Add print

This commit is contained in:
huangxinjing 2021-08-09 11:14:25 +08:00
parent 7187887b63
commit 92bad162bd
2 changed files with 128 additions and 1 deletions

View File

@ -30,7 +30,7 @@ static const std::set<std::string> PARALLEL_BLACK_LIST_ = {prim::kTupleGetItem,
"get_ref_value", "get_ref_origin", "dot", "im2col", "col2im", "im2col_v1", "state_setitem", "ScalarSummary",
"ImageSummary", "TensorSummary", "Debug", "HistogramSummary", "col2im_v1", "resolve", "BroadcastGradientArgs",
"InvertPermutation", "DropoutGenMask", "embed", "create_instance", "RefToEmbed",
"stop_gradient", "UpdateState", "Load", "Switch"};
"stop_gradient", "UpdateState", "Load", "Switch", "Print"};
static const std::set<PrimitivePtr> ALLGATHER_NODE_LIST_ = {prim::kPrimAllGather, prim::kPrimMiniStepAllGather,
prim::kPrimMicroStepAllGather};
static const std::set<PrimitivePtr> TRIVIAL_NODE_LIST_ = {prim::kPrimCast, prim::kPrimDepend};

View File

@ -0,0 +1,127 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.common.api import _executor
from mindspore.nn import Cell, TrainOneStepCell, Momentum, BatchNorm2d, BatchNorm1d
from mindspore.ops import operations as P
class Net(Cell):
def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride,
strategy1=None, strategy2=None):
super().__init__()
self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size,
pad_mode=pad_mode, stride=stride).shard(strategy1)
self.conv2d_weight = Parameter(conv2d_weight, "w1")
self.bn = BatchNorm2d(8)
self.bn.bn_train.shard(strategy2)
self.print = P.Print()
def construct(self, x, b):
out = self.conv2d(x, self.conv2d_weight)
self.print("output is", out)
out = self.bn(out)
return out
_x = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32)
_w1 = Tensor(np.ones([8, 16, 2, 2]), dtype=ms.float32)
_b = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32)
def compile_net(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_batchnorm_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1))
strategy2 = ((8, 1, 1, 1), (1,), (1,), (1,), (1,))
net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
compile_net(net)
def test_batchnorm_model_parallel1():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1))
strategy2 = ((2, 1, 2, 2), (1,), (1,), (1,), (1,))
net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
compile_net(net)
def test_batchnorm_model_parallel2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0)
strategy1 = ((2, 2, 2, 2), (2, 2, 1, 1))
strategy2 = ((1, 8, 1, 1), (8,), (8,), (8,), (8,))
net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2)
compile_net(net)
class Net2(Cell):
def __init__(self, strategy1=None, strategy2=None):
super().__init__()
self.bn = BatchNorm1d(8)
self.bn.bn_train.shard(strategy1)
self.relu = P.ReLU().shard(strategy2)
def construct(self, x, b):
out = self.bn(x)
out = self.relu(out)
return out
_x1 = Tensor(np.ones([32, 8]), dtype=ms.float32)
_b1 = Tensor(np.ones([32, 8]), dtype=ms.float32)
def compile_net2(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, _x1, _b1)
context.reset_auto_parallel_context()
def test_batchnorm1d_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((8, 1), (1,), (1,), (1,), (1,))
strategy2 = ((8, 1),)
net = Net2(strategy1=strategy1, strategy2=strategy2)
compile_net2(net)
def test_batchnorm1d_model_parallel1():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 8), (8,), (8,), (8,), (8,))
strategy2 = ((1, 8),)
net = Net2(strategy1=strategy1, strategy2=strategy2)
compile_net2(net)
def test_batchnorm1d_model_parallel2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0)
strategy1 = ((2, 4), (4,), (4,), (4,), (4,))
strategy2 = ((2, 4),)
net = Net2(strategy1=strategy1, strategy2=strategy2)
compile_net2(net)