forked from mindspore-Ecosystem/mindspore
!18360 update cpp api doc
Merge pull request !18360 from luoyang/cppapi
This commit is contained in:
commit
87feef9ad6
|
@ -55,9 +55,9 @@ struct Execute::ExtraInfo {
|
|||
};
|
||||
|
||||
// FIXME - Temporarily overload Execute to support both TensorOperation and TensorTransform
|
||||
Execute::Execute(std::shared_ptr<TensorOperation> op, MapTargetDevice deviceType, uint32_t device_id) {
|
||||
Execute::Execute(std::shared_ptr<TensorOperation> op, MapTargetDevice device_type, uint32_t device_id) {
|
||||
ops_.emplace_back(std::move(op));
|
||||
device_type_ = deviceType;
|
||||
device_type_ = device_type;
|
||||
info_ = std::make_shared<ExtraInfo>();
|
||||
#ifdef ENABLE_ACL
|
||||
if (device_type_ == MapTargetDevice::kAscend310) {
|
||||
|
@ -65,72 +65,72 @@ Execute::Execute(std::shared_ptr<TensorOperation> op, MapTargetDevice deviceType
|
|||
Status rc = device_resource_->InitResource(device_id);
|
||||
if (!rc.IsOk()) {
|
||||
device_resource_ = nullptr;
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail";
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail.";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Execute::Execute(std::shared_ptr<TensorTransform> op, MapTargetDevice deviceType, uint32_t device_id) {
|
||||
Execute::Execute(std::shared_ptr<TensorTransform> op, MapTargetDevice device_type, uint32_t device_id) {
|
||||
// Initialize the op and other context
|
||||
transforms_.emplace_back(op);
|
||||
|
||||
info_ = std::make_shared<ExtraInfo>();
|
||||
device_type_ = deviceType;
|
||||
device_type_ = device_type;
|
||||
#ifdef ENABLE_ACL
|
||||
if (device_type_ == MapTargetDevice::kAscend310) {
|
||||
device_resource_ = std::make_shared<AscendResource>();
|
||||
Status rc = device_resource_->InitResource(device_id);
|
||||
if (!rc.IsOk()) {
|
||||
device_resource_ = nullptr;
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail";
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail.";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Execute::Execute(std::reference_wrapper<TensorTransform> op, MapTargetDevice deviceType, uint32_t device_id) {
|
||||
Execute::Execute(std::reference_wrapper<TensorTransform> op, MapTargetDevice device_type, uint32_t device_id) {
|
||||
// Initialize the transforms_ and other context
|
||||
std::shared_ptr<TensorOperation> operation = op.get().Parse();
|
||||
ops_.emplace_back(std::move(operation));
|
||||
|
||||
info_ = std::make_shared<ExtraInfo>();
|
||||
info_->init_with_shared_ptr_ = false;
|
||||
device_type_ = deviceType;
|
||||
device_type_ = device_type;
|
||||
#ifdef ENABLE_ACL
|
||||
if (device_type_ == MapTargetDevice::kAscend310) {
|
||||
device_resource_ = std::make_shared<AscendResource>();
|
||||
Status rc = device_resource_->InitResource(device_id);
|
||||
if (!rc.IsOk()) {
|
||||
device_resource_ = nullptr;
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail";
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail.";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Execute function for the example case: auto decode(new vision::Decode());
|
||||
Execute::Execute(TensorTransform *op, MapTargetDevice deviceType, uint32_t device_id) {
|
||||
Execute::Execute(TensorTransform *op, MapTargetDevice device_type, uint32_t device_id) {
|
||||
// Initialize the transforms_ and other context
|
||||
std::shared_ptr<TensorTransform> smart_ptr_op(op);
|
||||
transforms_.emplace_back(smart_ptr_op);
|
||||
|
||||
info_ = std::make_shared<ExtraInfo>();
|
||||
device_type_ = deviceType;
|
||||
device_type_ = device_type;
|
||||
#ifdef ENABLE_ACL
|
||||
if (device_type_ == MapTargetDevice::kAscend310) {
|
||||
device_resource_ = std::make_shared<AscendResource>();
|
||||
Status rc = device_resource_->InitResource(device_id);
|
||||
if (!rc.IsOk()) {
|
||||
device_resource_ = nullptr;
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail";
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail.";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Execute::Execute(std::vector<std::shared_ptr<TensorOperation>> ops, MapTargetDevice deviceType, uint32_t device_id)
|
||||
: ops_(std::move(ops)), device_type_(deviceType) {
|
||||
Execute::Execute(std::vector<std::shared_ptr<TensorOperation>> ops, MapTargetDevice device_type, uint32_t device_id)
|
||||
: ops_(std::move(ops)), device_type_(device_type) {
|
||||
info_ = std::make_shared<ExtraInfo>();
|
||||
#ifdef ENABLE_ACL
|
||||
if (device_type_ == MapTargetDevice::kAscend310) {
|
||||
|
@ -138,46 +138,46 @@ Execute::Execute(std::vector<std::shared_ptr<TensorOperation>> ops, MapTargetDev
|
|||
Status rc = device_resource_->InitResource(device_id);
|
||||
if (!rc.IsOk()) {
|
||||
device_resource_ = nullptr;
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail";
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail.";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Execute::Execute(std::vector<std::shared_ptr<TensorTransform>> ops, MapTargetDevice deviceType, uint32_t device_id) {
|
||||
Execute::Execute(std::vector<std::shared_ptr<TensorTransform>> ops, MapTargetDevice device_type, uint32_t device_id) {
|
||||
// Initialize the transforms_ and other context
|
||||
transforms_ = ops;
|
||||
|
||||
info_ = std::make_shared<ExtraInfo>();
|
||||
device_type_ = deviceType;
|
||||
device_type_ = device_type;
|
||||
#ifdef ENABLE_ACL
|
||||
if (device_type_ == MapTargetDevice::kAscend310) {
|
||||
device_resource_ = std::make_shared<AscendResource>();
|
||||
Status rc = device_resource_->InitResource(device_id);
|
||||
if (!rc.IsOk()) {
|
||||
device_resource_ = nullptr;
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail";
|
||||
MS_LOG(ERROR) << "Initialize Ascend310 resource fail.";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Execute::Execute(const std::vector<std::reference_wrapper<TensorTransform>> ops, MapTargetDevice deviceType,
|
||||
Execute::Execute(const std::vector<std::reference_wrapper<TensorTransform>> ops, MapTargetDevice device_type,
|
||||
uint32_t device_id) {
|
||||
// Initialize the transforms_ and other context
|
||||
if (deviceType == MapTargetDevice::kCpu) {
|
||||
if (device_type == MapTargetDevice::kCpu) {
|
||||
(void)std::transform(
|
||||
ops.begin(), ops.end(), std::back_inserter(ops_),
|
||||
[](TensorTransform &operation) -> std::shared_ptr<TensorOperation> { return operation.Parse(); });
|
||||
} else {
|
||||
for (auto &op : ops) {
|
||||
ops_.emplace_back(op.get().Parse(deviceType));
|
||||
ops_.emplace_back(op.get().Parse(device_type));
|
||||
}
|
||||
}
|
||||
|
||||
info_ = std::make_shared<ExtraInfo>();
|
||||
info_->init_with_shared_ptr_ = false;
|
||||
device_type_ = deviceType;
|
||||
device_type_ = device_type;
|
||||
#ifdef ENABLE_ACL
|
||||
if (device_type_ == MapTargetDevice::kAscend310) {
|
||||
device_resource_ = std::make_shared<AscendResource>();
|
||||
|
@ -191,7 +191,7 @@ Execute::Execute(const std::vector<std::reference_wrapper<TensorTransform>> ops,
|
|||
}
|
||||
|
||||
// Execute function for the example vector case: auto decode(new vision::Decode());
|
||||
Execute::Execute(const std::vector<TensorTransform *> &ops, MapTargetDevice deviceType, uint32_t device_id) {
|
||||
Execute::Execute(const std::vector<TensorTransform *> &ops, MapTargetDevice device_type, uint32_t device_id) {
|
||||
// Initialize the transforms_ and other context
|
||||
for (auto &op : ops) {
|
||||
std::shared_ptr<TensorTransform> smart_ptr_op(op);
|
||||
|
@ -199,7 +199,7 @@ Execute::Execute(const std::vector<TensorTransform *> &ops, MapTargetDevice devi
|
|||
}
|
||||
|
||||
info_ = std::make_shared<ExtraInfo>();
|
||||
device_type_ = deviceType;
|
||||
device_type_ = device_type;
|
||||
#ifdef ENABLE_ACL
|
||||
if (device_type_ == MapTargetDevice::kAscend310) {
|
||||
device_resource_ = std::make_shared<AscendResource>();
|
||||
|
@ -226,15 +226,15 @@ Execute::~Execute() {
|
|||
|
||||
Status Execute::operator()(const mindspore::MSTensor &input, mindspore::MSTensor *output) {
|
||||
// Validate input tensor
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input.DataSize() > 0, "Input Tensor has no data");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(validate_device_(), "Device Type should be 'Ascend310' or 'CPU'");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input.DataSize() > 0, "Input Tensor has no data.");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(ValidateDevice(), "Device Type should be 'Ascend310' or 'CPU'.");
|
||||
|
||||
// Parse TensorTransform transforms_ into TensorOperation ops_
|
||||
if (info_->init_with_shared_ptr_) {
|
||||
RETURN_IF_NOT_OK(ParseTransforms_());
|
||||
RETURN_IF_NOT_OK(ParseTransforms());
|
||||
info_->init_with_shared_ptr_ = false;
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!ops_.empty(), "Input TensorOperation should be provided");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!ops_.empty(), "Input TensorOperation should be provided.");
|
||||
|
||||
// Validate and build runtime ops
|
||||
std::vector<std::shared_ptr<TensorOp>> transforms; // record the transformations
|
||||
|
@ -244,10 +244,11 @@ Status Execute::operator()(const mindspore::MSTensor &input, mindspore::MSTensor
|
|||
|
||||
for (int32_t i = 0; i < ops_.size(); i++) {
|
||||
if (ops_[i] == nullptr) {
|
||||
MS_LOG(ERROR) << "Input TensorOperation["
|
||||
<< std::to_string(i) + "] is unsupported on your input device:" << env_list.at(device_type_);
|
||||
std::string err_msg = "Input TensorOperation[" + std::to_string(i) +
|
||||
"] is unsupported on your input device:" + env_list.at(device_type_);
|
||||
MS_LOG(ERROR) << err_msg;
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(ops_[i] != nullptr, "Input TensorOperation[" + std::to_string(i) + "] is null");
|
||||
RETURN_IF_NOT_OK(ops_[i]->ValidateParams());
|
||||
transforms.emplace_back(ops_[i]->Build());
|
||||
}
|
||||
|
@ -285,7 +286,7 @@ Status Execute::operator()(const mindspore::MSTensor &input, mindspore::MSTensor
|
|||
*output = mindspore::MSTensor(std::make_shared<DETensor>(de_tensor));
|
||||
} else { // Ascend310 case, where we must set Ascend resource on each operators
|
||||
#ifdef ENABLE_ACL
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(device_resource_, "Device resource is nullptr which is illegal under case Ascend310");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(device_resource_, "Device resource is nullptr which is illegal under case Ascend310.");
|
||||
// Sink data from host into device
|
||||
std::shared_ptr<mindspore::dataset::DeviceTensor> device_input;
|
||||
RETURN_IF_NOT_OK(device_resource_->Sink(input, &device_input));
|
||||
|
@ -300,7 +301,7 @@ Status Execute::operator()(const mindspore::MSTensor &input, mindspore::MSTensor
|
|||
// For next transform
|
||||
device_input = std::move(device_output);
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(device_input->HasDeviceData(), "Apply transform failed, output tensor has no data");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(device_input->HasDeviceData(), "Apply transform failed, output tensor has no data.");
|
||||
|
||||
*output = mindspore::MSTensor(std::make_shared<DETensor>(device_input, true));
|
||||
#endif
|
||||
|
@ -310,18 +311,18 @@ Status Execute::operator()(const mindspore::MSTensor &input, mindspore::MSTensor
|
|||
|
||||
Status Execute::operator()(const std::vector<MSTensor> &input_tensor_list, std::vector<MSTensor> *output_tensor_list) {
|
||||
// Validate input tensor
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!input_tensor_list.empty(), "Input Tensor is not valid");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!input_tensor_list.empty(), "Input Tensor is not valid.");
|
||||
for (auto &tensor : input_tensor_list) {
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(tensor.DataSize() > 0, "Input Tensor has no data");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(tensor.DataSize() > 0, "Input Tensor has no data.");
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(validate_device_(), "Device Type should be 'Ascend310' or 'CPU'");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(ValidateDevice(), "Device Type should be 'Ascend310' or 'CPU'.");
|
||||
|
||||
