add export bgcf mindir test

This commit is contained in:
changzherui 2021-03-17 16:03:08 +08:00
parent 9295280bbe
commit 8d29f37925
3 changed files with 218 additions and 0 deletions

View File

@ -0,0 +1,218 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Architecture"""
import os
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Parameter, Tensor
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
from mindspore.common.initializer import initializer
from mindspore.train.serialization import export
class MeanConv(nn.Cell):
def __init__(self,
feature_in_dim,
feature_out_dim,
activation,
dropout=0.2):
super(MeanConv, self).__init__()
self.out_weight = Parameter(
initializer("XavierUniform", [feature_in_dim * 2, feature_out_dim], dtype=mstype.float32))
if activation == "tanh":
self.act = P.Tanh()
elif activation == "relu":
self.act = P.ReLU()
else:
raise ValueError("activation should be tanh or relu")
self.cast = P.Cast()
self.matmul = P.MatMul()
self.concat = P.Concat(axis=1)
self.reduce_mean = P.ReduceMean(keep_dims=False)
self.dropout = nn.Dropout(keep_prob=1 - dropout)
def construct(self, self_feature, neigh_feature):
neigh_matrix = self.reduce_mean(neigh_feature, 1)
neigh_matrix = self.dropout(neigh_matrix)
output = self.concat((self_feature, neigh_matrix))
output = self.act(self.matmul(output, self.out_weight))
return output
class AttenConv(nn.Cell):
def __init__(self,
feature_in_dim,
feature_out_dim,
dropout=0.2):
super(AttenConv, self).__init__()
self.out_weight = Parameter(
initializer("XavierUniform", [feature_in_dim * 2, feature_out_dim], dtype=mstype.float32))
self.cast = P.Cast()
self.squeeze = P.Squeeze(1)
self.concat = P.Concat(axis=1)
self.expanddims = P.ExpandDims()
self.softmax = P.Softmax(axis=-1)
self.matmul = P.MatMul()
self.matmul_3 = P.BatchMatMul()
self.matmul_t = P.BatchMatMul(transpose_b=True)
self.dropout = nn.Dropout(keep_prob=1 - dropout)
def construct(self, self_feature, neigh_feature):
query = self.expanddims(self_feature, 1)
neigh_matrix = self.dropout(neigh_feature)
score = self.matmul_t(query, neigh_matrix)
score = self.softmax(score)
atten_agg = self.matmul_3(score, neigh_matrix)
atten_agg = self.squeeze(atten_agg)
output = self.matmul(self.concat((atten_agg, self_feature)), self.out_weight)
return output
class BGCF(nn.Cell):
def __init__(self,
dataset_argv,
architect_argv,
activation,
neigh_drop_rate,
num_user,
num_item,
input_dim):
super(BGCF, self).__init__()
self.user_embed = Parameter(initializer("XavierUniform", [num_user, input_dim], dtype=mstype.float32))
self.item_embed = Parameter(initializer("XavierUniform", [num_item, input_dim], dtype=mstype.float32))
self.cast = P.Cast()
self.tanh = P.Tanh()
self.shape = P.Shape()
self.split = P.Split(0, 2)
self.gather = P.Gather()
self.reshape = P.Reshape()
self.concat_0 = P.Concat(0)
self.concat_1 = P.Concat(1)
(self.input_dim, self.num_user, self.num_item) = dataset_argv
self.layer_dim = architect_argv
self.gnew_agg_mean = MeanConv(self.input_dim, self.layer_dim,
activation=activation, dropout=neigh_drop_rate[1])
self.gnew_agg_mean.to_float(mstype.float16)
self.gnew_agg_user = AttenConv(self.input_dim, self.layer_dim, dropout=neigh_drop_rate[2])
self.gnew_agg_user.to_float(mstype.float16)
self.gnew_agg_item = AttenConv(self.input_dim, self.layer_dim, dropout=neigh_drop_rate[2])
self.gnew_agg_item.to_float(mstype.float16)
self.user_feature_dim = self.input_dim
self.item_feature_dim = self.input_dim
self.final_weight = Parameter(
initializer("XavierUniform", [self.input_dim * 3, self.input_dim * 3], dtype=mstype.float32))
self.raw_agg_funcs_user = MeanConv(self.input_dim, self.layer_dim,
activation=activation, dropout=neigh_drop_rate[0])
self.raw_agg_funcs_user.to_float(mstype.float16)
self.raw_agg_funcs_item = MeanConv(self.input_dim, self.layer_dim,
activation=activation, dropout=neigh_drop_rate[0])
self.raw_agg_funcs_item.to_float(mstype.float16)
def construct(self,
u_id,
pos_item_id,
neg_item_id,
pos_users,
pos_items,
u_group_nodes,
u_neighs,
u_gnew_neighs,
i_group_nodes,
i_neighs,
i_gnew_neighs,
neg_group_nodes,
neg_neighs,
