forked from mindspore-Ecosystem/mindspore
!15844 add 310 inference for inceptionv3 and inceptionv4
From: @yuzhenhua666 Reviewed-by: @oacjiewen,@c_34 Signed-off-by: @c_34
This commit is contained in:
commit
9145263395
|
@ -1,12 +1,12 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
|
|
|
@ -344,7 +344,7 @@ python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_
|
|||
|
||||
### Usage
|
||||
|
||||
Before performing inference, the air file must bu exported by export script on the Ascend910 environment.
|
||||
Before performing inference, the model file must be exported by export script on the Ascend910 environment.
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
|
|
|
@ -216,7 +216,7 @@ sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [DEVICE_ID]
|
|||
├─lr_schedule.py // 学习率生成器
|
||||
├─network_define.py // Faster R-CNN网络定义
|
||||
└─util.py // 例行操作
|
||||
├─export.py // 导出 AIR,MINDIR,ONNX模型的脚本
|
||||
├─export.py // 导出 AIR,MINDIR模型的脚本
|
||||
├─eval.py // 评估脚本
|
||||
├─postprogress.py // 310推理后处理脚本
|
||||
└─train.py // 训练脚本
|
||||
|
|
|
@ -74,12 +74,14 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
.
|
||||
└─Inception-v3
|
||||
├─README.md
|
||||
├─ascend310_infer # application for 310 inference
|
||||
├─scripts
|
||||
├─run_standalone_train_cpu.sh # launch standalone training with cpu platform
|
||||
├─run_standalone_train_gpu.sh # launch standalone training with gpu platform(1p)
|
||||
├─run_distribute_train_gpu.sh # launch distributed training with gpu platform(8p)
|
||||
├─run_standalone_train.sh # launch standalone training with ascend platform(1p)
|
||||
├─run_distribute_train.sh # launch distributed training with ascend platform(8p)
|
||||
├─run_infer_310.sh # shell script for 310 inference
|
||||
├─run_eval_cpu.sh # launch evaluation with cpu platform
|
||||
├─run_eval_gpu.sh # launch evaluation with gpu platform
|
||||
└─run_eval.sh # launch evaluating with ascend platform
|
||||
|
@ -91,6 +93,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
├─lr_generator.py # learning rate generator
|
||||
├─eval.py # eval net
|
||||
├─export.py # convert checkpoint
|
||||
├─postprogress.py # post process for 310 inference
|
||||
└─train.py # train net
|
||||
|
||||
```
|
||||
|
@ -238,6 +241,35 @@ Evaluation result will be stored in the example path, you can find result like t
|
|||
metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
|
||||
```
|
||||
|
||||
## Model Export
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT]
|
||||
```
|
||||
|
||||
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||
|
||||
## Inference Process
|
||||
|
||||
### Usage
|
||||
|
||||
Before performing inference, the model file must be exported by export script on the Ascend910 environment.
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
|
||||
```
|
||||
|
||||
-NOTE: Ascend310 inference use Imagenet dataset . The label of the image is the number of folder which is started from 0 after sorting.
|
||||
|
||||
### result
|
||||
|
||||
Inference result is saved in current path, you can find result like this in acc.log file.
|
||||
|
||||
```python
|
||||
accuracy:78.742
|
||||
```
|
||||
|
||||
# [Model description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
|
|
@ -85,12 +85,14 @@ InceptionV3的总体网络架构如下:
|
|||
.
