!15106 fix DeepText 310 inference bug and fasterrcnn bug

From: @yuzhenhua666
Reviewed-by: @c_34,@oacjiewen
Signed-off-by: @c_34
This commit is contained in:
mindspore-ci-bot 2021-04-14 09:23:46 +08:00 committed by Gitee
commit 97e3fc1d5c
2 changed files with 9 additions and 18 deletions

View File

@ -36,7 +36,7 @@ def get_pred(file, result_path):
all_bbox_file = os.path.join(result_path, file_name + "_0.bin") all_bbox_file = os.path.join(result_path, file_name + "_0.bin")
all_label_file = os.path.join(result_path, file_name + "_1.bin") all_label_file = os.path.join(result_path, file_name + "_1.bin")
all_mask_file = os.path.join(result_path, file_name + "_2.bin") all_mask_file = os.path.join(result_path, file_name + "_2.bin")
all_bbox = np.fromfile(all_bbox_file, dtype=np.float16).reshape(config.test_batch_size, 1000, 5) all_bbox = np.fromfile(all_bbox_file, dtype=np.float32).reshape(config.test_batch_size, 1000, 5)
all_label = np.fromfile(all_label_file, dtype=np.int32).reshape(config.test_batch_size, 1000, 1) all_label = np.fromfile(all_label_file, dtype=np.int32).reshape(config.test_batch_size, 1000, 1)
all_mask = np.fromfile(all_mask_file, dtype=np.bool).reshape(config.test_batch_size, 1000, 1) all_mask = np.fromfile(all_mask_file, dtype=np.bool).reshape(config.test_batch_size, 1000, 1)

View File

@ -23,7 +23,7 @@
* @attention context is passed in as a parameter after being created in ResourceManager::InitResource * @attention context is passed in as a parameter after being created in ResourceManager::InitResource
*/ */
AclProcess::AclProcess(int deviceId, const std::string &om_path, uint32_t width, uint32_t height) AclProcess::AclProcess(int deviceId, const std::string &om_path, uint32_t width, uint32_t height)
: deviceId_(deviceId), stream_(nullptr), modelProcess_(nullptr), dvppCommon_(nullptr), keepRatio_(false) { : deviceId_(deviceId), stream_(nullptr), modelProcess_(nullptr), dvppCommon_(nullptr), keepRatio_(true) {
modelInfo_.modelPath = om_path; modelInfo_.modelPath = om_path;
modelInfo_.modelWidth = width; modelInfo_.modelWidth = width;
modelInfo_.modelHeight = height; modelInfo_.modelHeight = height;
@ -284,29 +284,22 @@ int AclProcess::ModelInfer(std::map<double, double> *costTime_map) {
heightScale = static_cast<float>(resizeOutData->height) / inputImg->height; heightScale = static_cast<float>(resizeOutData->height) / inputImg->height;
} }
aclFloat16 inputWidth = aclFloatToFloat16(static_cast<float>(inputImg->width)); float im_info[4];
aclFloat16 inputHeight = aclFloatToFloat16(static_cast<float>(inputImg->height)); im_info[0] = static_cast<float>(inputImg->height);
aclFloat16 resizeWidthRatioFp16 = aclFloatToFloat16(widthScale); im_info[1] = static_cast<float>(inputImg->width);
aclFloat16 resizeHeightRatioFp16 = aclFloatToFloat16(heightScale); im_info[2] = heightScale;
im_info[3] = widthScale;
aclFloat16 *im_info = reinterpret_cast<aclFloat16 *>(malloc(sizeof(aclFloat16) * 4));
im_info[0] = inputHeight;
im_info[1] = inputWidth;
im_info[2] = resizeHeightRatioFp16;
im_info[3] = resizeWidthRatioFp16;
void *imInfo_dst = nullptr; void *imInfo_dst = nullptr;
int ret = aclrtMalloc(&imInfo_dst, 8, ACL_MEM_MALLOC_NORMAL_ONLY); int ret = aclrtMalloc(&imInfo_dst, 16, ACL_MEM_MALLOC_NORMAL_ONLY);
if (ret != ACL_ERROR_NONE) { if (ret != ACL_ERROR_NONE) {
std::cout << "aclrtMalloc failed, ret = " << ret << std::endl; std::cout << "aclrtMalloc failed, ret = " << ret << std::endl;
aclrtFree(imInfo_dst); aclrtFree(imInfo_dst);
free(im_info);
return ret; return ret;
} }
ret = aclrtMemcpy(reinterpret_cast<uint8_t *>(imInfo_dst), 8, im_info, 8, ACL_MEMCPY_HOST_TO_DEVICE); ret = aclrtMemcpy(reinterpret_cast<uint8_t *>(imInfo_dst), 16, im_info, 16, ACL_MEMCPY_HOST_TO_DEVICE);
if (ret != ACL_ERROR_NONE) { if (ret != ACL_ERROR_NONE) {
std::cout << "aclrtMemcpy failed, ret = " << ret << std::endl; std::cout << "aclrtMemcpy failed, ret = " << ret << std::endl;
aclrtFree(imInfo_dst); aclrtFree(imInfo_dst);
free(im_info);
return ret; return ret;
} }
@ -320,7 +313,6 @@ int AclProcess::ModelInfer(std::map<double, double> *costTime_map) {
ret = modelProcess_->ModelInference(inputBuffers, inputSizes, outputBuffers_, outputSizes_, costTime_map); ret = modelProcess_->ModelInference(inputBuffers, inputSizes, outputBuffers_, outputSizes_, costTime_map);
if (ret != OK) { if (ret != OK) {
aclrtFree(imInfo_dst); aclrtFree(imInfo_dst);
free(im_info);
std::cout << "Failed to execute the classification model, ret = " << ret << "." << std::endl; std::cout << "Failed to execute the classification model, ret = " << ret << "." << std::endl;
return ret; return ret;
} }
@ -330,7 +322,6 @@ int AclProcess::ModelInfer(std::map<double, double> *costTime_map) {
std::cout << "aclrtFree image info failed" << std::endl; std::cout << "aclrtFree image info failed" << std::endl;
return ret; return ret;
} }
free(im_info);
RELEASE_DVPP_DATA(resizeOutData->data); RELEASE_DVPP_DATA(resizeOutData->data);
return OK; return OK;
} }