forked from mindspore-Ecosystem/mindspore
optimizeMatmul
This commit is contained in:
parent
782cac9119
commit
8b3823b22c
|
@ -30,6 +30,7 @@
|
|||
#include "backend/optimizer/graph_kernel/tensor_promotion.h"
|
||||
#include "backend/optimizer/graph_kernel/graph_kernel_splitter.h"
|
||||
#include "backend/optimizer/graph_kernel/graph_kernel_expander.h"
|
||||
#include "backend/optimizer/graph_kernel/optimize_matmul.h"
|
||||
#include "backend/optimizer/graph_kernel/raise_reduction_precision.h"
|
||||
#include "backend/optimizer/graph_kernel/graph_kernel_cse.h"
|
||||
#include "backend/optimizer/graph_kernel/shape_ops_splitter.h"
|
||||
|
@ -49,8 +50,11 @@ PassManagerPtr GraphKernelOptimizer::PreProcess() {
|
|||
// Change Assign(p, a, U) to Assign(Depend(p, U), a)
|
||||
pm->AddPass(std::make_shared<SplitAssign>());
|
||||
|
||||
// Reorder TransData-Cast to Cast-TransData,
|
||||
if (is_ascend) {
|
||||
// Remove redundant Cast(bias, fp16) for Matmul input
|
||||
pm->AddPass(std::make_shared<OptimizeMatmul>());
|
||||
|
||||
// Reorder TransData-Cast to Cast-TransData
|
||||
pm->AddPass(std::make_shared<ReorderOps>());
|
||||
}
|
||||
|
||||
|
@ -81,7 +85,7 @@ PassManagerPtr GraphKernelOptimizer::HighLevelOpt1() {
|
|||
pm->AddPass(std::make_shared<OptimizeAssign>());
|
||||
pm->AddPass(std::make_shared<EliminateRedundantOutput>());
|
||||
|
||||
// Cast the input of ReduceSum from float16 to float32 for higher precision*/
|
||||
// Cast the input of ReduceSum from float16 to float32 for higher precision
|
||||
pm->AddPass(std::make_shared<RaiseReductionPrecision>());
|
||||
|
||||
// Universal arithmetic simplify
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/optimizer/graph_kernel/optimize_matmul.h"
|
||||
#include <tuple>
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "backend/kernel_compiler/common_utils.h"
|
||||
#include "backend/optimizer/graph_kernel/graph_kernel_helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
/* MatMul supports fp32 bias, so remove the redundant cast when cast only used by MatMul
|
||||
*
|
||||
* %0 = cast(bias_fp32, fp16)
|
||||
* %1 = MatMul(A_fp16, B_fp16, %0)
|
||||
* ------>
|
||||
* %1 = MatMul(A_fp16, B_fp16, bias_fp32)
|
||||
*/
|
||||
bool OptimizeMatmul::Run(const FuncGraphPtr &func_graph) {
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
auto mng = func_graph->manager();
|
||||
if (mng == nullptr) {
|
||||
mng = Manage(func_graph, true);
|
||||
func_graph->set_manager(mng);
|
||||
}
|
||||
auto changed = false;
|
||||
auto nodes = TopoSort(func_graph->get_return());
|
||||
for (auto node : nodes) {
|
||||
if (!IsPrimitiveCNode(node, prim::kPrimMatMul)) {
|
||||
continue;
|
||||
}
|
||||
auto cnode = node->cast<CNodePtr>();
|
||||
if (cnode->size() != 4) {
|
||||
continue;
|
||||
}
|
||||
auto cast_node = cnode->input(3);
|
||||
if (!IsPrimitiveCNode(cast_node, prim::kPrimCast)) {
|
||||
continue;
|
||||
}
|
||||
auto cast_input_type = AnfAlgo::GetInputDeviceDataType(cast_node, 0);
|
||||
auto cast_output_type = AnfAlgo::GetOutputDeviceDataType(cast_node, 0);
|
||||
if (cast_input_type == kNumberTypeFloat32 && cast_output_type == kNumberTypeFloat16 &&
|
||||
mng->node_users()[cast_node].size() == 1) {
|
||||
mng->Replace(cast_node, (cast_node->cast<CNodePtr>())->input(1));
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,36 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
|
||||
#include "backend/optimizer/common/pass.h"
|
||||
#include "ir/func_graph.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class OptimizeMatmul : public Pass {
|
||||
public:
|
||||
OptimizeMatmul() : Pass("optimize_matmul") {}
|
||||
~OptimizeMatmul() override = default;
|
||||
bool Run(const FuncGraphPtr &graph) override;
|
||||
};
|
||||
using OptimizeMatmulPtr = std::shared_ptr<OptimizeMatmul>;
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_
|
|
@ -0,0 +1,60 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.matmul = P.MatMul(transpose_a=True, transpose_b=True)
|
||||
self.add = P.BiasAdd()
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, x, y, b):
|
||||
xy = self.matmul(x, y)
|
||||
b16 = self.cast(b, mstype.float16)
|
||||
res = self.add(xy, b16)
|
||||
return self.cast(res, mstype.float32)
|
||||
|
||||
def get_output(i0, i1, i2, enable_graph_kernel=False):
|
||||
if enable_graph_kernel:
|
||||
context.set_context(enable_graph_kernel=True, save_graphs=False)
|
||||
net = Net()
|
||||
output = net(i0, i1, i2)
|
||||
return output
|
||||
|
||||
def test_basic():
|
||||
i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16))
|
||||
i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16))
|
||||
i2 = Tensor(np.random.normal(100, 0.1, [128,]).astype(np.float32))
|
||||
expect = get_output(i0, i1, i2, False)
|
||||
output = get_output(i0, i1, i2, True)
|
||||
expect_np = expect.asnumpy().copy()
|
||||
output_np = output.asnumpy().copy()
|
||||
assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_basic_ascend():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
test_basic()
|
Loading…
Reference in New Issue