|
||||
└─Inception-v3
|
||||
├─README.md
|
||||
├─ascend310_infer # 实现310推理源代码
|
||||
├─scripts
|
||||
├─run_standalone_train_cpu.sh # 启动CPU训练
|
||||
├─run_standalone_train_gpu.sh # 启动GPU单机训练(单卡)
|
||||
├─run_distribute_train_gpu.sh # 启动GPU分布式训练(8卡)
|
||||
├─run_standalone_train.sh # 启动Ascend单机训练(单卡)
|
||||
├─run_distribute_train.sh # 启动Ascend分布式训练(8卡)
|
||||
├─run_infer_310.sh # Ascend推理shell脚本
|
||||
├─run_eval_cpu.sh # 启动CPU评估
|
||||
├─run_eval_gpu.sh # 启动GPU评估
|
||||
└─run_eval.sh # 启动Ascend评估
|
||||
|
@ -101,7 +103,8 @@ InceptionV3的总体网络架构如下:
|
|||
├─loss.py # 自定义交叉熵损失函数
|
||||
├─lr_generator.py # 学习率生成器
|
||||
├─eval.py # 评估网络
|
||||
├─export.py # 转换检查点
|
||||
├─export.py # 导出 AIR,MINDIR模型的脚本
|
||||
├─postprogress.py # 310推理后处理脚本
|
||||
└─train.py # 训练网络
|
||||
|
||||
```
|
||||
|
@ -243,6 +246,35 @@ epoch time: 6358482.104 ms, per step time: 16303.800 ms
|
|||
metric:{'Loss':1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
|
||||
```
|
||||
|
||||
## 模型导出
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT]
|
||||
```
|
||||
|
||||
`EXPORT_FORMAT` 可选 ["AIR", "MINDIR"]
|
||||
|
||||
## 推理过程
|
||||
|
||||
### 使用方法
|
||||
|
||||
在推理之前需要在昇腾910环境上完成模型的导出。
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
|
||||
```
|
||||
|
||||
-注意:310推理使用ImageNet数据集. 图片的标签是将所在文件夹排序后获得的从0开始的编号
|
||||
|
||||
### 结果
|
||||
|
||||
推理的结果保存在当前目录下,在acc.log日志文件中可以找到类似以下的结果。
|
||||
|
||||
```python
|
||||
accuracy:78.742
|
||||
```
|
||||
|
||||
# 模型描述
|
||||
|
||||
## 性能
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(Ascend310Infer)
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT})
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main src/main.cc src/utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,23 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ ! -d out ]; then
|
||||
mkdir out
|
||||
fi
|
||||
cd out || exit
|
||||
cmake .. \
|
||||
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <dirent.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "include/api/types.h"
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||
DIR *OpenDir(std::string_view dirName);
|
||||
std::string RealPath(std::string_view path);
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||
#endif
|
|
@ -0,0 +1,152 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <sys/time.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <dirent.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
|
||||
#include "../inc/utils.h"
|
||||
#include "include/dataset/execute.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
#include "include/dataset/vision.h"
|
||||
#include "include/dataset/vision_ascend.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/serialization.h"
|
||||
#include "include/api/context.h"
|
||||
|
||||
using mindspore::Serialization;
|
||||
using mindspore::Model;
|
||||
using mindspore::Context;
|
||||
using mindspore::Status;
|
||||
using mindspore::ModelType;
|
||||
using mindspore::Graph;
|
||||
using mindspore::GraphCell;
|
||||
using mindspore::kSuccess;
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
using mindspore::dataset::Execute;
|
||||
using mindspore::dataset::TensorTransform;
|
||||
using mindspore::dataset::vision::Decode;
|
||||
using mindspore::dataset::vision::Resize;
|
||||
using mindspore::dataset::vision::CenterCrop;
|
||||
using mindspore::dataset::vision::Normalize;
|
||||
using mindspore::dataset::vision::HWC2CHW;
|
||||
|
||||
using mindspore::dataset::transforms::TypeCast;
|
||||
|
||||
|
||||
DEFINE_string(model_path, "", "model path");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (RealPath(FLAGS_model_path).empty()) {
|
||||
std::cout << "Invalid model" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto context = std::make_shared<Context>();
|
||||
auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||
ascend310_info->SetDeviceID(FLAGS_device_id);
|
||||
context->MutableDeviceInfo().push_back(ascend310_info);
|
||||
|
||||
Graph graph;
|
||||
Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "Load model failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
Model model;
|
||||
ret = model.Build(GraphCell(graph), context);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "ERROR: Build failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<MSTensor> modelInputs = model.GetInputs();
|
||||
|
||||
auto all_files = GetAllFiles(FLAGS_dataset_path);
|
||||
if (all_files.empty()) {
|
||||
std::cout << "ERROR: no input data." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::shared_ptr<TensorTransform> decode(new Decode());
|
||||
std::shared_ptr<TensorTransform> resize(new Resize({299}));
|
||||
std::shared_ptr<TensorTransform> centerCrop(new CenterCrop({299}));
|
||||
std::shared_ptr<TensorTransform> normalize(new Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375}));
|
||||
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
