!6161 fix a bug with add set_grad in wide_and_deep network

Merge pull request !6161 from lvchangquan/master
This commit is contained in:
mindspore-ci-bot 2020-09-15 14:14:32 +08:00 committed by Gitee
commit 92bd24304a
3 changed files with 5 additions and 3 deletions

View File

@ -138,6 +138,7 @@ class TrainOneStepCell(nn.Cell):
def __init__(self, network, optimizer, sens=1.0):
super(TrainOneStepCell, self).__init__(auto_prefix=True)
self.network = network
self.network.set_grad()
self.network.add_flags(defer_inline=True)
self.weights = ParameterTuple(network.trainable_params())
self.optimizer = optimizer
@ -167,7 +168,6 @@ class TrainGAT(nn.Cell):
def __init__(self, network, num_class, label, mask, learning_rate, l2_coeff):
super(TrainGAT, self).__init__(auto_prefix=False)
self.network = network
self.network.set_grad()
loss_net = LossNetWrapper(network, num_class, label, mask, l2_coeff)
optimizer = nn.Adam(loss_net.trainable_params(),
learning_rate=learning_rate)

View File

@ -328,7 +328,6 @@ class TrainStepWrap(nn.Cell):
parallel_mode = context.get_auto_parallel_context("parallel_mode")
is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
self.network = network
self.network.set_grad()
self.network.set_train()
self.trainable_params = network.trainable_params()
weights_w = []
@ -361,6 +360,8 @@ class TrainStepWrap(nn.Cell):
self.sens = sens
self.loss_net_w = IthOutputCell(network, output_index=0)
self.loss_net_d = IthOutputCell(network, output_index=1)
self.loss_net_w.set_grad()
self.loss_net_d.set_grad()
self.reducer_flag = False
self.grad_reducer_w = None

View File

@ -509,7 +509,6 @@ class TrainStepWrap(nn.Cell):
def __init__(self, network, config, sens=1000.0):
super(TrainStepWrap, self).__init__()
self.network = network
self.network.set_grad()
self.network.set_train()
self.trainable_params = network.trainable_params()
weights_w = []
@ -544,6 +543,8 @@ class TrainStepWrap(nn.Cell):
self.sens = sens
self.loss_net_w = IthOutputCell(network, output_index=0)
self.loss_net_d = IthOutputCell(network, output_index=1)
self.loss_net_w.set_grad()
self.loss_net_w.set_grad()
self.reducer_flag = False
self.grad_reducer_w = None