neg_gnew_neighs,
neg_item_num):
all_user_embed = self.gather(self.user_embed, self.concat_0((u_id, pos_users)), 0)
u_self_matrix_at_layers = self.gather(self.user_embed, u_group_nodes, 0)
u_neigh_matrix_at_layers = self.gather(self.item_embed, u_neighs, 0)
u_output_mean = self.raw_agg_funcs_user(u_self_matrix_at_layers, u_neigh_matrix_at_layers)
u_gnew_neighs_matrix = self.gather(self.item_embed, u_gnew_neighs, 0)
u_output_from_gnew_mean = self.gnew_agg_mean(u_self_matrix_at_layers, u_gnew_neighs_matrix)
u_output_from_gnew_att = self.gnew_agg_user(u_self_matrix_at_layers,
self.concat_1((u_neigh_matrix_at_layers, u_gnew_neighs_matrix)))
u_output = self.concat_1((u_output_mean, u_output_from_gnew_mean, u_output_from_gnew_att))
all_user_rep = self.tanh(u_output)
all_pos_item_embed = self.gather(self.item_embed, self.concat_0((pos_item_id, pos_items)), 0)
i_self_matrix_at_layers = self.gather(self.item_embed, i_group_nodes, 0)
i_neigh_matrix_at_layers = self.gather(self.user_embed, i_neighs, 0)
i_output_mean = self.raw_agg_funcs_item(i_self_matrix_at_layers, i_neigh_matrix_at_layers)
i_gnew_neighs_matrix = self.gather(self.user_embed, i_gnew_neighs, 0)
i_output_from_gnew_mean = self.gnew_agg_mean(i_self_matrix_at_layers, i_gnew_neighs_matrix)
i_output_from_gnew_att = self.gnew_agg_item(i_self_matrix_at_layers,
self.concat_1((i_neigh_matrix_at_layers, i_gnew_neighs_matrix)))
i_output = self.concat_1((i_output_mean, i_output_from_gnew_mean, i_output_from_gnew_att))
all_pos_item_rep = self.tanh(i_output)
neg_item_embed = self.gather(self.item_embed, neg_item_id, 0)
neg_self_matrix_at_layers = self.gather(self.item_embed, neg_group_nodes, 0)
neg_neigh_matrix_at_layers = self.gather(self.user_embed, neg_neighs, 0)
neg_output_mean = self.raw_agg_funcs_item(neg_self_matrix_at_layers, neg_neigh_matrix_at_layers)
neg_gnew_neighs_matrix = self.gather(self.user_embed, neg_gnew_neighs, 0)
neg_output_from_gnew_mean = self.gnew_agg_mean(neg_self_matrix_at_layers, neg_gnew_neighs_matrix)
neg_output_from_gnew_att = self.gnew_agg_item(neg_self_matrix_at_layers,
self.concat_1(
(neg_neigh_matrix_at_layers, neg_gnew_neighs_matrix)))
neg_output = self.concat_1((neg_output_mean, neg_output_from_gnew_mean, neg_output_from_gnew_att))
neg_output = self.tanh(neg_output)
neg_output_shape = self.shape(neg_output)
neg_item_rep = self.reshape(neg_output,
(self.shape(neg_item_embed)[0], neg_item_num, neg_output_shape[-1]))
return all_user_embed, all_user_rep, all_pos_item_embed, all_pos_item_rep, neg_item_embed, neg_item_rep
class ForwardBGCF(nn.Cell):
def __init__(self,
network):
super(ForwardBGCF, self).__init__()
self.network = network
def construct(self, users, items, neg_items, u_neighs, u_gnew_neighs, i_neighs, i_gnew_neighs):
_, user_rep, _, item_rep, _, _, = self.network(users, items, neg_items, users, items, users,
u_neighs, u_gnew_neighs, items, i_neighs, i_gnew_neighs,
items, i_neighs, i_gnew_neighs, 1)
return user_rep, item_rep
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_export_bgcf():
num_user, num_item = 7068, 3570
network = BGCF([64, num_user, num_item], 64, "tanh",
[0.0, 0.0, 0.0], num_user, num_item, 64)
forward_net = ForwardBGCF(network)
users = Tensor(np.zeros([num_user,]).astype(np.int32))
items = Tensor(np.zeros([num_item,]).astype(np.int32))
neg_items = Tensor(np.zeros([num_item, 1]).astype(np.int32))
u_test_neighs = Tensor(np.zeros([num_user, 40]).astype(np.int32))
u_test_gnew_neighs = Tensor(np.zeros([num_user, 20]).astype(np.int32))
i_test_neighs = Tensor(np.zeros([num_item, 40]).astype(np.int32))
i_test_gnew_neighs = Tensor(np.zeros([num_item, 20]).astype(np.int32))
input_data = [users, items, neg_items, u_test_neighs, u_test_gnew_neighs, i_test_neighs, i_test_gnew_neighs]
file_name = "bgcf"
export(forward_net, *input_data, file_name=file_name, file_format="MINDIR")
mindir_file = file_name + ".mindir"
assert os.path.exists(mindir_file)
os.remove(mindir_file)
export(forward_net, *input_data, file_name=file_name, file_format="AIR")
air_file = file_name + ".air"
assert os.path.exists(air_file)
os.remove(air_file)