|
||||
|
||||
mindspore::dataset::Execute transform({decode, resize, centerCrop, normalize, hwc2chw});
|
||||
|
||||
std::map<double, double> costTime_map;
|
||||
|
||||
size_t size = all_files.size();
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
struct timeval start;
|
||||
struct timeval end;
|
||||
double startTime_ms;
|
||||
double endTime_ms;
|
||||
std::vector<MSTensor> inputs;
|
||||
std::vector<MSTensor> outputs;
|
||||
|
||||
std::cout << "Start predict input files:" << all_files[i] << std::endl;
|
||||
mindspore::MSTensor image = ReadFileToTensor(all_files[i]);
|
||||
|
||||
transform(image, &image);
|
||||
|
||||
inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(),
|
||||
image.Data().get(), image.DataSize());
|
||||
|
||||
gettimeofday(&start, NULL);
|
||||
model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, NULL);
|
||||
|
||||
startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||
endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||
costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms));
|
||||
WriteResult(all_files[i], outputs);
|
||||
}
|
||||
double average = 0.0;
|
||||
int infer_cnt = 0;
|
||||
char tmpCh[256] = {0};
|
||||
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||
double diff = 0.0;
|
||||
diff = iter->second - iter->first;
|
||||
average += diff;
|
||||
infer_cnt++;
|
||||
}
|
||||
|
||||
average = average/infer_cnt;
|
||||
|
||||
snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d\n", average, infer_cnt);
|
||||
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl;
|
||||
std::string file_name = "./time_Result" + std::string("/test_perform_static.txt");
|
||||
std::ofstream file_stream(file_name.c_str(), std::ios::trunc);
|
||||
file_stream << tmpCh;
|
||||
file_stream.close();
|
||||
costTime_map.clear();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,130 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "inc/utils.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dirName);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
std::vector<std::string> res;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||
continue;
|
||||
}
|
||||
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
}
|
||||
std::sort(res.begin(), res.end());
|
||||
for (auto &f : res) {
|
||||
std::cout << "image file: " << f << std::endl;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||
std::string homePath = "./result_Files";
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t outputSize;
|
||||
std::shared_ptr<const void> netOutput;
|
||||
netOutput = outputs[i].Data();
|
||||
outputSize = outputs[i].DataSize();
|
||||
int pos = imageFile.rfind('/');
|
||||
std::string fileName(imageFile, pos + 1);
|
||||
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||
std::string outFileName = homePath + "/" + fileName;
|
||||
FILE * outputFile = fopen(outFileName.c_str(), "wb");
|
||||
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||
fclose(outputFile);
|
||||
outputFile = nullptr;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||
if (file.empty()) {
|
||||
std::cout << "Pointer file is nullptr" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
std::ifstream ifs(file);
|
||||
if (!ifs.good()) {
|
||||
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
if (!ifs.is_open()) {
|
||||
std::cout << "File: " << file << "open failed" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||
ifs.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
|
||||
DIR *OpenDir(std::string_view dirName) {
|
||||
if (dirName.empty()) {
|
||||
std::cout << " dirName is null ! " << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::string realPath = RealPath(dirName);
|
||||
struct stat s;
|
||||
lstat(realPath.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
DIR *dir;
|
||||
dir = opendir(realPath.c_str());
|
||||
if (dir == nullptr) {
|
||||
std::cout << "Can not open dir " << dirName << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||
return dir;
|
||||
}
|
||||
|
||||
std::string RealPath(std::string_view path) {
|
||||
char realPathMem[PATH_MAX] = {0};
|
||||
char *realPathRet = nullptr;
|
||||
realPathRet = realpath(path.data(), realPathMem);
|
||||
|
||||
if (realPathRet == nullptr) {
|
||||
std::cout << "File: " << path << " is not exist.";
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string realPath(realPathMem);
|
||||
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||
return realPath;
|
||||
}
|
|
@ -24,9 +24,10 @@ from src.inception_v3 import InceptionV3
|
|||
|
||||
parser = argparse.ArgumentParser(description='inceptionv3 export')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
||||
parser.add_argument('--ckpt_file', type=str, required=True, help='inceptionv3 ckpt file.')
|
||||
parser.add_argument('--file_name', type=str, default='inceptionv3', help='inceptionv3 output air name.')
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
|
||||
parser.add_argument('--width', type=int, default=299, help='input width')
|
||||
parser.add_argument('--height', type=int, default=299, help='input height')
|
||||
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
||||
|
@ -42,6 +43,6 @@ if __name__ == '__main__':
|
|||
param_dict = load_checkpoint(args.ckpt_file)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[cfg.batch_size, 3, args.width, args.height]), ms.float32)
|
||||
input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[args.batch_size, 3, args.width, args.height]), ms.float32)
|
||||
|
||||
export(net, input_arr, file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
'''post process for 310 inference'''
|
||||
import os
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
parser = argparse.ArgumentParser(description='fasterrcnn_export')
|
||||
parser.add_argument("--result_path", type=str, required=True, help="result file path")
|
||||
parser.add_argument("--label_file", type=str, required=True, help="label file")
|
||||
args = parser.parse_args()
|
||||
|
||||
def read_label(label_file):
|
||||
f = open(label_file, "r")
|
||||
lines = f.readlines()
|
||||
|
||||
img_label = {}
|
||||
for line in lines:
|
||||
img_id = line.split(":")[0]
|
||||
label = line.split(":")[1]
|
||||
img_label[img_id] = label
|
||||
|
||||
return img_label
|
||||
|
||||
def cal_acc(result_path, label_file):
|
||||
step = 0
|
||||
sum_a = 0
|
||||
img_label = read_label(label_file)
|
||||
|
||||
files = os.listdir(result_path)
|
||||
for file in files:
|
||||
full_file_path = os.path.join(result_path, file)
|
||||
if os.path.isfile(full_file_path):
|
||||
result = np.fromfile(full_file_path, dtype=np.float32).reshape(1, 1000)
|
||||
pred = np.argmax(result, axis=1)
|
||||
step = step + 1
|
||||
if pred == int(img_label[file[:-6]]):
|
||||
sum_a = sum_a + 1
|
||||
|
||||
print("========step:{}========".format(step))
|
||||
print("========sum:{}========".format(sum_a))
|
||||
accuracy = sum_a * 100.0 / step
|
||||
print("========accuracy:{}========".format(accuracy))
|
||||
|
||||
if __name__ == "__main__":
|
||||
cal_acc(args.result_path, args.label_file)
|
|
@ -0,0 +1,107 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 3 || $# -gt 4 ]]; then
|
||||
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [LABEL_FILE] [DEVICE_ID]
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
label_file=$(get_real_path $3)
|
||||
if [ $# == 4 ]; then
|
||||
device_id=$4
|
||||
elif [ $# == 3 ]; then
|
||||
if [ -z $device_id ]; then
|
||||
device_id=0
|
||||
else
|
||||
device_id=$device_id
|
||||
fi
|
||||
fi
|
||||
|
||||
echo $model
|
||||
echo $data_path
|
||||
echo $label_file
|
||||
echo $device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||
else
|
||||
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||
fi
|
||||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer || exit
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
sh build.sh &> build.log
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "compile app code failed"
|
||||
exit 1
|
||||
fi
|
||||
cd - || exit
|
||||
}
|
||||
|
||||
function infer()
|
||||
{
|
||||
if [ -d result_Files ]; then
|
||||
rm -rf ./result_Files
|
||||
fi
|
||||
if [ -d time_Result ]; then
|
||||
rm -rf ./time_Result
|
||||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/out/main --model_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "execute inference failed"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
{
|
||||
python ../postprocess.py --label_file=$label_file --result_path=result_Files &> acc.log
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "calculate accuracy failed"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
compile_app
|
||||
infer
|
||||
cal_acc
|
|
@ -67,11 +67,13 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
.
|
||||
└─Inception-v4
|
||||
├─README.md
|
||||
├─ascend310_infer # application for 310 inference
|
||||
├─scripts
|
||||
├─run_distribute_train_gpu.sh # launch distributed training with gpu platform(8p)
|
||||
├─run_eval_gpu.sh # launch evaluating with gpu platform
|
||||
├─run_standalone_train_ascend.sh # launch standalone training with ascend platform(1p)
|
||||
├─run_distribute_train_ascend.sh # launch distributed training with ascend platform(8p)
|
||||
├─run_infer_310.sh # shell script for 310 inference
|
||||
└─run_eval_ascend.sh # launch evaluating with ascend platform
|
||||
├─src
|
||||
├─config.py # parameter configuration
|
||||
|
@ -80,6 +82,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
└─callback.py # eval callback function
|
||||
├─eval.py # eval net
|
||||
├─export.py # export checkpoint, surpport .onnx, .air, .mindir convert
|
||||
├─postprogress.py # post process for 310 inference
|
||||
└─train.py # train net
|
||||
```
|
||||
|
||||
|
@ -223,6 +226,35 @@ metric: {'Loss': 0.9849, 'Top1-Acc':0.7985, 'Top5-Acc':0.9460}
|
|||
metric: {'Loss': 0.8144, 'Top1-Acc': 0.8009, 'Top5-Acc': 0.9457}
|
||||
```
|
||||
|
||||
## Model Export
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT]
|
||||
```
|
||||
|
||||
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||
|
||||
## Inference Process
|
||||
|
||||
### Usage
|
||||
|
||||
Before performing inference, the model file must be exported by export script on the Ascend910 environment.
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
|
||||
```
|
||||
|
||||
-NOTE:Ascend310 inference use Imagenet dataset . The label of the image is the number of folder which is started from 0 after sorting.
|
||||
|
||||
### result
|
||||
|
||||
Inference result is saved in current path, you can find result like this in acc.log file.
|
||||
|
||||
```python
|
||||
accuracy:80.044
|
||||
```
|
||||
|
||||
# [Model description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(Ascend310Infer)
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT})
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main src/main.cc src/utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,23 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ ! -d out ]; then
|
||||
mkdir out
|
||||
fi
|
||||
cd out || exit
|
||||
cmake .. \
|
||||
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <dirent.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "include/api/types.h"
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||
DIR *OpenDir(std::string_view dirName);
|
||||
std::string RealPath(std::string_view path);
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||
#endif
|
|
@ -0,0 +1,152 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <sys/time.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <dirent.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
|
||||
#include "../inc/utils.h"
|
||||
#include "include/dataset/execute.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
#include "include/dataset/vision.h"
|
||||
#include "include/dataset/vision_ascend.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/serialization.h"
|
||||
#include "include/api/context.h"
|
||||
|
||||
using mindspore::Serialization;
|
||||
using mindspore::Model;
|
||||
using mindspore::Context;
|
||||
using mindspore::Status;
|
||||
using mindspore::ModelType;
|
||||
using mindspore::Graph;
|
||||
using mindspore::GraphCell;
|
||||
using mindspore::kSuccess;
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
using mindspore::dataset::Execute;
|
||||
using mindspore::dataset::TensorTransform;
|
||||
using mindspore::dataset::vision::Decode;
|
||||
using mindspore::dataset::vision::Resize;
|
||||
using mindspore::dataset::vision::CenterCrop;
|
||||
using mindspore::dataset::vision::Normalize;
|
||||
using mindspore::dataset::vision::HWC2CHW;
|
||||
|
||||
using mindspore::dataset::transforms::TypeCast;
|
||||
|
||||
|
||||
DEFINE_string(model_path, "", "model path");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (RealPath(FLAGS_model_path).empty()) {
|
||||
std::cout << "Invalid model" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto context = std::make_shared<Context>();
|
||||
auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||
ascend310_info->SetDeviceID(FLAGS_device_id);
|
||||
context->MutableDeviceInfo().push_back(ascend310_info);
|
||||
|
||||
Graph graph;
|
||||
Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "Load model failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
Model model;
|
||||
ret = model.Build(GraphCell(graph), context);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "ERROR: Build failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<MSTensor> modelInputs = model.GetInputs();
|
||||
|
||||
auto all_files = GetAllFiles(FLAGS_dataset_path);
|
||||
if (all_files.empty()) {
|
||||
std::cout << "ERROR: no input data." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::shared_ptr<TensorTransform> decode(new Decode());
|
||||
std::shared_ptr<TensorTransform> resize(new Resize({299}));
|
||||
std::shared_ptr<TensorTransform> centerCrop(new CenterCrop({299}));
|
||||
std::shared_ptr<TensorTransform> normalize(new Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375}));
|
||||
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
|
||||
|
||||
mindspore::dataset::Execute transform({decode, resize, centerCrop, normalize, hwc2chw});
|
||||
|
||||
std::map<double, double> costTime_map;
|
||||
|
||||
size_t size = all_files.size();
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
struct timeval start;
|
||||
struct timeval end;
|
||||
double startTime_ms;
|
||||
double endTime_ms;
|
||||
std::vector<MSTensor> inputs;
|
||||
std::vector<MSTensor> outputs;
|
||||
|
||||
std::cout << "Start predict input files:" << all_files[i] << std::endl;
|
||||
mindspore::MSTensor image = ReadFileToTensor(all_files[i]);
|
||||
|
||||
transform(image, &image);
|
||||
|
||||
inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(),
|
||||
image.Data().get(), image.DataSize());
|
||||
|
||||
gettimeofday(&start, NULL);
|
||||
model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, NULL);
|
||||
|
||||
startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||
endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||
costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms));
|
||||
WriteResult(all_files[i], outputs);
|
||||
}
|
||||
double average = 0.0;
|
||||
int infer_cnt = 0;
|
||||
char tmpCh[256] = {0};
|
||||
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||
double diff = 0.0;
|
||||
diff = iter->second - iter->first;
|
||||
average += diff;
|
||||
infer_cnt++;
|
||||
}
|
||||
|
||||
average = average/infer_cnt;
|
||||
|
||||
snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d\n", average, infer_cnt);
|
||||
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl;
|
||||
std::string file_name = "./time_Result" + std::string("/test_perform_static.txt");
|
||||
std::ofstream file_stream(file_name.c_str(), std::ios::trunc);
|
||||
file_stream << tmpCh;
|
||||
file_stream.close();
|
||||
costTime_map.clear();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,130 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "inc/utils.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dirName);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
std::vector<std::string> res;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||
continue;
|
||||
}
|
||||
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
}
|
||||
std::sort(res.begin(), res.end());
|
||||
for (auto &f : res) {
|
||||
std::cout << "image file: " << f << std::endl;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||
std::string homePath = "./result_Files";
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t outputSize;
|
||||
std::shared_ptr<const void> netOutput;
|
||||
netOutput = outputs[i].Data();
|
||||
outputSize = outputs[i].DataSize();
|
||||
int pos = imageFile.rfind('/');
|
||||
std::string fileName(imageFile, pos + 1);
|
||||
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||
std::string outFileName = homePath + "/" + fileName;
|
||||
FILE * outputFile = fopen(outFileName.c_str(), "wb");
|
||||
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||
fclose(outputFile);
|
||||
outputFile = nullptr;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||
if (file.empty()) {
|
||||
std::cout << "Pointer file is nullptr" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
std::ifstream ifs(file);
|
||||
if (!ifs.good()) {
|
||||
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
if (!ifs.is_open()) {
|
||||
std::cout << "File: " << file << "open failed" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||
ifs.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
|
||||
DIR *OpenDir(std::string_view dirName) {
|
||||
if (dirName.empty()) {
|
||||
std::cout << " dirName is null ! " << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::string realPath = RealPath(dirName);
|
||||
struct stat s;
|
||||
lstat(realPath.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
DIR *dir;
|
||||
dir = opendir(realPath.c_str());
|
||||
if (dir == nullptr) {
|
||||
std::cout << "Can not open dir " << dirName << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||
return dir;
|
||||
}
|
||||
|
||||
std::string RealPath(std::string_view path) {
|
||||
char realPathMem[PATH_MAX] = {0};
|
||||
char *realPathRet = nullptr;
|
||||
realPathRet = realpath(path.data(), realPathMem);
|
||||
|
||||
if (realPathRet == nullptr) {
|
||||
std::cout << "File: " << path << " is not exist.";
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string realPath(realPathMem);
|
||||
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||
return realPath;
|
||||
}
|
|
@ -25,9 +25,10 @@ from src.inceptionv4 import Inceptionv4
|
|||
|
||||
parser = argparse.ArgumentParser(description='inceptionv4 export')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
||||
parser.add_argument('--ckpt_file', type=str, required=True, help='inceptionv4 ckpt file.')
|
||||
parser.add_argument('--file_name', type=str, default='inceptionv4', help='inceptionv4 output air name.')
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
|
||||
parser.add_argument('--width', type=int, default=299, help='input width')
|
||||
parser.add_argument('--height', type=int, default=299, help='input height')
|
||||
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
||||
|
@ -43,5 +44,5 @@ if __name__ == '__main__':
|
|||
param_dict = load_checkpoint(args.ckpt_file)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
input_arr = Tensor(np.ones([config.batch_size, 3, args.width, args.height]), ms.float32)
|
||||
input_arr = Tensor(np.ones([args.batch_size, 3, args.width, args.height]), ms.float32)
|
||||
export(net, input_arr, file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
'''post process for 310 inference'''
|
||||
import os
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
parser = argparse.ArgumentParser(description='fasterrcnn_export')
|
||||
parser.add_argument("--result_path", type=str, required=True, help="result file path")
|
||||
parser.add_argument("--label_file", type=str, required=True, help="label file")
|
||||
args = parser.parse_args()
|
||||
|
||||
def read_label(label_file):
|
||||
f = open(label_file, "r")
|
||||
lines = f.readlines()
|
||||
|
||||
img_label = {}
|
||||
for line in lines:
|
||||
img_id = line.split(":")[0]
|
||||
label = line.split(":")[1]
|
||||
img_label[img_id] = label
|
||||
|
||||
return img_label
|
||||
|
||||
def cal_acc(result_path, label_file):
|
||||
step = 0
|
||||
sum_a = 0
|
||||
img_label = read_label(label_file)
|
||||
|
||||
files = os.listdir(result_path)
|
||||
for file in files:
|
||||
full_file_path = os.path.join(result_path, file)
|
||||
if os.path.isfile(full_file_path):
|
||||
result = np.fromfile(full_file_path, dtype=np.float32).reshape(1, 1000)
|
||||
pred = np.argmax(result, axis=1)
|
||||
step = step + 1
|
||||
if pred == int(img_label[file[:-6]]):
|
||||
sum_a = sum_a + 1
|
||||
|
||||
print("========step:{}========".format(step))
|
||||
print("========sum:{}========".format(sum_a))
|
||||
accuracy = sum_a * 100.0 / step
|
||||
print("========accuraty:{}========".format(accuracy))
|
||||
|
||||
if __name__ == "__main__":
|
||||
cal_acc(args.result_path, args.label_file)
|
|
@ -0,0 +1,104 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 3 || $# -gt 4 ]]; then
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [LABEL_FILE] [DEVICE_ID]
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
label_file=$(get_real_path $3)
|
||||
|
||||
device_id=0
|
||||
|
||||
if [ $# == 4 ]; then
|
||||
device_id=$4
|
||||
fi
|
||||
|
||||
echo $model
|
||||
echo $data_path
|
||||
echo $label_file
|
||||
echo $device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||
else
|
||||
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||
fi
|
||||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer || exit
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
sh build.sh &> build.log
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "compile app code failed"
|
||||
exit 1
|
||||
fi
|
||||
cd - || exit
|
||||
}
|
||||
|
||||
function infer()
|
||||
{
|
||||
if [ -d result_Files ]; then
|
||||
rm -rf ./result_Files
|
||||
fi
|
||||
if [ -d time_Result ]; then
|
||||
rm -rf ./time_Result
|
||||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/out/main --model_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "execute inference failed"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
{
|
||||
python ../postprocess.py --label_file=$label_file --result_path=result_Files &> acc.log
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "calculate accuracy failed"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
compile_app
|
||||
infer
|
||||
cal_acc
|
Loading…
Reference in New Issue