forked from mindspore-Ecosystem/mindspore
amend export to yolov3 and yolov4
This commit is contained in:
parent
44dd7d994b
commit
94ad47e47b
|
@ -390,11 +390,12 @@ This the standard format from `pycocotools`, you can refer to [cocodataset](http
|
|||
Currently, batchsize can only set to 1.
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT] --keep_detect [Bool]
|
||||
```
|
||||
|
||||
The ckpt_file parameter is required,
|
||||
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||
`keep_detect` keep the detect module or not, default: True
|
||||
|
||||
### [Inference Process](#contents)
|
||||
|
||||
|
|
|
@ -383,10 +383,11 @@ bash run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
|
|||
## 导出mindir模型
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT] --keep_detect [Bool]
|
||||
```
|
||||
|
||||
参数`ckpt_file` 是必需的,`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中进行选择。
|
||||
参数`keep_detect` 是否保留坐标检测模块, 默认为True
|
||||
|
||||
## 推理过程
|
||||
|
||||
|
|
|
@ -73,7 +73,7 @@ batch_size: 1
|
|||
ckpt_file: ""
|
||||
file_name: "yolov3_darknet53"
|
||||
file_format: "AIR" # ["AIR", "ONNX", "MINDIR"]
|
||||
|
||||
keep_detect: True
|
||||
|
||||
# convert weight option
|
||||
input_file: "./darknet53.conv.74"
|
||||
|
@ -170,6 +170,7 @@ ckpt_file: "Checkpoint file path."
|
|||
file_name: "output file name."
|
||||
file_format: "file format choices in ['AIR', 'ONNX', 'MINDIR']"
|
||||
device_target: "device target. choices in ['Ascend', 'GPU'] for train. choices in ['Ascend', 'GPU', 'CPU'] for export."
|
||||
keep_detect: "keep the detect module or not, default: True"
|
||||
|
||||
# convert weight option
|
||||
input_file: "input file path."
|
||||
|
|
|
@ -364,6 +364,7 @@ class YOLOV3DarkNet53(nn.Cell):
|
|||
def __init__(self, is_training, config=default_config):
|
||||
super(YOLOV3DarkNet53, self).__init__()
|
||||
self.config = config
|
||||
self.keep_detect = self.config.keep_detect
|
||||
self.tenser_to_array = P.TupleToArray()
|
||||
|
||||
# YOLOv3 network
|
||||
|
@ -383,6 +384,8 @@ class YOLOV3DarkNet53(nn.Cell):
|
|||
input_shape = F.shape(x)[2:4]
|
||||
input_shape = F.cast(self.tenser_to_array(input_shape), ms.float32)
|
||||
big_object_output, medium_object_output, small_object_output = self.feature_map(x)
|
||||
if not self.keep_detect:
|
||||
return big_object_output, medium_object_output, small_object_output
|
||||
output_big = self.detect_1(big_object_output, input_shape)
|
||||
output_me = self.detect_2(medium_object_output, input_shape)
|
||||
output_small = self.detect_3(small_object_output, input_shape)
|
||||
|
|
|
@ -488,11 +488,12 @@ overall performance
|
|||
If you want to infer the network on Ascend 310, you should convert the model to MINDIR:
|
||||
|
||||
```python
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT] --keep_detect [Bool]
|
||||
```
|
||||
|
||||
The ckpt_file parameter is required,
|
||||
`EXPORT_FORMAT` should be in ["AIR", "ONNX", "MINDIR"]
|
||||
`keep_detect` keep the detect module or not, default: True
|
||||
|
||||
## [Inference Process](#contents)
|
||||
|
||||
|
|
|
@ -64,7 +64,7 @@ testing_shape: 608
|
|||
ckpt_file: ""
|
||||
file_name: "yolov4"
|
||||
file_format: "AIR"
|
||||
|
||||
keep_detect: True
|
||||
|
||||
# Other default config
|
||||
hue: 0.1
|
||||
|
@ -163,3 +163,4 @@ testing_shape: "shape for test"
|
|||
ckpt_file: "Checkpoint file path for export"
|
||||
file_name: "output file name for export"
|
||||
file_format: "file format for export"
|
||||
keep_detect: "keep the detect module or not, default: True"
|
|
@ -432,6 +432,7 @@ class YOLOV4CspDarkNet53(nn.Cell):
|
|||
def __init__(self):
|
||||
super(YOLOV4CspDarkNet53, self).__init__()
|
||||
self.config = default_config
|
||||
self.keep_detect = self.config.keep_detect
|
||||
self.test_img_shape = Tensor(tuple(self.config.test_img_shape), ms.float32)
|
||||
|
||||
# YOLOv4 network
|
||||
|
@ -448,6 +449,8 @@ class YOLOV4CspDarkNet53(nn.Cell):
|
|||
if input_shape is None:
|
||||
input_shape = self.test_img_shape
|
||||
big_object_output, medium_object_output, small_object_output = self.feature_map(x)
|
||||
if not self.keep_detect:
|
||||
return big_object_output, medium_object_output, small_object_output
|
||||
output_big = self.detect_1(big_object_output, input_shape)
|
||||
output_me = self.detect_2(medium_object_output, input_shape)
|
||||
output_small = self.detect_3(small_object_output, input_shape)
|
||||
|
|
Loading…
Reference in New Issue