forked from mindspore-Ecosystem/mindspore
!15106 fix DeepText 310 inference bug and fasterrcnn bug
From: @yuzhenhua666 Reviewed-by: @c_34,@oacjiewen Signed-off-by: @c_34
This commit is contained in:
commit
97e3fc1d5c
|
@ -36,7 +36,7 @@ def get_pred(file, result_path):
|
||||||
all_bbox_file = os.path.join(result_path, file_name + "_0.bin")
|
all_bbox_file = os.path.join(result_path, file_name + "_0.bin")
|
||||||
all_label_file = os.path.join(result_path, file_name + "_1.bin")
|
all_label_file = os.path.join(result_path, file_name + "_1.bin")
|
||||||
all_mask_file = os.path.join(result_path, file_name + "_2.bin")
|
all_mask_file = os.path.join(result_path, file_name + "_2.bin")
|
||||||
all_bbox = np.fromfile(all_bbox_file, dtype=np.float16).reshape(config.test_batch_size, 1000, 5)
|
all_bbox = np.fromfile(all_bbox_file, dtype=np.float32).reshape(config.test_batch_size, 1000, 5)
|
||||||
all_label = np.fromfile(all_label_file, dtype=np.int32).reshape(config.test_batch_size, 1000, 1)
|
all_label = np.fromfile(all_label_file, dtype=np.int32).reshape(config.test_batch_size, 1000, 1)
|
||||||
all_mask = np.fromfile(all_mask_file, dtype=np.bool).reshape(config.test_batch_size, 1000, 1)
|
all_mask = np.fromfile(all_mask_file, dtype=np.bool).reshape(config.test_batch_size, 1000, 1)
|
||||||
|
|
||||||
|
|
|
@ -23,7 +23,7 @@
|
||||||
* @attention context is passed in as a parameter after being created in ResourceManager::InitResource
|
* @attention context is passed in as a parameter after being created in ResourceManager::InitResource
|
||||||
*/
|
*/
|
||||||
AclProcess::AclProcess(int deviceId, const std::string &om_path, uint32_t width, uint32_t height)
|
AclProcess::AclProcess(int deviceId, const std::string &om_path, uint32_t width, uint32_t height)
|
||||||
: deviceId_(deviceId), stream_(nullptr), modelProcess_(nullptr), dvppCommon_(nullptr), keepRatio_(false) {
|
: deviceId_(deviceId), stream_(nullptr), modelProcess_(nullptr), dvppCommon_(nullptr), keepRatio_(true) {
|
||||||
modelInfo_.modelPath = om_path;
|
modelInfo_.modelPath = om_path;
|
||||||
modelInfo_.modelWidth = width;
|
modelInfo_.modelWidth = width;
|
||||||
modelInfo_.modelHeight = height;
|
modelInfo_.modelHeight = height;
|
||||||
|
@ -284,29 +284,22 @@ int AclProcess::ModelInfer(std::map<double, double> *costTime_map) {
|
||||||
heightScale = static_cast<float>(resizeOutData->height) / inputImg->height;
|
heightScale = static_cast<float>(resizeOutData->height) / inputImg->height;
|
||||||
}
|
}
|
||||||
|
|
||||||
aclFloat16 inputWidth = aclFloatToFloat16(static_cast<float>(inputImg->width));
|
float im_info[4];
|
||||||
aclFloat16 inputHeight = aclFloatToFloat16(static_cast<float>(inputImg->height));
|
im_info[0] = static_cast<float>(inputImg->height);
|
||||||
aclFloat16 resizeWidthRatioFp16 = aclFloatToFloat16(widthScale);
|
im_info[1] = static_cast<float>(inputImg->width);
|
||||||
aclFloat16 resizeHeightRatioFp16 = aclFloatToFloat16(heightScale);
|
im_info[2] = heightScale;
|
||||||
|
im_info[3] = widthScale;
|
||||||
aclFloat16 *im_info = reinterpret_cast<aclFloat16 *>(malloc(sizeof(aclFloat16) * 4));
|
|
||||||
im_info[0] = inputHeight;
|
|
||||||
im_info[1] = inputWidth;
|
|
||||||
im_info[2] = resizeHeightRatioFp16;
|
|
||||||
im_info[3] = resizeWidthRatioFp16;
|
|
||||||
void *imInfo_dst = nullptr;
|
void *imInfo_dst = nullptr;
|
||||||
int ret = aclrtMalloc(&imInfo_dst, 8, ACL_MEM_MALLOC_NORMAL_ONLY);
|
int ret = aclrtMalloc(&imInfo_dst, 16, ACL_MEM_MALLOC_NORMAL_ONLY);
|
||||||
if (ret != ACL_ERROR_NONE) {
|
if (ret != ACL_ERROR_NONE) {
|
||||||
std::cout << "aclrtMalloc failed, ret = " << ret << std::endl;
|
std::cout << "aclrtMalloc failed, ret = " << ret << std::endl;
|
||||||
aclrtFree(imInfo_dst);
|
aclrtFree(imInfo_dst);
|
||||||
free(im_info);
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
ret = aclrtMemcpy(reinterpret_cast<uint8_t *>(imInfo_dst), 8, im_info, 8, ACL_MEMCPY_HOST_TO_DEVICE);
|
ret = aclrtMemcpy(reinterpret_cast<uint8_t *>(imInfo_dst), 16, im_info, 16, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||||
if (ret != ACL_ERROR_NONE) {
|
if (ret != ACL_ERROR_NONE) {
|
||||||
std::cout << "aclrtMemcpy failed, ret = " << ret << std::endl;
|
std::cout << "aclrtMemcpy failed, ret = " << ret << std::endl;
|
||||||
aclrtFree(imInfo_dst);
|
aclrtFree(imInfo_dst);
|
||||||
free(im_info);
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -320,7 +313,6 @@ int AclProcess::ModelInfer(std::map<double, double> *costTime_map) {
|
||||||
ret = modelProcess_->ModelInference(inputBuffers, inputSizes, outputBuffers_, outputSizes_, costTime_map);
|
ret = modelProcess_->ModelInference(inputBuffers, inputSizes, outputBuffers_, outputSizes_, costTime_map);
|
||||||
if (ret != OK) {
|
if (ret != OK) {
|
||||||
aclrtFree(imInfo_dst);
|
aclrtFree(imInfo_dst);
|
||||||
free(im_info);
|
|
||||||
std::cout << "Failed to execute the classification model, ret = " << ret << "." << std::endl;
|
std::cout << "Failed to execute the classification model, ret = " << ret << "." << std::endl;
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
@ -330,7 +322,6 @@ int AclProcess::ModelInfer(std::map<double, double> *costTime_map) {
|
||||||
std::cout << "aclrtFree image info failed" << std::endl;
|
std::cout << "aclrtFree image info failed" << std::endl;
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
free(im_info);
|
|
||||||
RELEASE_DVPP_DATA(resizeOutData->data);
|
RELEASE_DVPP_DATA(resizeOutData->data);
|
||||||
return OK;
|
return OK;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue