None.")
|
||||||
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||||
for i, shape_i in enumerate(shape_v):
|
for i, shape_i in enumerate(shape_v):
|
||||||
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
||||||
|
@ -325,7 +325,7 @@ class UniformInt(PrimitiveWithInfer):
|
||||||
def __infer__(self, shape, minval, maxval):
|
def __infer__(self, shape, minval, maxval):
|
||||||
shape_v = shape["value"]
|
shape_v = shape["value"]
|
||||||
if shape_v is None:
|
if shape_v is None:
|
||||||
raise ValueError(f"For '{self.name}', the 'shape' cannot be None, but got {shape}.")
|
raise ValueError(f"For '{self.name}', the 'shape' cannot be None.")
|
||||||
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||||
for i, shape_i in enumerate(shape_v):
|
for i, shape_i in enumerate(shape_v):
|
||||||
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
||||||
|
@ -564,7 +564,7 @@ class Multinomial(PrimitiveWithInfer):
|
||||||
Validator.check_tensor_dtype_valid('inputs', inputs['dtype'], [mstype.float32], self.name)
|
Validator.check_tensor_dtype_valid('inputs', inputs['dtype'], [mstype.float32], self.name)
|
||||||
num_samples_value = num_samples["value"]
|
num_samples_value = num_samples["value"]
|
||||||
if num_samples_value is None:
|
if num_samples_value is None:
|
||||||
raise ValueError(f"For '{self.name}', the 'num_samples' cannot be None, but got {num_samples}.")
|
raise ValueError(f"For '{self.name}', the 'num_samples' cannot be None.")
|
||||||
Validator.check_value_type("num_samples", num_samples_value, (int,), self.name)
|
Validator.check_value_type("num_samples", num_samples_value, (int,), self.name)
|
||||||
Validator.check_positive_int(num_samples_value, "num_samples")
|
Validator.check_positive_int(num_samples_value, "num_samples")
|
||||||
y_shape = (num_samples_value,)
|
y_shape = (num_samples_value,)
|
||||||
|
|
|
@ -107,9 +107,9 @@ def test_reverse_v2_invalid_axis():
|
||||||
with pytest.raises(ValueError) as info:
|
with pytest.raises(ValueError) as info:
|
||||||
reverse_v2_net = ReverseV2Net((0, 1, 2, 1))
|
reverse_v2_net = ReverseV2Net((0, 1, 2, 1))
|
||||||
_ = reverse_v2_net(x)
|
_ = reverse_v2_net(x)
|
||||||
assert "axis cannot contain duplicate dimensions" in str(info.value)
|
assert "'axis' cannot contain duplicate dimensions" in str(info.value)
|
||||||
|
|
||||||
with pytest.raises(ValueError) as info:
|
with pytest.raises(ValueError) as info:
|
||||||
reverse_v2_net = ReverseV2Net((-2, -1, 3))
|
reverse_v2_net = ReverseV2Net((-2, -1, 3))
|
||||||
_ = reverse_v2_net(x)
|
_ = reverse_v2_net(x)
|
||||||
assert "axis cannot contain duplicate dimensions" in str(info.value)
|
assert "'axis' cannot contain duplicate dimensions" in str(info.value)
|
||||||
|
|
|
@ -1204,7 +1204,7 @@ def test_tensor_slice_reduce_out_of_bounds_neg():
|
||||||
net = NetWork()
|
net = NetWork()
|
||||||
with pytest.raises(IndexError) as ex:
|
with pytest.raises(IndexError) as ex:
|
||||||
net(input_tensor)
|
net(input_tensor)
|
||||||
assert "begin should be in [-6, 6), but got stride: 1, begin: -7." in str(ex.value)
|
assert "'begin' should be in [-6, 6) when shrink axis, but got 'strides': 1, 'begin': -7." in str(ex.value)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level1
|
@pytest.mark.level1
|
||||||
|
@ -1226,7 +1226,7 @@ def test_tensor_slice_reduce_out_of_bounds_positive():
|
||||||
net = NetWork()
|
net = NetWork()
|
||||||
with pytest.raises(IndexError) as ex:
|
with pytest.raises(IndexError) as ex:
|
||||||
net(input_tensor)
|
net(input_tensor)
|
||||||
assert "begin should be in [-6, 6), but got stride: 1, begin: 6." in str(ex.value)
|
assert "'begin' should be in [-6, 6) when shrink axis, but got 'strides': 1, 'begin': 6." in str(ex.value)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level0
|
@pytest.mark.level0
|
||||||
|
|
|
@ -386,7 +386,7 @@ def test_grad_args_type_error1():
|
||||||
try:
|
try:
|
||||||
GradNetWrtX(Net())(x, y)
|
GradNetWrtX(Net())(x, y)
|
||||||
except TypeError as e:
|
except TypeError as e:
|
||||||
assert "For 'GradOperation', the arg 'get_all' should be bool, but got" in str(e)
|
assert "For 'GradOperation', the 'get_all' should be bool, but got" in str(e)
|
||||||
|
|
||||||
|
|
||||||
def test_grad_args_type_error2():
|
def test_grad_args_type_error2():
|
||||||
|
@ -412,7 +412,7 @@ def test_grad_args_type_error2():
|
||||||
try:
|
try:
|
||||||
GradNetWrtX(Net())(x, y)
|
GradNetWrtX(Net())(x, y)
|
||||||
except TypeError as e:
|
except TypeError as e:
|
||||||
assert "For 'GradOperation', the arg 'get_by_list' should be bool, but got" in str(e)
|
assert "For 'GradOperation', the 'get_by_list' should be bool, but got" in str(e)
|
||||||
|
|
||||||
|
|
||||||
def test_grad_args_type_error3():
|
def test_grad_args_type_error3():
|
||||||
|
@ -438,7 +438,7 @@ def test_grad_args_type_error3():
|
||||||
try:
|
try:
|
||||||
GradNetWrtX(Net())(x, y)
|
GradNetWrtX(Net())(x, y)
|
||||||
except TypeError as e:
|
except TypeError as e:
|
||||||
assert "For 'GradOperation', the arg 'sens_param' should be bool, but got" in str(e)
|
assert "For 'GradOperation', the 'sens_param' should be bool, but got" in str(e)
|
||||||
|
|
||||||
|
|
||||||
def test_grad_net_is_none():
|
def test_grad_net_is_none():
|
||||||
|
|
|
@ -53,11 +53,11 @@ def test_invert_int_tensor():
|
||||||
context.set_context(mode=context.PYNATIVE_MODE)
|
context.set_context(mode=context.PYNATIVE_MODE)
|
||||||
with pytest.raises(TypeError) as err:
|
with pytest.raises(TypeError) as err:
|
||||||
net(input_x)
|
net(input_x)
|
||||||
assert "For 'LogicalNot or '~' operator', the type of `x` should be subclass of Tensor[Bool], " \
|
assert "For 'LogicalNot or '~' operator', the type of 'x' should be Tensor[Bool], " \
|
||||||
"but got Tensor[Int32]" in str(err.value)
|
"but got Tensor[Int32]" in str(err.value)
|
||||||
|
|
||||||
context.set_context(mode=context.GRAPH_MODE)
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
with pytest.raises(TypeError) as err:
|
with pytest.raises(TypeError) as err:
|
||||||
net(input_x)
|
net(input_x)
|
||||||
assert "For 'LogicalNot or '~' operator', the type of `x` should be subclass of Tensor[Bool], " \
|
assert "For 'LogicalNot or '~' operator', the type of 'x' should be Tensor[Bool], " \
|
||||||
"but got Tensor[Int32]" in str(err.value)
|
"but got Tensor[Int32]" in str(err.value)
|
||||||
|
|
Loading…
Reference in New Issue