// Parse TensorTransform transforms_ into TensorOperation ops_
|
||||
if (info_->init_with_shared_ptr_) {
|
||||
RETURN_IF_NOT_OK(ParseTransforms_());
|
||||
RETURN_IF_NOT_OK(ParseTransforms());
|
||||
info_->init_with_shared_ptr_ = false;
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!ops_.empty(), "Input TensorOperation should be provided");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!ops_.empty(), "Input TensorOperation should be provided.");
|
||||
|
||||
std::map<MapTargetDevice, std::string> env_list = {
|
||||
{MapTargetDevice::kCpu, "kCpu"}, {MapTargetDevice::kGpu, "kGpu"}, {MapTargetDevice::kAscend310, "kAscend310"}};
|
||||
|
@ -330,10 +331,11 @@ Status Execute::operator()(const std::vector<MSTensor> &input_tensor_list, std::
|
|||
std::vector<std::shared_ptr<TensorOp>> transforms;
|
||||
for (int32_t i = 0; i < ops_.size(); i++) {
|
||||
if (ops_[i] == nullptr) {
|
||||
MS_LOG(ERROR) << "Input TensorOperation["
|
||||
<< std::to_string(i) + "] is unsupported on your input device:" << env_list.at(device_type_);
|
||||
std::string err_msg = "Input TensorOperation[" + std::to_string(i) +
|
||||
"] is unsupported on your input device:" + env_list.at(device_type_);
|
||||
MS_LOG(ERROR) << err_msg;
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(ops_[i] != nullptr, "Input TensorOperation[" + std::to_string(i) + "] is null");
|
||||
RETURN_IF_NOT_OK(ops_[i]->ValidateParams());
|
||||
transforms.emplace_back(ops_[i]->Build());
|
||||
}
|
||||
|
@ -369,10 +371,10 @@ Status Execute::operator()(const std::vector<MSTensor> &input_tensor_list, std::
|
|||
output_tensor_list->emplace_back(ms_tensor);
|
||||
++idx;
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!output_tensor_list->empty(), "Output Tensor is not valid");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!output_tensor_list->empty(), "Output Tensor is not valid.");
|
||||
} else { // Case Ascend310
|
||||
#ifdef ENABLE_ACL
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(device_resource_, "Device resource is nullptr which is illegal under case Ascend310");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(device_resource_, "Device resource is nullptr which is illegal under case Ascend310.");
|
||||
for (auto &input_tensor : input_tensor_list) {
|
||||
// Sink each data from host into device
|
||||
std::shared_ptr<dataset::DeviceTensor> device_input;
|
||||
|
@ -398,7 +400,7 @@ Status Execute::operator()(const std::vector<MSTensor> &input_tensor_list, std::
|
|||
// Release the data on the device because we have copied one piece onto host
|
||||
RETURN_IF_NOT_OK(device_resource_->DeviceDataRelease());
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!output_tensor_list->empty(), "Output Tensor vector is empty");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!output_tensor_list->empty(), "Output Tensor vector is empty.");
|
||||
#endif
|
||||
}
|
||||
return Status::OK();
|
||||
|
@ -411,7 +413,7 @@ std::vector<uint32_t> AippSizeFilter(const std::vector<uint32_t> &resize_para, c
|
|||
if ((resize_para.size() == 0 || resize_para.size() == 1) && crop_para.size() == 0) {
|
||||
aipp_size = {0, 0};
|
||||
MS_LOG(WARNING) << "Dynamic input shape is not supported, incomplete aipp config file will be generated. Please "
|
||||
"checkout your TensorTransform input, both src_image_size_h and src_image_size will be 0";
|
||||
"checkout your TensorTransform input, both src_image_size_h and src_image_size will be 0.";
|
||||
return aipp_size;
|
||||
}
|
||||
|
||||
|
@ -456,7 +458,7 @@ std::vector<float> AippStdFilter(const std::vector<uint32_t> &normalize_para) {
|
|||
std::transform(normalize_para.begin() + 3, normalize_para.end(), std::back_inserter(aipp_std),
|
||||
[](uint32_t i) { return 10000 / static_cast<float>(i); });
|
||||
} else { // If 0 occurs in std vector
|
||||
MS_LOG(WARNING) << "Detect 0 in std vector, please verify your input";
|
||||
MS_LOG(WARNING) << "Detect 0 in std vector, please verify your input.";
|
||||
aipp_std = {1.0, 1.0, 1.0};
|
||||
}
|
||||
} else {
|
||||
|
@ -514,7 +516,7 @@ std::string Execute::AippCfgGenerator() {
|
|||
std::string config_location = "./aipp.cfg";
|
||||
#ifdef ENABLE_ACL
|
||||
if (info_->init_with_shared_ptr_) {
|
||||
ParseTransforms_();
|
||||
ParseTransforms();
|
||||
info_->init_with_shared_ptr_ = false;
|
||||
}
|
||||
std::vector<uint32_t> paras; // Record the parameters value of each Ascend operators
|
||||
|
@ -522,7 +524,7 @@ std::string Execute::AippCfgGenerator() {
|
|||
// Validate operator ir
|
||||
json ir_info;
|
||||
if (ops_[i] == nullptr) {
|
||||
MS_LOG(ERROR) << "Input TensorOperation[" + std::to_string(i) + "] is null";
|
||||
MS_LOG(ERROR) << "Input TensorOperation[" + std::to_string(i) + "] is null.";
|
||||
return "";
|
||||
}
|
||||
|
||||
|
@ -541,8 +543,8 @@ std::string Execute::AippCfgGenerator() {
|
|||
outfile.open(config_location, std::ofstream::out);
|
||||
|
||||
if (!outfile.is_open()) {
|
||||
MS_LOG(ERROR) << "Fail to open Aipp config file, please verify your system config(including authority)"
|
||||
<< "We will return empty string which represent the location of Aipp config file in this case";
|
||||
MS_LOG(ERROR) << "Fail to open Aipp config file, please verify your system config(including authority)."
|
||||
<< "We will return empty string which represent the location of Aipp config file in this case.";
|
||||
std::string except = "";
|
||||
return except;
|
||||
}
|
||||
|
@ -611,10 +613,10 @@ std::string Execute::AippCfgGenerator() {
|
|||
|
||||
bool IsEmptyPtr(std::shared_ptr<TensorTransform> api_ptr) { return api_ptr == nullptr; }
|
||||
|
||||
Status Execute::ParseTransforms_() {
|
||||
Status Execute::ParseTransforms() {
|
||||
auto iter = std::find_if(transforms_.begin(), transforms_.end(), IsEmptyPtr);
|
||||
if (iter != transforms_.end()) {
|
||||
std::string err_msg = "Your input TensorTransforms contain at least one nullptr, please check your input";
|
||||
std::string err_msg = "Your input TensorTransforms contain at least one nullptr, please check your input.";
|
||||
MS_LOG(ERROR) << err_msg;
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
|
@ -633,10 +635,10 @@ Status Execute::ParseTransforms_() {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Execute::validate_device_() {
|
||||
Status Execute::ValidateDevice() {
|
||||
if (device_type_ != MapTargetDevice::kCpu && device_type_ != MapTargetDevice::kAscend310 &&
|
||||
device_type_ != MapTargetDevice::kGpu) {
|
||||
std::string err_msg = "Your input device is not supported. (Option: CPU or GPU or Ascend310)";
|
||||
std::string err_msg = "Your input device is not supported. (Option: CPU or GPU or Ascend310).";
|
||||
MS_LOG(ERROR) << err_msg;
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
|
@ -644,7 +646,7 @@ Status Execute::validate_device_() {
|
|||
}
|
||||
|
||||
Status Execute::DeviceMemoryRelease() {
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(device_resource_, "Device resource is nullptr which is illegal under case Ascend310");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(device_resource_, "Device resource is nullptr which is illegal under case Ascend310.");
|
||||
Status rc = device_resource_->DeviceDataRelease();
|
||||
if (rc.IsError()) {
|
||||
std::string err_msg = "Error in device data release";
|
||||
|
|
|
@ -28,55 +28,56 @@ namespace dataset {
|
|||
// Config operations for setting and getting the configuration.
|
||||
namespace config {
|
||||
|
||||
/// \brief Function to set the seed to be used in any random generator. This is used to produce deterministic results.
|
||||
/// \param[in] seed the default seed to use.
|
||||
/// \brief A function to set the seed to be used in any random generator. This is used to produce deterministic results.
|
||||
/// \param[in] seed The default seed to be used.
|
||||
bool set_seed(int32_t seed);
|
||||
|
||||
/// \brief Function to get the seed.
|
||||
/// \return the seed set in the configuration.
|
||||
/// \brief A function to get the seed.
|
||||
/// \return The seed set in the configuration.
|
||||
uint32_t get_seed();
|
||||
|
||||
/// \brief Function to set the number of rows to be prefetched.
|
||||
/// \param[in] prefetch_size total number of rows to be prefetched.
|
||||
/// \brief A function to set the number of rows to be prefetched.
|
||||
/// \param[in] prefetch_size Total number of rows to be prefetched.
|
||||
bool set_prefetch_size(int32_t prefetch_size);
|
||||
|
||||
/// \brief Function to get the prefetch size in number of rows.
|
||||
/// \return total number of rows to be prefetched.
|
||||
/// \brief A function to get the prefetch size in number of rows.
|
||||
/// \return Total number of rows to be prefetched.
|
||||
int32_t get_prefetch_size();
|
||||
|
||||
/// \brief Function to set the default number of parallel workers.
|
||||
/// \param[in] num_parallel_workers number of parallel workers to be used as a default for each operation.
|
||||
/// \brief A function to set the default number of parallel workers.
|
||||
/// \param[in] num_parallel_workers Number of parallel workers to be used as the default for each operation.
|
||||
bool set_num_parallel_workers(int32_t num_parallel_workers);
|
||||
|
||||
/// \brief Function to get the default number of parallel workers.
|
||||
/// \return number of parallel workers to be used as a default for each operation.
|
||||
/// \brief A function to get the default number of parallel workers.
|
||||
/// \return Number of parallel workers to be used as the default for each operation.
|
||||
int32_t get_num_parallel_workers();
|
||||
|
||||
/// \brief Function to set the default interval (in milliseconds) for monitor sampling.
|
||||
/// \param[in] interval interval (in milliseconds) to be used for performance monitor sampling.
|
||||
/// \brief A function to set the default interval (in milliseconds) for monitor sampling.
|
||||
/// \param[in] interval Interval (in milliseconds) to be used for performance monitor sampling.
|
||||
bool set_monitor_sampling_interval(int32_t interval);
|
||||
|
||||
/// \brief Function to get the default interval of performance monitor sampling.
|
||||
/// \return interval (in milliseconds) for performance monitor sampling.
|
||||
/// \brief A function to get the default interval of performance monitor sampling.
|
||||
/// \return Interval (in milliseconds) for performance monitor sampling.
|
||||
int32_t get_monitor_sampling_interval();
|
||||
|
||||
/// \brief Function to set the default timeout (in seconds) for DSWaitedCallback. In case of a deadlock, the wait
|
||||
/// \brief A function to set the default timeout (in seconds) for DSWaitedCallback. In case of a deadlock, the wait
|
||||
/// function will exit after the timeout period.
|
||||
/// \param[in] timeout timeout (in seconds) to be used to end the wait in DSWaitedCallback in case of a deadlock.
|
||||
/// \param[in] timeout Timeout (in seconds) to be used to end the wait in DSWaitedCallback in case of a deadlock.
|
||||
bool set_callback_timeout(int32_t timeout);
|
||||
|
||||
/// \brief Function to get the default timeout for DSWaitedCallback. In case of a deadback, the wait function will exit
|
||||
/// after the timeout period.
|
||||
/// \return the duration in seconds.
|
||||
/// \brief A function to get the default timeout for DSWaitedCallback. In case of a deadback, the wait function
|
||||
/// will exit after the timeout period.
|
||||
/// \return The duration in seconds.
|
||||
int32_t get_callback_timeout();
|
||||
|
||||
/// \brief Function to load configuration from a file.
|
||||
/// \param[in] file path of the configuration file to be loaded.
|
||||
/// \note This API exists because std::string will constrained by ABI compile option while char don't.
|
||||
/// \brief A function to load the configuration from a file.
|
||||
/// \param[in] file Path of the configuration file to be loaded.
|
||||
/// \note The reason for using this API is that std::string will be constrained by the
|
||||
/// compiler option '_GLIBCXX_USE_CXX11_ABI' while char is free of this restriction.
|
||||
bool load(const std::vector<char> &file);
|
||||
|
||||
/// \brief Function to load configuration from a file.
|
||||
/// \param[in] file path of the configuration file to be loaded.
|
||||
/// \brief A function to load the configuration from a file.
|
||||
/// \param[in] file Path of the configuration file to be loaded.
|
||||
inline bool load(std::string file) { return load(StringToChar(file)); }
|
||||
|
||||
} // namespace config
|
||||
|
|
|
@ -51,10 +51,10 @@ enum class ShuffleMode {
|
|||
|
||||
/// \brief The method of padding.
|
||||
enum class BorderType {
|
||||
kConstant = 0, ///< Fills the border with constant values.
|
||||
kEdge = 1, ///< Fills the border with the last value on the edge.
|
||||
kReflect = 2, ///< Reflects the values on the edge omitting the last value of edge.
|
||||
kSymmetric = 3 ///< Reflects the values on the edge repeating the last value of edge.
|
||||
kConstant = 0, ///< Fill the border with constant values.
|
||||
kEdge = 1, ///< Fill the border with the last value on the edge.
|
||||
kReflect = 2, ///< Reflect the values on the edge omitting the last value of edge.
|
||||
kSymmetric = 3 ///< Reflect the values on the edge repeating the last value of edge.
|
||||
};
|
||||
|
||||
/// \brief Possible options for Image format types in a batch.
|
||||
|
@ -108,7 +108,7 @@ enum class SentencePieceModel {
|
|||
|
||||
/// \brief Possible options to specify a specific normalize mode.
|
||||
enum class NormalizeForm {
|
||||
kNone = 0, ///< Do nothing for input string tensor.
|
||||
kNone = 0, ///< Keep the input string tensor unchanged.
|
||||
kNfc, ///< Normalize with Normalization Form C.
|
||||
kNfkc, ///< Normalize with Normalization Form KC.
|
||||
kNfd, ///< Normalize with Normalization Form D.
|
||||
|
|
|
@ -95,55 +95,55 @@ class Dataset : public std::enable_shared_from_this<Dataset> {
|
|||
/// \brief Destructor
|
||||
~Dataset() = default;
|
||||
|
||||
/// \brief Gets the dataset size
|
||||
/// \brief Get the dataset size
|
||||
/// \param[in] estimate This is only supported by some of the ops and it's used to speed up the process of getting
|
||||
/// dataset size at the expense of accuracy.
|
||||
/// \return Dataset size. If failed, return -1.
|
||||
int64_t GetDatasetSize(bool estimate = false);
|
||||
|
||||
/// \brief Gets the output type
|
||||
/// \brief Get the output type
|
||||
/// \return A vector contains output DataType of dataset. If failed, return an empty vector.
|
||||
std::vector<mindspore::DataType> GetOutputTypes();
|
||||
|
||||
/// \brief Gets the output shape
|
||||
/// \brief Get the output shape
|
||||
/// \return A vector contains output TensorShape of dataset. If failed, return an empty vector.
|
||||
std::vector<std::vector<int64_t>> GetOutputShapes();
|
||||
|
||||
/// \brief Gets the batch size
|
||||
/// \brief Get the batch size
|
||||
/// \return Batch size configuration of dataset.
|
||||
int64_t GetBatchSize();
|
||||
|
||||
/// \brief Gets the repeat count
|
||||
/// \brief Get the repeat count
|
||||
/// \return Repeat count configuration of dataset.
|
||||
int64_t GetRepeatCount();
|
||||
|
||||
/// \brief Gets the number of classes
|
||||
/// \brief Get the number of classes
|
||||
/// \return Number of classes of dataset. If failed, return -1.
|
||||
int64_t GetNumClasses();
|
||||
|
||||
/// \brief Gets the column names
|
||||
/// \brief Get the column names
|
||||
/// \return A vector contains all column names of dataset. If failed, return an empty vector.
|
||||
std::vector<std::string> GetColumnNames() { return VectorCharToString(GetColumnNamesCharIF()); }
|
||||
|
||||
/// \brief Gets the class indexing
|
||||
/// \brief Get the class indexing
|
||||
/// \return A map of ClassIndexing of dataset. If failed, return an empty map.
|
||||
std::vector<std::pair<std::string, std::vector<int32_t>>> GetClassIndexing() {
|
||||
return ClassIndexCharToString(GetClassIndexingCharIF());
|
||||
}
|
||||
|
||||
/// \brief Setter function for runtime number of workers.
|
||||
/// \brief Function to set runtime number of workers.
|
||||
/// \param[in] num_workers The number of threads in this operator.
|
||||
/// \return Shared pointer to the original object.
|
||||
std::shared_ptr<Dataset> SetNumWorkers(int32_t num_workers);
|
||||
|
||||
/// \brief Function to create an PullBasedIterator over the Dataset.
|
||||
/// \brief A Function to create an PullBasedIterator over the Dataset.
|
||||
/// \param[in] columns List of columns to be used to specify the order of columns.
|
||||
/// \return Shared pointer to the Iterator.
|
||||
std::shared_ptr<PullIterator> CreatePullBasedIterator(std::vector<std::vector<char>> columns = {});
|
||||
|
||||
/// \brief Function to create an Iterator over the Dataset pipeline.
|
||||
/// \param[in] columns List of columns to be used to specify the order of columns.
|
||||
/// \param[in] num_epochs Number of epochs to run through the pipeline, default -1 which means infinite epochs.
|
||||
/// \param[in] num_epochs Number of epochs to run through the pipeline (default=-1, which means infinite epochs).
|
||||
/// An empty row is returned at the end of each epoch.
|
||||
/// \return Shared pointer to the Iterator.
|
||||
std::shared_ptr<Iterator> CreateIterator(std::vector<std::string> columns = {}, int32_t num_epochs = -1) {
|
||||
|
@ -674,7 +674,8 @@ class ZipDataset : public Dataset {
|
|||
|
||||
/// \brief Function to create a SchemaObj.
|
||||
/// \param[in] schema_file Path of schema file.
|
||||
/// \note This API exists because std::string will constrained by ABI compile option while char don't.
|
||||
/// \note The reason for using this API is that std::string will be constrained by the
|
||||
/// compiler option '_GLIBCXX_USE_CXX11_ABI' while char is free of this restriction.
|
||||
/// \return Shared pointer to the current schema.
|
||||
std::shared_ptr<SchemaObj> SchemaCharIF(const std::vector<char> &schema_file);
|
||||
|
||||
|
@ -1012,7 +1013,7 @@ inline std::shared_ptr<CocoDataset> Coco(const std::string &dataset_dir, const s
|
|||
/// \param[in] annotation_file Path to the annotation json.
|
||||
/// \param[in] task Set the task type of reading coco data, now support 'Detection'/'Stuff'/'Panoptic'/'Keypoint'.
|
||||
/// \param[in] decode Decode the images after reading.
|
||||
/// \param[in] sampler Raw pointer to a sampler object used to choose samples from the dataset..
|
||||
/// \param[in] sampler Raw pointer to a sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
|
||||
/// \param[in] extra_metadata Flag to add extra meta-data to row. (default=false)
|
||||
/// \return Shared pointer to the CocoDataset.
|
||||
|
@ -1111,7 +1112,7 @@ class ImageFolderDataset : public Dataset {
|
|||
/// \brief Function to create an ImageFolderDataset.
|
||||
/// \note A source dataset that reads images from a tree of directories.
|
||||
/// All images within one folder have the same label.
|
||||
/// The generated dataset has two columns ["image", "label"]
|
||||
/// The generated dataset has two columns ["image", "label"].
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] decode A flag to decode in ImageFolder.
|
||||
/// \param[in] sampler Shared pointer to a sampler object used to choose samples from the dataset. If sampler is not
|
||||
|
@ -1366,7 +1367,6 @@ inline std::shared_ptr<MindDataDataset> MindData(const std::string &dataset_file
|
|||
/// ShuffleMode::kGlobal - Shuffle both the files and samples.
|
||||
/// ShuffleMode::kInfile - Shuffle samples in file.
|
||||
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
|
||||
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
|
||||
/// \return Shared pointer to the MindDataDataset.
|
||||
inline std::shared_ptr<MindDataDataset> MindData(
|
||||
const std::vector<std::string> &dataset_files, const std::vector<std::string> &columns_list = {},
|
||||
|
|
|
@ -33,58 +33,62 @@ class DeviceResource;
|
|||
class Execute {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op TensorOperation to be applied in Eager mode, it accepts op in type of shared pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(std::shared_ptr<TensorOperation> op, MapTargetDevice deviceType = MapTargetDevice::kCpu,
|
||||
/// \param[in] op TensorOperation to be applied in Eager mode, it accepts operation in type of shared pointer.
|
||||
/// \param[in] device_type Target device environment to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device ID to perform operation, only valid when device_type=kAscend310 (default=0).
|
||||
explicit Execute(std::shared_ptr<TensorOperation> op, MapTargetDevice device_type = MapTargetDevice::kCpu,
|
||||
uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts op in type of shared pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(std::shared_ptr<TensorTransform> op, MapTargetDevice deviceType = MapTargetDevice::kCpu,
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts operation in type of shared pointer.
|
||||
/// \param[in] device_type Target device environment to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device ID to perform operation, only valid when device_type=kAscend310 (default=0).
|
||||
explicit Execute(std::shared_ptr<TensorTransform> op, MapTargetDevice device_type = MapTargetDevice::kCpu,
|
||||
uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts op in type of reference.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(std::reference_wrapper<TensorTransform> op, MapTargetDevice deviceType = MapTargetDevice::kCpu,
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts operation in type of reference.
|
||||
/// \param[in] device_type Target device environment to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device ID to perform operation, only valid when device_type=kAscend310 (default=0).
|
||||
explicit Execute(std::reference_wrapper<TensorTransform> op, MapTargetDevice device_type = MapTargetDevice::kCpu,
|
||||
uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts op in type of raw pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(TensorTransform *op, MapTargetDevice deviceType = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts operation in type of raw pointer.
|
||||
/// \param[in] device_type Target device environment to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device ID to perform operation, only valid when device_type=kAscend310 (default=0).
|
||||
explicit Execute(TensorTransform *op, MapTargetDevice device_type = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ops A vector of TensorOperations to be applied in Eager mode, it accepts op in type of shared pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
/// \param[in] ops A vector of TensorOperations to be applied in Eager mode, it accepts operation
|
||||
/// in type of shared pointer.
|
||||
/// \param[in] device_type Target device environment to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device ID to perform operation, only valid when device_type=kAscend310 (default=0).
|
||||
explicit Execute(std::vector<std::shared_ptr<TensorOperation>> ops,
|
||||
MapTargetDevice deviceType = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
MapTargetDevice device_type = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts op in type of shared pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts operation
|
||||
/// in type of shared pointer.
|
||||
/// \param[in] device_type Target device environment to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device ID to perform operation, only valid when device_type=kAscend310 (default=0).
|
||||
explicit Execute(std::vector<std::shared_ptr<TensorTransform>> ops,
|
||||
MapTargetDevice deviceType = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
MapTargetDevice device_type = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts op in type of raw pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts operation
|
||||
/// in type of raw pointer.
|
||||
/// \param[in] device_type Target device environment to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device ID to perform operation, only valid when device_type=kAscend310 (default=0).
|
||||
explicit Execute(const std::vector<std::reference_wrapper<TensorTransform>> ops,
|
||||
MapTargetDevice deviceType = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
MapTargetDevice device_type = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts op in type of raw pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(const std::vector<TensorTransform *> &ops, MapTargetDevice deviceType = MapTargetDevice::kCpu,
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts operation
|
||||
/// in type of raw pointer.
|
||||
/// \param[in] device_type Target device environment to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device ID to perform operation, only valid when device_type=kAscend310 (default=0).
|
||||
explicit Execute(const std::vector<TensorTransform *> &ops, MapTargetDevice device_type = MapTargetDevice::kCpu,
|
||||
uint32_t device_id = 0);
|
||||
|
||||
/// \brief Destructor.
|
||||
|
@ -102,23 +106,23 @@ class Execute {
|
|||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status operator()(const std::vector<mindspore::MSTensor> &input_tensor_list, std::vector<mindspore::MSTensor> *out);
|
||||
|
||||
/// \brief The function to release device memory on Ascend310.
|
||||
Status DeviceMemoryRelease();
|
||||
|
||||
/// \brief The function to generate AIPP configuration.
|
||||
std::string AippCfgGenerator();
|
||||
|
||||
private:
|
||||
Status ParseTransforms_();
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
Status ParseTransforms();
|
||||
|
||||
Status validate_device_();
|
||||
/// \brief The function to validate target device setting is valid or not.
|
||||
Status ValidateDevice();
|
||||
|
||||
std::vector<std::shared_ptr<TensorTransform>> transforms_;
|
||||
|
||||
std::vector<std::shared_ptr<TensorOperation>> ops_;
|
||||
|
||||
MapTargetDevice device_type_;
|
||||
|
||||
std::shared_ptr<DeviceResource> device_resource_;
|
||||
|
||||
struct ExtraInfo;
|
||||
std::shared_ptr<ExtraInfo> info_;
|
||||
};
|
||||
|
|
|
@ -47,21 +47,21 @@ using MSTensorVec = std::vector<mindspore::MSTensor>;
|
|||
// Abstract class for iterating over the dataset.
|
||||
class Iterator {
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \brief Constructor.
|
||||
Iterator();
|
||||
|
||||
/// \brief Destructor
|
||||
/// \brief Destructor.
|
||||
~Iterator();
|
||||
|
||||
/// \brief Method for building and launching the pipeline.
|
||||
/// \param[in] ops - a vector of DatasetOp in the data pipeline.
|
||||
/// \param[in] num_epochs Number of epochs passed down to EpochCtrlNode, default -1, infinite epochs
|
||||
/// \param[in] ds The last DatasetOp in the dataset pipeline.
|
||||
/// \param[in] num_epochs Number of epochs passed down to EpochCtrlNode (default=-1, which means infinite epochs).
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status BuildAndLaunchTree(std::shared_ptr<Dataset> ds, int32_t num_epochs);
|
||||
|
||||
/// \brief Function to get the next row from the data pipeline.
|
||||
/// \note Type of return data is a map(with column name).
|
||||
/// \param[out] row - the output tensor row.
|
||||
/// \note Type of return data is a unordered_map(with column name).
|
||||
/// \param[out] row The output tensor row.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status GetNextRow(MSTensorMap *row) {
|
||||
MSTensorMapChar row_;
|
||||
|
@ -72,13 +72,14 @@ class Iterator {
|
|||
return s;
|
||||
}
|
||||
|
||||
// Char interface(CharIF) of GetNextRow
|
||||
// This This API exists because std::string will constrained by ABI compile option while char don't.
|
||||
/// \brief Char interface(CharIF) of GetNextRow.
|
||||
/// \note The reason for using this API is that std::string will be constrained by the
|
||||
/// compiler option '_GLIBCXX_USE_CXX11_ABI' while char is free of this restriction.
|
||||
Status GetNextRowCharIF(MSTensorMapChar *row);
|
||||
|
||||
/// \brief Function to get the next row from the data pipeline.
|
||||
/// \note Type of return data is a vector(without column name).
|
||||
/// \param[out] row - the output tensor row.
|
||||
/// \param[out] row The output tensor row.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
virtual Status GetNextRow(MSTensorVec *row);
|
||||
|
||||
|
@ -119,10 +120,10 @@ class Iterator {
|
|||
|
||||
class PullIterator : public Iterator {
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \brief Constructor.
|
||||
PullIterator();
|
||||
|
||||
/// \brief Destructor
|
||||
/// \brief Destructor.
|
||||
~PullIterator() = default;
|
||||
|
||||
/// \brief Function to get next row from the data pipeline.
|
||||
|
@ -133,7 +134,7 @@ class PullIterator : public Iterator {
|
|||
|
||||
/// \brief Function to get specified rows from the data pipeline.
|
||||
/// \note Type of return data is a vector(without column name).
|
||||
/// \note This behavior is subject to change
|
||||
/// \note This behavior is subject to change.
|
||||
/// \param[in] num_rows The number of rows to fetch.
|
||||
/// \param[out] row The output tensor row.
|
||||
/// \return Status error code, returns OK if no error encountered else false.
|
||||
|
@ -141,7 +142,7 @@ class PullIterator : public Iterator {
|
|||
|
||||
/// \brief Method for building and launching the pipeline.
|
||||
/// \note Consider making this function protected.
|
||||
/// \param[in] ds - The root node that calls the function
|
||||
/// \param[in] ds The root node that calls the function.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status BuildAndLaunchTree(std::shared_ptr<Dataset> ds);
|
||||
|
||||
|
|
|
@ -87,7 +87,7 @@ class DistributedSampler final : public Sampler {
|
|||
~DistributedSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \brief The function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
|
@ -118,7 +118,7 @@ class PKSampler final : public Sampler {
|
|||
~PKSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \brief The function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
|
@ -143,7 +143,7 @@ class RandomSampler final : public Sampler {
|
|||
~RandomSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \brief The function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
|
@ -167,7 +167,7 @@ class SequentialSampler final : public Sampler {
|
|||
~SequentialSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \brief The function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
|
@ -191,7 +191,7 @@ class SubsetSampler : public Sampler {
|
|||
~SubsetSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \brief The function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
|
@ -214,7 +214,7 @@ class SubsetRandomSampler final : public SubsetSampler {
|
|||
~SubsetRandomSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \brief The function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
};
|
||||
|
@ -236,7 +236,7 @@ class WeightedRandomSampler final : public Sampler {
|
|||
~WeightedRandomSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \brief The function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
|
|
|
@ -40,19 +40,19 @@ namespace text {
|
|||
|
||||
#ifndef _WIN32
|
||||
/// \brief Tokenize a scalar tensor of UTF-8 string by specific rules.
|
||||
/// \note BasicTokenizer is not supported on Windows platform yet.
|
||||
/// \note BasicTokenizer is not supported on the Windows platform yet.
|
||||
class BasicTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] lower_case If true, apply CaseFold, NormalizeUTF8 (NFD mode), RegexReplace operation on input text to
|
||||
/// fold the text to lower case and strip accents characters. If false, only apply
|
||||
/// NormalizeUTF8('normalization_form' mode) operation on input text (default=false).
|
||||
/// \param[in] keep_whitespace If true, the whitespace will be kept in out tokens (default=false).
|
||||
/// \param[in] normalize_form Used to specify a specific normalize mode. This is only effective when 'lower_case' is
|
||||
/// false. See NormalizeUTF8 for details (default=NormalizeForm::kNone).
|
||||
/// \param[in] preserve_unused_token If true, do not split special tokens like '[CLS]', '[SEP]', '[UNK]', '[PAD]',
|
||||
/// '[MASK]' (default=true).
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
/// \param[in] lower_case If true, apply CaseFold, NormalizeUTF8 (NFD mode) and RegexReplace operations to
|
||||
/// the input text to fold the text to lower case and strip accents characters. If false, only apply
|
||||
/// the NormalizeUTF8('normalization_form' mode) operation to the input text (default=false).
|
||||
/// \param[in] keep_whitespace If true, the whitespace will be kept in output tokens (default=false).
|
||||
/// \param[in] normalize_form This parameter is used to specify a specific normalize mode. This is only effective
|
||||
/// when 'lower_case' is false. See NormalizeUTF8 for details (default=NormalizeForm::kNone).
|
||||
/// \param[in] preserve_unused_token If true, do not split special tokens like '[CLS]', '[SEP]', '[UNK]', '[PAD]' and
|
||||
/// '[MASK]' (default=true).
|
||||
/// \param[in] with_offsets Whether to output offsets of tokens (default=false).
|
||||
explicit BasicTokenizer(bool lower_case = false, bool keep_whitespace = false,
|
||||
const NormalizeForm normalize_form = NormalizeForm::kNone, bool preserve_unused_token = true,
|
||||
bool with_offsets = false);
|
||||
|
@ -61,8 +61,8 @@ class BasicTokenizer final : public TensorTransform {
|
|||
~BasicTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -70,25 +70,26 @@ class BasicTokenizer final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tokenizer used for Bert text process.
|
||||
/// \note BertTokenizer is not supported on Windows platform yet.
|
||||
/// \brief A tokenizer used for Bert text process.
|
||||
/// \note BertTokenizer is not supported on the Windows platform yet.
|
||||
class BertTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab A Vocab object.
|
||||
/// \param[in] suffix_indicator Used to show that the subword is the last part of a word (default='##').
|
||||
/// \param[in] suffix_indicator This parameter is used to show that the sub-word
|
||||
/// is the last part of a word (default='##').
|
||||
/// \param[in] max_bytes_per_token Tokens exceeding this length will not be further split (default=100).
|
||||
/// \param[in] unknown_token When a token cannot be found, return the token directly if 'unknown_token' is an empty
|
||||
/// string, else return the string specified(default='[UNK]').
|
||||
/// \param[in] lower_case If true, apply CaseFold, NormalizeUTF8 (NFD mode), RegexReplace operation on input text to
|
||||
/// fold the text to lower case and strip accents characters. If false, only apply
|
||||
/// NormalizeUTF8('normalization_form' mode) operation on input text (default=false).
|
||||
/// \param[in] keep_whitespace If true, the whitespace will be kept in out tokens (default=false).
|
||||
/// \param[in] normalize_form Used to specify a specific normalize mode. This is only effective when 'lower_case' is
|
||||
/// false. See NormalizeUTF8 for details (default=NormalizeForm::kNone).
|
||||
/// \param[in] preserve_unused_token If true, do not split special tokens like '[CLS]', '[SEP]', '[UNK]', '[PAD]',
|
||||
/// string, else return the specified string (default='[UNK]').
|
||||
/// \param[in] lower_case If true, apply CaseFold, NormalizeUTF8 (NFD mode) and RegexReplace operations to
|
||||
/// the input text to fold the text to lower case and strip accents characters. If false, only apply
|
||||
/// the NormalizeUTF8('normalization_form' mode) operation to the input text (default=false).
|
||||
/// \param[in] keep_whitespace If true, the whitespace will be kept in output tokens (default=false).
|
||||
/// \param[in] normalize_form This parameter is used to specify a specific normalize mode. This is only effective
|
||||
/// when 'lower_case' is false. See NormalizeUTF8 for details (default=NormalizeForm::kNone).
|
||||
/// \param[in] preserve_unused_token If true, do not split special tokens like '[CLS]', '[SEP]', '[UNK]', '[PAD]' and
|
||||
/// '[MASK]' (default=true).
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
/// \param[in] with_offsets Whether to output offsets of tokens (default=false).
|
||||
explicit BertTokenizer(const std::shared_ptr<Vocab> &vocab, const std::string &suffix_indicator = "##",
|
||||
int32_t max_bytes_per_token = 100, const std::string &unknown_token = "[UNK]",
|
||||
bool lower_case = false, bool keep_whitespace = false,
|
||||
|
@ -106,8 +107,8 @@ class BertTokenizer final : public TensorTransform {
|
|||
~BertTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -115,7 +116,7 @@ class BertTokenizer final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Apply case fold operation on UTF-8 string tensor.
|
||||
/// \brief Apply case fold operation on UTF-8 string tensors.
|
||||
/// \return Shared pointer to the current TensorOperation.
|
||||
class CaseFold final : public TensorTransform {
|
||||
public:
|
||||
|
@ -126,26 +127,26 @@ class CaseFold final : public TensorTransform {
|
|||
~CaseFold() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
#endif
|
||||
|
||||
/// \brief Tokenize Chinese string into words based on dictionary.
|
||||
/// \note The integrity of the HMMSEgment algorithm and MPSegment algorithm files must be confirmed.
|
||||
/// \brief Tokenize a Chinese string into words based on the dictionary.
|
||||
/// \note The integrity of the HMMSegment algorithm and MPSegment algorithm files must be confirmed.
|
||||
class JiebaTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] hmm_path Dictionary file is used by HMMSegment algorithm. The dictionary can be obtained on the
|
||||
/// official website of cppjieba.
|
||||
/// \param[in] mp_path Dictionary file is used by MPSegment algorithm. The dictionary can be obtained on the
|
||||
/// official website of cppjieba.
|
||||
/// \param[in] mode Valid values can be any of [JiebaMode.MP, JiebaMode.HMM, JiebaMode.MIX](default=JiebaMode.MIX).
|
||||
/// - JiebaMode.kMP, tokenize with MPSegment algorithm.
|
||||
/// - JiebaMode.kHMM, tokenize with Hiddel Markov Model Segment algorithm.
|
||||
/// - JiebaMode.kMIX, tokenize with a mix of MPSegment and HMMSegment algorithm.
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
/// \param[in] hmm_path Dictionary file is used by the HMMSegment algorithm. The dictionary can be obtained on the
|
||||
/// official website of cppjieba (https://github.com/yanyiwu/cppjieba).
|
||||
/// \param[in] mp_path Dictionary file is used by the MPSegment algorithm. The dictionary can be obtained on the
|
||||
/// official website of cppjieba (https://github.com/yanyiwu/cppjieba).
|
||||
/// \param[in] mode Valid values can be any of JiebaMode.MP, JiebaMode.HMM and JiebaMode.MIX (default=JiebaMode.MIX).
|
||||
/// - JiebaMode.kMP, tokenizes with MPSegment algorithm.
|
||||
/// - JiebaMode.kHMM, tokenizes with Hidden Markov Model Segment algorithm.
|
||||
/// - JiebaMode.kMIX, tokenizes with a mix of MPSegment and HMMSegment algorithms.
|
||||
/// \param[in] with_offsets Whether to output offsets of tokens (default=false).
|
||||
explicit JiebaTokenizer(const std::string &hmm_path, const std::string &mp_path,
|
||||
const JiebaMode &mode = JiebaMode::kMix, bool with_offsets = false)
|
||||
: JiebaTokenizer(StringToChar(hmm_path), StringToChar(mp_path), mode, with_offsets) {}
|
||||
|
@ -156,46 +157,46 @@ class JiebaTokenizer final : public TensorTransform {
|
|||
/// \brief Destructor
|
||||
~JiebaTokenizer() = default;
|
||||
|
||||
/// \brief Add user defined word to JiebaTokenizer's dictionary.
|
||||
/// \brief Add a user defined word to the JiebaTokenizer's dictionary.
|
||||
/// \param[in] word The word to be added to the JiebaTokenizer instance.
|
||||
/// The added word will not be written into the built-in dictionary on disk.
|
||||
/// \param[in] freq The frequency of the word to be added. The higher the frequency,
|
||||
/// the better chance the word will be tokenized (default=None, use default frequency).
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
/// \return Status error code, returns OK if no error is encountered.
|
||||
Status AddWord(const std::string &word, int64_t freq = 0) { return AddWordChar(StringToChar(word), freq); }
|
||||
|
||||
/// \brief Add user defined dictionary of word-freq pairs to JiebaTokenizer's dictionary.
|
||||
/// \param[in] user_dict Vector of word-freq pairs to be added to JiebaTokenizer's dictionary.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
/// \brief Add a user defined dictionary of word-freq pairs to the JiebaTokenizer's dictionary.
|
||||
/// \param[in] user_dict Vector of word-freq pairs to be added to the JiebaTokenizer's dictionary.
|
||||
/// \return Status error code, returns OK if no error is encountered.
|
||||
Status AddDict(const std::vector<std::pair<std::string, int64_t>> &user_dict) {
|
||||
return AddDictChar(PairStringInt64ToPairCharInt64(user_dict));
|
||||
}
|
||||
|
||||
/// \brief Add user defined dictionary of word-freq pairs to JiebaTokenizer's dictionary from a file.
|
||||
/// Only valid word-freq pairs in user provided file will be added into the dictionary.
|
||||
/// Rows containing invalid input will be ignored, no error nor warning Status is returned.
|
||||
/// \brief Add user defined dictionary of word-freq pairs to the JiebaTokenizer's dictionary from a file.
|
||||
/// Only valid word-freq pairs in user defined file will be added into the dictionary.
|
||||
/// Rows containing invalid inputs will be ignored, no error nor warning status is returned.
|
||||
/// \param[in] file_path Path to the dictionary which includes user defined word-freq pairs.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
/// \return Status error code, returns OK if no error is encountered.
|
||||
Status AddDict(const std::string &file_path) { return AddDictChar(StringToChar(file_path)); }
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
/// \brief Parser user defined word by file.
|
||||
/// \brief Parser user defined words by files.
|
||||
/// \param[in] file_path Path to the user defined file.
|
||||
/// \param[in] user_dict Vector of word-freq pairs extracted from the user provided file.
|
||||
/// \param[in] user_dict Vector of word-freq pairs extracted from the user defined file.
|
||||
Status ParserFile(const std::string &file_path, std::vector<std::pair<std::string, int64_t>> *const user_dict);
|
||||
|
||||
/// \brief Used to translate all API string to vector of char and back
|
||||
/// \brief Used to translate all API strings to vector of char and reverse.
|
||||
Status AddWordChar(const std::vector<char> &word, int64_t freq = 0);
|
||||
|
||||
/// \brief Used to translate all API string to vector of char and back
|
||||
/// \brief Used to translate all API strings to vector of char and reverse.
|
||||
Status AddDictChar(const std::vector<std::pair<std::vector<char>, int64_t>> &user_dict);
|
||||
|
||||
/// \brief Used to translate all API string to vector of char and back
|
||||
/// \brief Used to translate all API strings to vector of char and reverse.
|
||||
Status AddDictChar(const std::vector<char> &file_path);
|
||||
|
||||
struct Data;
|
||||
|
@ -207,9 +208,9 @@ class Lookup final : public TensorTransform {
|
|||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab a Vocab object.
|
||||
/// \param[in] unknown_token word to use for lookup if the word being looked up is out of Vocabulary (oov).
|
||||
/// If unknown_token is oov, runtime error will be thrown. If unknown_token is {}, which means that not to
|
||||
/// specify unknown_token when word being out of Vocabulary (default={}).
|
||||
/// \param[in] unknown_token Word is used for lookup. In case of the word is out of vocabulary (OOV),
|
||||
/// the result of lookup will be replaced to unknown_token. If the unknown_token is not specified or it is OOV,
|
||||
/// runtime error will be thrown (default={}, means no unknown_token is specified).
|
||||
/// \param[in] data_type mindspore::DataType of the tensor after lookup; must be numeric, including bool.
|
||||
/// (default=mindspore::DataType::kNumberTypeInt32).
|
||||
explicit Lookup(const std::shared_ptr<Vocab> &vocab, const std::optional<std::string> &unknown_token = {},
|
||||
|
@ -223,8 +224,8 @@ class Lookup final : public TensorTransform {
|
|||
~Lookup() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -232,17 +233,17 @@ class Lookup final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief TensorOp to generate n-gram from a 1-D string Tensor.
|
||||
/// \brief Generate n-gram from a 1-D string Tensor.
|
||||
class Ngram final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ngrams ngrams is a vector of positive integers. For example, if ngrams={4, 3}, then the result
|
||||
/// would be a 4-gram followed by a 3-gram in the same tensor. If the number of words is not enough to make up
|
||||
/// for a n-gram, an empty string will be returned.
|
||||
/// would be a 4-gram followed by a 3-gram in the same tensor. If the number of words is not enough to make up
|
||||
/// a n-gram, an empty string will be returned.
|
||||
/// \param[in] left_pad {"pad_token", pad_width}. Padding performed on left side of the sequence. pad_width will
|
||||
/// be capped at n-1. left_pad=("_",2) would pad left side of the sequence with "__" (default={"", 0}}).
|
||||
/// be capped at n-1. left_pad=("_",2) would pad the left side of the sequence with "__" (default={"", 0}}).
|
||||
/// \param[in] right_pad {"pad_token", pad_width}. Padding performed on right side of the sequence.pad_width will
|
||||
/// be capped at n-1. right_pad=("-":2) would pad right side of the sequence with "--" (default={"", 0}}).
|
||||
/// be capped at n-1. right_pad=("-":2) would pad the right side of the sequence with "--" (default={"", 0}}).
|
||||
/// \param[in] separator Symbol used to join strings together (default=" ").
|
||||
explicit Ngram(const std::vector<int32_t> &ngrams, const std::pair<std::string, int32_t> &left_pad = {"", 0},
|
||||
const std::pair<std::string, int32_t> &right_pad = {"", 0}, const std::string &separator = " ")
|
||||
|
@ -255,8 +256,8 @@ class Ngram final : public TensorTransform {
|
|||
~Ngram() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -265,7 +266,7 @@ class Ngram final : public TensorTransform {
|
|||
};
|
||||
|
||||
#ifndef _WIN32
|
||||
/// \brief Apply normalize operation on UTF-8 string tensor.
|
||||
/// \brief Apply normalize operation to UTF-8 string tensors.
|
||||
class NormalizeUTF8 final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -273,19 +274,19 @@ class NormalizeUTF8 final : public TensorTransform {
|
|||
/// NormalizeForm::kNfkc,
|
||||
/// NormalizeForm::kNfd, NormalizeForm::kNfkd](default=NormalizeForm::kNfkc).
|
||||
/// See http://unicode.org/reports/tr15/ for details.
|
||||
/// - NormalizeForm.NONE, do nothing for input string tensor.
|
||||
/// - NormalizeForm.NFC, normalize with Normalization Form C.
|
||||
/// - NormalizeForm.NFKC, normalize with Normalization Form KC.
|
||||
/// - NormalizeForm.NFD, normalize with Normalization Form D.
|
||||
/// - NormalizeForm.NFKD, normalize with Normalization Form KD.
|
||||
/// - NormalizeForm.NONE, remain the input string tensor unchanged.
|
||||
/// - NormalizeForm.NFC, normalizes with Normalization Form C.
|
||||
/// - NormalizeForm.NFKC, normalizes with Normalization Form KC.
|
||||
/// - NormalizeForm.NFD, normalizes with Normalization Form D.
|
||||
/// - NormalizeForm.NFKD, normalizes with Normalization Form KD.
|
||||
explicit NormalizeUTF8(NormalizeForm normalize_form = NormalizeForm::kNfkc);
|
||||
|
||||
/// \brief Destructor
|
||||
~NormalizeUTF8() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -293,13 +294,13 @@ class NormalizeUTF8 final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Replace UTF-8 string tensor with 'replace' according to regular expression 'pattern'.
|
||||
/// \brief Replace a UTF-8 string tensor with 'replace' according to regular expression 'pattern'.
|
||||
class RegexReplace final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] pattern The regex expression patterns.
|
||||
/// \param[in] replace The string to replace matched element.
|
||||
/// \param[in] replace_all Confirm whether to replace all. If false, only replace first matched element;
|
||||
/// \param[in] replace The string to replace the matched element.
|
||||
/// \param[in] replace_all Confirm whether to replace all. If false, only replace the first matched element;
|
||||
/// if true, replace all matched elements (default=true).
|
||||
explicit RegexReplace(std::string pattern, std::string replace, bool replace_all = true)
|
||||
: RegexReplace(StringToChar(pattern), StringToChar(replace), replace_all) {}
|
||||
|
@ -310,8 +311,8 @@ class RegexReplace final : public TensorTransform {
|
|||
~RegexReplace() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -319,15 +320,15 @@ class RegexReplace final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tokenize a scalar tensor of UTF-8 string by regex expression pattern.
|
||||
/// \brief Tokenize a scalar tensor of UTF-8 string by the regex expression pattern.
|
||||
class RegexTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] delim_pattern The pattern of regex delimiters.
|
||||
/// \param[in] keep_delim_pattern The string matched by 'delim_pattern' can be kept as a token if it can be
|
||||
/// \param[in] keep_delim_pattern The string matched with 'delim_pattern' can be kept as a token if it can be
|
||||
/// matched by 'keep_delim_pattern'. The default value is an empty string ("").
|
||||
/// which means that delimiters will not be kept as an output token (default="").
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
/// \param[in] with_offsets Whether to output offsets of tokens (default=false).
|
||||
explicit RegexTokenizer(std::string delim_pattern, std::string keep_delim_pattern = "", bool with_offsets = false)
|
||||
: RegexTokenizer(StringToChar(delim_pattern), StringToChar(keep_delim_pattern), with_offsets) {}
|
||||
|
||||
|
@ -338,8 +339,8 @@ class RegexTokenizer final : public TensorTransform {
|
|||
~RegexTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -348,18 +349,18 @@ class RegexTokenizer final : public TensorTransform {
|
|||
};
|
||||
#endif
|
||||
|
||||
/// \brief Tokenize scalar token or 1-D tokens to tokens by sentencepiece.
|
||||
/// \brief Tokenize a scalar token or a 1-D token to tokens by sentencepiece.
|
||||
class SentencePieceTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab a SentencePieceVocab object.
|
||||
/// \param[in] out_type The type of output.
|
||||
/// \param[in] out_type The type of the output.
|
||||
SentencePieceTokenizer(const std::shared_ptr<SentencePieceVocab> &vocab,
|
||||
mindspore::dataset::SPieceTokenizerOutType out_type);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab_path vocab model file path.
|
||||
/// \param[in] out_type The type of output.
|
||||
/// \param[in] out_type The type of the output.
|
||||
SentencePieceTokenizer(const std::string &vocab_path, mindspore::dataset::SPieceTokenizerOutType out_type)
|
||||
: SentencePieceTokenizer(StringToChar(vocab_path), out_type) {}
|
||||
|
||||
|
@ -369,8 +370,8 @@ class SentencePieceTokenizer final : public TensorTransform {
|
|||
~SentencePieceTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -378,22 +379,22 @@ class SentencePieceTokenizer final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief TensorOp to construct a tensor from data (only 1-D for now), where each element in the dimension
|
||||
/// \brief Construct a tensor from data (only 1-D for now), where each element in the dimension
|
||||
/// axis is a slice of data starting at the corresponding position, with a specified width.
|
||||
class SlidingWindow final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] width The width of the window. It must be an integer and greater than zero.
|
||||
/// \param[in] axis The axis along which the sliding window is computed (default=0), axis support 0 or -1 only
|
||||
/// for now.
|
||||
/// \param[in] axis The axis where the sliding window is computed (default=0), axis only
|
||||
/// supports 0 or -1 for now.
|
||||
explicit SlidingWindow(const int32_t width, const int32_t axis = 0);
|
||||
|
||||
/// \brief Destructor
|
||||
~SlidingWindow() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -401,7 +402,7 @@ class SlidingWindow final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tensor operation to convert every element of a string tensor to a number.
|
||||
/// \brief Convert every element in a string tensor to a number.
|
||||
/// Strings are cast according to the rules specified in the following links:
|
||||
/// https://en.cppreference.com/w/cpp/string/basic_string/stof,
|
||||
/// https://en.cppreference.com/w/cpp/string/basic_string/stoul,
|
||||
|
@ -416,8 +417,8 @@ class ToNumber final : public TensorTransform {
|
|||
~ToNumber() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -436,8 +437,8 @@ class TruncateSequencePair final : public TensorTransform {
|
|||
~TruncateSequencePair() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -449,15 +450,15 @@ class TruncateSequencePair final : public TensorTransform {
|
|||
class UnicodeCharTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
/// \param[in] with_offsets whether to output offsets of tokens (default=false).
|
||||
explicit UnicodeCharTokenizer(bool with_offsets = false);
|
||||
|
||||
/// \brief Destructor
|
||||
~UnicodeCharTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -465,16 +466,17 @@ class UnicodeCharTokenizer final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tokenize scalar token or 1-D tokens to 1-D subword tokens.
|
||||
/// \brief Tokenize scalar token or 1-D tokens to 1-D sub-word tokens.
|
||||
class WordpieceTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab A Vocab object.
|
||||
/// \param[in] suffix_indicator Used to show that the subword is the last part of a word (default='##').
|
||||
/// \param[in] suffix_indicator This parameter is used to show that the sub-word
|
||||
/// is the last part of a word (default='##').
|
||||
/// \param[in] max_bytes_per_token Tokens exceeding this length will not be further split (default=100).
|
||||
/// \param[in] unknown_token When a token cannot be found, return the token directly if 'unknown_token' is an empty
|
||||
/// string, else return the string specified (default='[UNK]').
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
/// string, else return the specified string (default='[UNK]').
|
||||
/// \param[in] with_offsets whether to output offsets of tokens (default=false).
|
||||
explicit WordpieceTokenizer(const std::shared_ptr<Vocab> &vocab, const std::string &suffix_indicator = "##",
|
||||
int32_t max_bytes_per_token = 100, const std::string &unknown_token = "[UNK]",
|
||||
bool with_offsets = false)
|
||||
|
@ -488,8 +490,8 @@ class WordpieceTokenizer final : public TensorTransform {
|
|||
~WordpieceTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -502,16 +504,16 @@ class WordpieceTokenizer final : public TensorTransform {
|
|||
class UnicodeScriptTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] keep_whitespace Whether or not emit whitespace tokens (default=false).
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
/// \param[in] keep_whitespace whether to emit whitespace tokens (default=false).
|
||||
/// \param[in] with_offsets whether to output offsets of tokens (default=false).
|
||||
explicit UnicodeScriptTokenizer(bool keep_whitespace = false, bool with_offsets = false);
|
||||
|
||||
/// \brief Destructor
|
||||
~UnicodeScriptTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
@ -523,15 +525,15 @@ class UnicodeScriptTokenizer final : public TensorTransform {
|
|||
class WhitespaceTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
/// \param[in] with_offsets whether to output offsets of tokens (default=false).
|
||||
explicit WhitespaceTokenizer(bool with_offsets = false);
|
||||
|
||||
/// \brief Destructor
|
||||
~WhitespaceTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to the TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
|
|
|
@ -103,7 +103,7 @@ class Slice {
|
|||
dsize_t step_;
|
||||
};
|
||||
|
||||
/// \brief SliceOption used in Slice Op.
|
||||
/// \brief SliceOption used in Slice TensorTransform.
|
||||
class SliceOption {
|
||||
public:
|
||||
/// \param[in] all Slice the whole dimension
|
||||
|
@ -127,8 +127,7 @@ class SliceOption {
|
|||
// Transform operations for performing data transformation.
|
||||
namespace transforms {
|
||||
|
||||
/// \brief Compose Op.
|
||||
/// \note Compose a list of transforms into a single transform.
|
||||
/// \brief Compose a list of transforms into a single transform.
|
||||
class Compose final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -145,7 +144,7 @@ class Compose final : public TensorTransform {
|
|||
~Compose() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -154,21 +153,20 @@ class Compose final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Concatenate Op.
|
||||
/// \note Tensor operation that concatenates all columns into a single tensor.
|
||||
/// \brief Concatenate all tensors into a single tensor.
|
||||
class Concatenate final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] axis Concatenate the tensors along given axis, only support 0 or -1 so far (default=0).
|
||||
/// \param[in] prepend MSTensor to be prepended to the already concatenated tensors (default={}).
|
||||
/// \param[in] append MSTensor to be appended to the already concatenated tensors (default={}).
|
||||
/// \param[in] prepend MSTensor to be prepended to the concatenated tensors (default={}).
|
||||
/// \param[in] append MSTensor to be appended to the concatenated tensors (default={}).
|
||||
explicit Concatenate(int8_t axis = 0, MSTensor prepend = {}, MSTensor append = {});
|
||||
|
||||
/// \brief Destructor
|
||||
~Concatenate() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -177,8 +175,7 @@ class Concatenate final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Duplicate Op.
|
||||
/// \note Duplicate the input tensor to a new output tensor.
|
||||
/// \brief Duplicate the input tensor to a new output tensor.
|
||||
/// The input tensor is carried over to the output list.
|
||||
class Duplicate final : public TensorTransform {
|
||||
public:
|
||||
|
@ -189,19 +186,18 @@ class Duplicate final : public TensorTransform {
|
|||
~Duplicate() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief Fill Op.
|
||||
/// \note Tensor operation to fill all elements in the tensor with the specified value.
|
||||
/// \brief Fill all elements in the tensor with the specified value.
|
||||
/// The output tensor will have the same shape and type as the input tensor.
|
||||
class Fill final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] fill_value Scalar value to fill the tensor with.
|
||||
/// Can only be MSTensor of the following types from mindspore::DataType:
|
||||
/// It can only be MSTensor of the following types from mindspore::DataType:
|
||||
/// String, Bool, Int8/16/32/64, UInt8/16/32/64, Float16/32/64.
|
||||
explicit Fill(MSTensor fill_value);
|
||||
|
||||
|
@ -209,7 +205,7 @@ class Fill final : public TensorTransform {
|
|||
~Fill() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -218,16 +214,15 @@ class Fill final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Mask Op.
|
||||
/// \note Mask content of the input tensor with the given predicate.
|
||||
/// \brief Mask content of the input tensor with the given predicate.
|
||||
/// Any element of the tensor that matches the predicate will be evaluated to True, otherwise False.
|
||||
class Mask final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op One of the relational operators EQ, NE LT, GT, LE or GE.
|
||||
/// \param[in] constant Constant to be compared to.
|
||||
/// Can only be MSTensor of str, int, float, bool.
|
||||
/// \param[in] de_type Type of the generated mask. Can only be numeric or boolean datatype.
|
||||
/// \param[in] op One of the relational operators: EQ, NE LT, GT, LE or GE.
|
||||
/// \param[in] constant Constant to be compared to. It can only be MSTensor of the following types
|
||||
/// from mindspore::DataType: String, Int, Float, Bool.
|
||||
/// \param[in] de_type Type of the generated mask. It can only be numeric or boolean datatype.
|
||||
/// (default=mindspore::DataType::kNumberTypeBool)
|
||||
explicit Mask(RelationalOp op, MSTensor constant,
|
||||
mindspore::DataType ms_type = mindspore::DataType(mindspore::DataType::kNumberTypeBool));
|
||||
|
@ -236,7 +231,7 @@ class Mask final : public TensorTransform {
|
|||
~Mask() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -245,8 +240,7 @@ class Mask final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief OneHot Op.
|
||||
/// \note Convert the labels into OneHot format.
|
||||
/// \brief Convert the labels into OneHot format.
|
||||
class OneHot final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -257,7 +251,7 @@ class OneHot final : public TensorTransform {
|
|||
~OneHot() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -266,13 +260,12 @@ class OneHot final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief PadEnd Op.
|
||||
/// \note Pad input tensor according to pad_shape, need to have same rank.
|
||||
/// \brief Pad input tensor according to pad_shape
|
||||
class PadEnd final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] pad_shape List of integers representing the shape needed.
|
||||
/// Dimensions that set to `None` will not be padded (i.e., original dim will be used).
|
||||
/// \param[in] pad_shape List of integers representing the shape needed, need to have same rank with input tensor.
|
||||
/// Dimensions that set to `-1` will not be padded (i.e., original dim will be used).
|
||||
/// Shorter dimensions will truncate the values.
|
||||
/// \param[in] pad_value Value used to pad (default={}).
|
||||
explicit PadEnd(const std::vector<dsize_t> &pad_shape, MSTensor pad_value = {});
|
||||
|
@ -281,7 +274,7 @@ class PadEnd final : public TensorTransform {
|
|||
~PadEnd() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -290,8 +283,7 @@ class PadEnd final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomApply Op.
|
||||
/// \note Randomly perform a series of transforms with a given probability.
|
||||
/// \brief Randomly perform a series of transforms with a given probability.
|
||||
class RandomApply final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -311,7 +303,7 @@ class RandomApply final : public TensorTransform {
|
|||
~RandomApply() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -320,8 +312,7 @@ class RandomApply final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomChoice Op.
|
||||
/// \note Randomly selects one transform from a list of transforms to perform operation.
|
||||
/// \brief Randomly select one transform from a list of transforms to perform on the input tensor.
|
||||
class RandomChoice final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -338,7 +329,7 @@ class RandomChoice final : public TensorTransform {
|
|||
~RandomChoice() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -347,9 +338,8 @@ class RandomChoice final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Slice Op.
|
||||
/// \note Slice operation to extract a tensor out using the given n slices.
|
||||
/// The functionality of Slice is similar to NumPy's indexing feature.
|
||||
/// \brief Extract a tensor out using the given n slices.
|
||||
/// The functionality of Slice is similar to the feature of indexing of NumPy.
|
||||
/// (Currently only rank-1 tensors are supported).
|
||||
class Slice final : public TensorTransform {
|
||||
public:
|
||||
|
@ -361,7 +351,7 @@ class Slice final : public TensorTransform {
|
|||
~Slice() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -370,8 +360,7 @@ class Slice final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief TypeCast Op.
|
||||
/// \note Tensor operation to cast to a given MindSpore data type.
|
||||
/// \brief Cast the MindSpore data type of a tensor to another.
|
||||
class TypeCast final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -382,7 +371,7 @@ class TypeCast final : public TensorTransform {
|
|||
~TypeCast() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -391,9 +380,8 @@ class TypeCast final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Unique Op.
|
||||
/// \note Return an output tensor containing all the unique elements of the input tensor in
|
||||
/// the same order that they occur in the input tensor.
|
||||
/// \brief Return an output tensor that contains all the unique elements of the input tensor in
|
||||
/// the same order as they appear in the input tensor.
|
||||
class Unique final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -403,7 +391,7 @@ class Unique final : public TensorTransform {
|
|||
~Unique() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
|
|
@ -36,12 +36,11 @@ class TensorOperation;
|
|||
|
||||
// Transform operations for performing computer vision.
|
||||
namespace vision {
|
||||
/// \brief AutoContrast TensorTransform.
|
||||
/// \note Apply automatic contrast on input image.
|
||||
/// \brief Apply automatic contrast on the input image.
|
||||
class AutoContrast final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] cutoff Percent of pixels to cut off from the histogram, the valid range of cutoff value is 0 to 100.
|
||||
/// \param[in] cutoff Percent of pixels to cut off from the histogram, the valid range of cutoff value is 0 to 50.
|
||||
/// \param[in] ignore Pixel values to ignore.
|
||||
explicit AutoContrast(float cutoff = 0.0, std::vector<uint32_t> ignore = {});
|
||||
|
||||
|
@ -49,7 +48,7 @@ class AutoContrast final : public TensorTransform {
|
|||
~AutoContrast() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -58,30 +57,29 @@ class AutoContrast final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief BoundingBoxAugment TensorTransform.
|
||||
/// \note Apply a given image transform on a random selection of bounding box regions of a given image.
|
||||
/// \brief Apply a given image transform on a random selection of bounding box regions of a given image.
|
||||
class BoundingBoxAugment final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transform Raw pointer to a TensorTransform operation.
|
||||
/// \param[in] transform Raw pointer to the TensorTransform operation.
|
||||
/// \param[in] ratio Ratio of bounding boxes to apply augmentation on. Range: [0, 1] (default=0.3).
|
||||
explicit BoundingBoxAugment(TensorTransform *transform, float ratio = 0.3);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transform Smart pointer to a TensorTransform operation.
|
||||
/// \param[in] ratio Ratio of bounding boxes to apply augmentation on. Range: [0, 1] (default=0.3).
|
||||
/// \param[in] transform Smart pointer to the TensorTransform operation.
|
||||
/// \param[in] ratio Ratio of bounding boxes where augmentation is applied to. Range: [0, 1] (default=0.3).
|
||||
explicit BoundingBoxAugment(const std::shared_ptr<TensorTransform> &transform, float ratio = 0.3);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transform Object pointer to a TensorTransform operation.
|
||||
/// \param[in] ratio Ratio of bounding boxes to apply augmentation on. Range: [0, 1] (default=0.3).
|
||||
/// \param[in] transform Object pointer to the TensorTransform operation.
|
||||
/// \param[in] ratio Ratio of bounding boxes where augmentation is applied to. Range: [0, 1] (default=0.3).
|
||||
explicit BoundingBoxAugment(const std::reference_wrapper<TensorTransform> transform, float ratio = 0.3);
|
||||
|
||||
/// \brief Destructor.
|
||||
~BoundingBoxAugment() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -90,8 +88,7 @@ class BoundingBoxAugment final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Constructor to apply CutMix on a batch of images.
|
||||
/// \note Masks a random section of each image with the corresponding part of another randomly
|
||||
/// \brief Mask a random section of each image with the corresponding part of another randomly
|
||||
/// selected image in that batch.
|
||||
class CutMixBatch final : public TensorTransform {
|
||||
public:
|
||||
|
@ -105,7 +102,7 @@ class CutMixBatch final : public TensorTransform {
|
|||
~CutMixBatch() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -114,8 +111,7 @@ class CutMixBatch final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief CutOut TensorOp.
|
||||
/// \note Randomly cut (mask) out a given number of square patches from the input image.
|
||||
/// \brief Randomly cut (mask) out a given number of square patches from the input image.
|
||||
class CutOut final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -127,7 +123,7 @@ class CutOut final : public TensorTransform {
|
|||
~CutOut() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -136,8 +132,7 @@ class CutOut final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Equalize TensorTransform.
|
||||
/// \note Apply histogram equalization on input image.
|
||||
/// \brief Apply histogram equalization on the input image.
|
||||
class Equalize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -147,13 +142,12 @@ class Equalize final : public TensorTransform {
|
|||
~Equalize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief HorizontalFlip TensorTransform.
|
||||
/// \note Flip the input image horizontally.
|
||||
/// \brief Flip the input image horizontally.
|
||||
class HorizontalFlip final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -163,13 +157,12 @@ class HorizontalFlip final : public TensorTransform {
|
|||
~HorizontalFlip() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief HwcToChw TensorTransform.
|
||||
/// \note Transpose the input image; shape (H, W, C) to shape (C, H, W).
|
||||
/// \brief Transpose the input image; shape (H, W, C) to shape (C, H, W).
|
||||
class HWC2CHW final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -179,13 +172,12 @@ class HWC2CHW final : public TensorTransform {
|
|||
~HWC2CHW() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief Invert TensorTransform.
|
||||
/// \note Apply invert on input image in RGB mode.
|
||||
/// \brief Apply invert on the input image in RGB mode.
|
||||
class Invert final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -195,13 +187,12 @@ class Invert final : public TensorTransform {
|
|||
~Invert() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief MixUpBatch TensorTransform.
|
||||
/// \note Apply MixUp transformation on an input batch of images and labels. The labels must be in
|
||||
/// \brief Apply MixUp transformation on an input batch of images and labels. The labels must be in
|
||||
/// one-hot format and Batch must be called before calling this function.
|
||||
class MixUpBatch final : public TensorTransform {
|
||||
public:
|
||||
|
@ -213,7 +204,7 @@ class MixUpBatch final : public TensorTransform {
|
|||
~MixUpBatch() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -222,15 +213,14 @@ class MixUpBatch final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief NormalizePad TensorTransform.
|
||||
/// \note Normalize the input image with respect to mean and standard deviation and pad an extra
|
||||
/// \brief Normalize the input image with respect to mean and standard deviation and pads an extra
|
||||
/// channel with value zero.
|
||||
class NormalizePad final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] mean A vector of mean values for each channel, w.r.t channel order.
|
||||
/// \param[in] mean A vector of mean values for each channel, with respect to channel order.
|
||||
/// The mean values must be in range [0.0, 255.0].
|
||||
/// \param[in] std A vector of standard deviations for each channel, w.r.t. channel order.
|
||||
/// \param[in] std A vector of standard deviations for each channel, with respect to channel order.
|
||||
/// The standard deviation values must be in range (0.0, 255.0].
|
||||
/// \param[in] dtype The output datatype of Tensor.
|
||||
/// The standard deviation values must be "float32" or "float16"(default = "float32").
|
||||
|
@ -244,7 +234,7 @@ class NormalizePad final : public TensorTransform {
|
|||
~NormalizePad() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -253,16 +243,15 @@ class NormalizePad final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Pad TensorOp.
|
||||
/// \note Pads the image according to padding parameters.
|
||||
/// \brief Pad the image according to padding parameters.
|
||||
class Pad final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] padding A vector representing the number of pixels to pad the image
|
||||
/// If vector has one value, it pads all sides of the image with that value.
|
||||
/// If vector has two values, it pads left and top with the first and
|
||||
/// \param[in] padding A vector representing the number of pixels to pad the image.
|
||||
/// If the vector has one value, it pads all sides of the image with that value.
|
||||
/// If the vector has two values, it pads left and top with the first and
|
||||
/// right and bottom with the second value.
|
||||
/// If vector has four values, it pads left, top, right, and bottom with
|
||||
/// If the vector has four values, it pads left, top, right, and bottom with
|
||||
/// those values respectively.
|
||||
/// \param[in] fill_value A vector representing the pixel intensity of the borders if the padding_mode is
|
||||
/// BorderType.kConstant. If 1 value is provided, it is used for all RGB channels. If 3 values are provided,
|
||||
|
@ -281,7 +270,7 @@ class Pad final : public TensorTransform {
|
|||
~Pad() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -290,21 +279,21 @@ class Pad final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Blends an image with its grayscale version with random weights
|
||||
/// \brief Blend an image with its grayscale version with random weights
|
||||
/// t and 1 - t generated from a given range. If the range is trivial
|
||||
/// then the weights are determinate and t equals the bound of the interval.
|
||||
/// then the weights are determinate and t equals to the bound of the interval.
|
||||
class RandomColor final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] t_lb Lower bound on the range of random weights.
|
||||
/// \param[in] t_lb Upper bound on the range of random weights.
|
||||
/// \param[in] t_lb Lower bound random weights.
|
||||
/// \param[in] t_lb Upper bound random weights.
|
||||
explicit RandomColor(float t_lb, float t_ub);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomColor() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -313,19 +302,18 @@ class RandomColor final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomColorAdjust TensorTransform.
|
||||
/// \brief Randomly adjust the brightness, contrast, saturation, and hue of the input image.
|
||||
class RandomColorAdjust final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] brightness Brightness adjustment factor. Must be a vector of one or two values
|
||||
/// if it's a vector of two values it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// if it is a vector of two values it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// \param[in] contrast Contrast adjustment factor. Must be a vector of one or two values
|
||||
/// if it's a vector of two values it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// if it is a vector of two values, it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// \param[in] saturation Saturation adjustment factor. Must be a vector of one or two values
|
||||
/// if it's a vector of two values it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// if it is a vector of two values, it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// \param[in] hue Brightness adjustment factor. Must be a vector of one or two values
|
||||
/// if it's a vector of two values it must be in the form of [min, max] where -0.5 <= min <= max <= 0.5
|
||||
/// if it is a vector of two values, it must be in the form of [min, max] where -0.5 <= min <= max <= 0.5
|
||||
/// (Default={0, 0}).
|
||||
explicit RandomColorAdjust(std::vector<float> brightness = {1.0, 1.0}, std::vector<float> contrast = {1.0, 1.0},
|
||||
std::vector<float> saturation = {1.0, 1.0}, std::vector<float> hue = {0.0, 0.0});
|
||||
|
@ -334,7 +322,7 @@ class RandomColorAdjust final : public TensorTransform {
|
|||
~RandomColorAdjust() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -343,22 +331,21 @@ class RandomColorAdjust final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomCrop TensorTransform.
|
||||
/// \note Crop the input image at a random location.
|
||||
/// \brief Crop the input image at a random location.
|
||||
class RandomCrop final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// \param[in] padding A vector representing the number of pixels to pad the image
|
||||
/// If vector has one value, it pads all sides of the image with that value.
|
||||
/// If vector has two values, it pads left and top with the first and
|
||||
/// If the size is a single value, a squared crop of size (size, size) is returned.
|
||||
/// If the size has 2 values, it should be (height, width).
|
||||
/// \param[in] padding A vector representing the number of pixels to pad the image.
|
||||
/// If the vector has one value, it pads all sides of the image with that value.
|
||||
/// If the vector has two values, it pads left and top with the first and
|
||||
/// right and bottom with the second value.
|
||||
/// If vector has four values, it pads left, top, right, and bottom with
|
||||
/// If the vector has four values, it pads left, top, right, and bottom with
|
||||
/// those values respectively.
|
||||
/// \param[in] pad_if_needed A boolean whether to pad the image if either side is smaller than
|
||||
/// the given output size.
|
||||
/// \param[in] pad_if_needed A boolean indicating that whether to pad the image
|
||||
/// if either side is smaller than the given output size.
|
||||
/// \param[in] fill_value A vector representing the pixel intensity of the borders if the padding_mode is
|
||||
/// BorderType.kConstant. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
|
@ -370,7 +357,7 @@ class RandomCrop final : public TensorTransform {
|
|||
~RandomCrop() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -379,14 +366,13 @@ class RandomCrop final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomCropDecodeResize TensorTransform.
|
||||
/// \note Equivalent to RandomResizedCrop, but crops before decodes.
|
||||
/// \brief Equivalent to RandomResizedCrop TensorTransform, but crop the image before decoding.
|
||||
class RandomCropDecodeResize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, a squared crop of size (size, size) is returned.
|
||||
/// If the size has 2 values, it should be (height, width).
|
||||
/// \param[in] scale Range [min, max) of respective size of the
|
||||
/// original size to be cropped (default=(0.08, 1.0)).
|
||||
/// \param[in] ratio Range [min, max) of aspect ratio to be
|
||||
|
@ -403,7 +389,7 @@ class RandomCropDecodeResize final : public TensorTransform {
|
|||
~RandomCropDecodeResize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -412,23 +398,22 @@ class RandomCropDecodeResize final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomCropWithBBox TensorTransform.
|
||||
/// \note Crop the input image at a random location and adjust bounding boxes accordingly.
|
||||
/// If cropped area is out of bbox, the return bbox will be empty.
|
||||
/// \brief Crop the input image at a random location and adjust bounding boxes accordingly.
|
||||
/// If the cropped area is out of bbox, the returned bbox will be empty.
|
||||
class RandomCropWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, a squared crop of size (size, size) is returned.
|
||||
/// If the size has 2 values, it should be (height, width).
|
||||
/// \param[in] padding A vector representing the number of pixels to pad the image
|
||||
/// If vector has one value, it pads all sides of the image with that value.
|
||||
/// If vector has two values, it pads left and top with the first and
|
||||
/// If the vector has one value, it pads all sides of the image with that value.
|
||||
/// If the vector has two values, it pads left and top with the first and
|
||||
/// right and bottom with the second value.
|
||||
/// If vector has four values, it pads left, top, right, and bottom with
|
||||
/// If the vector has four values, it pads left, top, right, and bottom with
|
||||
/// those values respectively.
|
||||
/// \param[in] pad_if_needed A boolean whether to pad the image if either side is smaller than
|
||||
/// the given output size.
|
||||
/// \param[in] pad_if_needed A boolean indicating that whether to pad the image
|
||||
/// if either side is smaller than the given output size.
|
||||
/// \param[in] fill_value A vector representing the pixel intensity of the borders if the padding_mode is
|
||||
/// BorderType.kConstant. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
|
@ -442,7 +427,7 @@ class RandomCropWithBBox final : public TensorTransform {
|
|||
~RandomCropWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -451,8 +436,7 @@ class RandomCropWithBBox final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomHorizontalFlip TensorTransform.
|
||||
/// \note Tensor operation to perform random horizontal flip.
|
||||
/// \brief Randomly flip the input image horizontally with a given probability.
|
||||
class RandomHorizontalFlip final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -463,7 +447,7 @@ class RandomHorizontalFlip final : public TensorTransform {
|
|||
~RandomHorizontalFlip() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -472,8 +456,7 @@ class RandomHorizontalFlip final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomHorizontalFlipWithBBox TensorTransform.
|
||||
/// \note Flip the input image horizontally, randomly with a given probability and adjust bounding boxes accordingly.
|
||||
/// \brief Randomly flip the input image horizontally with a given probability and adjust bounding boxes accordingly.
|
||||
class RandomHorizontalFlipWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -484,7 +467,7 @@ class RandomHorizontalFlipWithBBox final : public TensorTransform {
|
|||
~RandomHorizontalFlipWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -493,8 +476,7 @@ class RandomHorizontalFlipWithBBox final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomPosterize TensorTransform.
|
||||
/// \note Tensor operation to perform random posterize.
|
||||
/// \brief Reduce the number of bits for each color channel randomly.
|
||||
class RandomPosterize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -505,7 +487,7 @@ class RandomPosterize final : public TensorTransform {
|
|||
~RandomPosterize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -514,21 +496,20 @@ class RandomPosterize final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomResize TensorTransform.
|
||||
/// \note Resize the input image using a randomly selected interpolation mode.
|
||||
// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
/// \brief Resize the input image using a randomly selected interpolation mode.
|
||||
class RandomResize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, the smaller edge of the image will be resized to this value with.
|
||||
/// If the size is a single value, the smaller edge of the image will be resized to this value with
|
||||
// the same image aspect ratio. If the size has 2 values, it should be (height, width).
|
||||
explicit RandomResize(std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomResize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -537,22 +518,21 @@ class RandomResize final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomResizeWithBBox TensorTransform.
|
||||
/// \note Resize the input image using a randomly selected interpolation mode and adjust
|
||||
/// \brief Resize the input image using a randomly selected interpolation mode and adjust
|
||||
/// bounding boxes accordingly.
|
||||
class RandomResizeWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, the smaller edge of the image will be resized to this value with
|
||||
// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, the smaller edge of the image will be resized to this value with
|
||||
// the same image aspect ratio. If the size has 2 values, it should be (height, width).
|
||||
explicit RandomResizeWithBBox(std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomResizeWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -561,14 +541,13 @@ class RandomResizeWithBBox final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomResizedCrop TensorTransform.
|
||||
/// \note Crop the input image to a random size and aspect ratio.
|
||||
/// \brief Crop the input image to a random size and aspect ratio.
|
||||
class RandomResizedCrop final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, a squared crop of size (size, size) is returned.
|
||||
/// If the size has 2 values, it should be (height, width).
|
||||
/// \param[in] scale Range [min, max) of respective size of the original
|
||||
/// size to be cropped (default=(0.08, 1.0)).
|
||||
/// \param[in] ratio Range [min, max) of aspect ratio to be cropped
|
||||
|
@ -584,7 +563,7 @@ class RandomResizedCrop final : public TensorTransform {
|
|||
~RandomResizedCrop() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -593,15 +572,14 @@ class RandomResizedCrop final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomResizedCropWithBBox TensorTransform.
|
||||
/// \note Crop the input image to a random size and aspect ratio.
|
||||
/// \brief Crop the input image to a random size and aspect ratio.
|
||||
/// If cropped area is out of bbox, the return bbox will be empty.
|
||||
class RandomResizedCropWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, a squared crop of size (size, size) is returned.
|
||||
/// If the size has 2 values, it should be (height, width).
|
||||
/// \param[in] scale Range [min, max) of respective size of the original
|
||||
/// size to be cropped (default=(0.08, 1.0)).
|
||||
/// \param[in] ratio Range [min, max) of aspect ratio to be cropped
|
||||
|
@ -617,7 +595,7 @@ class RandomResizedCropWithBBox final : public TensorTransform {
|
|||
~RandomResizedCropWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -626,8 +604,7 @@ class RandomResizedCropWithBBox final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomRotation TensorOp.
|
||||
/// \note Rotates the image according to parameters.
|
||||
/// \brief Rotate the image according to parameters.
|
||||
class RandomRotation final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -635,7 +612,7 @@ class RandomRotation final : public TensorTransform {
|
|||
/// \param[in] resample An enum for the mode of interpolation.
|
||||
/// \param[in] expand A boolean representing whether the image is expanded after rotation.
|
||||
/// \param[in] center A float vector of size 2, representing the x and y center of rotation.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform
|
||||
/// in the output image. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
RandomRotation(std::vector<float> degrees, InterpolationMode resample = InterpolationMode::kNearestNeighbour,
|
||||
|
@ -646,7 +623,7 @@ class RandomRotation final : public TensorTransform {
|
|||
~RandomRotation() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -655,11 +632,10 @@ class RandomRotation final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomSelectSubpolicy TensorTransform.
|
||||
/// \note Choose a random sub-policy from a list to be applied on the input image. A sub-policy is a list of tuples
|
||||
/// (op, prob), where op is a TensorTransform operation and prob is the probability that this op will be applied.
|
||||
/// Once a sub-policy is selected, each op within the sub-policy with be applied in sequence according to its
|
||||
/// probability.
|
||||
/// \brief Choose a random sub-policy from a list to be applied on the input image. A sub-policy is a list of tuples
|
||||
/// (operation, prob), where operation is a TensorTransform operation and prob is the probability that this
|
||||
/// operation will be applied. Once a sub-policy is selected, each operation within the sub-policy with be
|
||||
/// applied in sequence according to its probability.
|
||||
class RandomSelectSubpolicy final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -680,7 +656,7 @@ class RandomSelectSubpolicy final : public TensorTransform {
|
|||
~RandomSelectSubpolicy() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -689,20 +665,20 @@ class RandomSelectSubpolicy final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomSharpness TensorTransform.
|
||||
/// \note Tensor operation to perform random sharpness.
|
||||
/// \brief Adjust the sharpness of the input image by a fixed or random degree.
|
||||
class RandomSharpness final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] degrees A float vector of size 2, representing the starting and ending degree to uniformly.
|
||||
/// sample from, to select a degree to adjust sharpness.
|
||||
/// \param[in] degrees A float vector of size 2, representing the range of random sharpness
|
||||
/// adjustment degrees. It should be in (min, max) format. If min=max, then it is a
|
||||
/// single fixed magnitude operation (default = (0.1, 1.9)).
|
||||
explicit RandomSharpness(std::vector<float> degrees = {0.1, 1.9});
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomSharpness() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -711,20 +687,20 @@ class RandomSharpness final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomSolarize TensorTransform.
|
||||
/// \note Invert pixels randomly within specified range. If min=max, it is a single fixed magnitude operation
|
||||
/// to inverts all pixel above that threshold.
|
||||
/// \brief Invert pixels randomly within a specified range.
|
||||
class RandomSolarize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] threshold A vector with two elements specifying the pixel range to invert.
|
||||
/// Threshold values should always be in (min, max) format.
|
||||
/// If min=max, it will to invert all pixels above min(max).
|
||||
explicit RandomSolarize(std::vector<uint8_t> threshold = {0, 255});
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomSolarize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -733,8 +709,7 @@ class RandomSolarize final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomVerticalFlip TensorTransform.
|
||||
/// \note Tensor operation to perform random vertical flip.
|
||||
/// \brief Randomly flip the input image vertically with a given probability.
|
||||
class RandomVerticalFlip final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -745,7 +720,7 @@ class RandomVerticalFlip final : public TensorTransform {
|
|||
~RandomVerticalFlip() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -754,8 +729,7 @@ class RandomVerticalFlip final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomVerticalFlipWithBBox TensorTransform.
|
||||
/// \note Flip the input image vertically, randomly with a given probability and adjust bounding boxes accordingly.
|
||||
/// \brief Randomly flip the input image vertically with a given probability and adjust bounding boxes accordingly.
|
||||
class RandomVerticalFlipWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -766,7 +740,7 @@ class RandomVerticalFlipWithBBox final : public TensorTransform {
|
|||
~RandomVerticalFlipWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -775,8 +749,7 @@ class RandomVerticalFlipWithBBox final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RescaleOperation TensorTransform.
|
||||
/// \note Tensor operation to rescale the input image.
|
||||
/// \brief Rescale the pixel value of input image.
|
||||
class Rescale final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -788,7 +761,7 @@ class Rescale final : public TensorTransform {
|
|||
~Rescale() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -797,14 +770,13 @@ class Rescale final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief ResizeWithBBox TensorTransform.
|
||||
/// \note Resize the input image to the given size and adjust bounding boxes accordingly.
|
||||
/// \brief Resize the input image to the given size and adjust bounding boxes accordingly.
|
||||
class ResizeWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size The output size of the resized image.
|
||||
/// If size is an integer, smaller edge of the image will be resized to this value with the same image aspect
|
||||
/// ratio. If size is a sequence of length 2, it should be (height, width).
|
||||
/// If the size is an integer, smaller edge of the image will be resized to this value with the same image aspect
|
||||
/// ratio. If the size is a sequence of length 2, it should be (height, width).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation (default=InterpolationMode::kLinear).
|
||||
explicit ResizeWithBBox(std::vector<int32_t> size, InterpolationMode interpolation = InterpolationMode::kLinear);
|
||||
|
||||
|
@ -812,7 +784,7 @@ class ResizeWithBBox final : public TensorTransform {
|
|||
~ResizeWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -821,8 +793,7 @@ class ResizeWithBBox final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RgbaToBgr TensorTransform.
|
||||
/// \note Changes the input 4 channel RGBA tensor to 3 channel BGR.
|
||||
/// \brief Change the format of input tensor from 4-channel RGBA to 3-channel BGR.
|
||||
class RGBA2BGR final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -832,13 +803,12 @@ class RGBA2BGR final : public TensorTransform {
|
|||
~RGBA2BGR() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief RgbaToRgb TensorTransform.
|
||||
/// \note Changes the input 4 channel RGBA tensor to 3 channel RGB.
|
||||
/// \brief Change the input 4 channel RGBA tensor to 3 channel RGB.
|
||||
class RGBA2RGB final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -848,23 +818,22 @@ class RGBA2RGB final : public TensorTransform {
|
|||
~RGBA2RGB() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief SoftDvppDecodeRandomCropResizeJpeg TensorTransform.
|
||||
/// \note Tensor operation to decode, random crop and resize JPEG image using the simulation algorithm of
|
||||
/// Ascend series chip DVPP module. The usage scenario is consistent with SoftDvppDecodeResizeJpeg.
|
||||
/// \brief Decode, randomly crop and resize a JPEG image using the simulation algorithm of
|
||||
/// Ascend series chip DVPP module. The application scenario is consistent with SoftDvppDecodeResizeJpeg.
|
||||
/// The input image size should be in range [32*32, 8192*8192].
|
||||
/// The zoom-out and zoom-in multiples of the image length and width should in the range [1/32, 16].
|
||||
/// The zoom-out and zoom-in multiples of the image length and width should be in the range [1/32, 16].
|
||||
/// Only images with an even resolution can be output. The output of odd resolution is not supported.
|
||||
class SoftDvppDecodeRandomCropResizeJpeg final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, smaller edge of the image will be resized to this value with
|
||||
/// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, smaller edge of the image will be resized to this value with
|
||||
/// the same image aspect ratio. If the size has 2 values, it should be (height, width).
|
||||
/// \param[in] scale Range [min, max) of respective size of the original
|
||||
/// size to be cropped (default=(0.08, 1.0)).
|
||||
/// \param[in] ratio Range [min, max) of aspect ratio to be cropped
|
||||
|
@ -878,7 +847,7 @@ class SoftDvppDecodeRandomCropResizeJpeg final : public TensorTransform {
|
|||
~SoftDvppDecodeRandomCropResizeJpeg() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -887,28 +856,27 @@ class SoftDvppDecodeRandomCropResizeJpeg final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief SoftDvppDecodeResizeJpeg TensorTransform.
|
||||
/// \note Tensor operation to decode and resize JPEG image using the simulation algorithm of Ascend series
|
||||
/// \brief Decode and resize a JPEG image using the simulation algorithm of Ascend series
|
||||
/// chip DVPP module. It is recommended to use this algorithm in the following scenarios:
|
||||
/// When training, the DVPP of the Ascend chip is not used,
|
||||
/// and the DVPP of the Ascend chip is used during inference,
|
||||
/// and the accuracy of inference is lower than the accuracy of training;
|
||||
/// and the input image size should be in range [32*32, 8192*8192].
|
||||
/// The zoom-out and zoom-in multiples of the image length and width should in the range [1/32, 16].
|
||||
/// The zoom-out and zoom-in multiples of the image length and width should be in the range [1/32, 16].
|
||||
/// Only images with an even resolution can be output. The output of odd resolution is not supported.
|
||||
class SoftDvppDecodeResizeJpeg final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, smaller edge of the image will be resized to this value with
|
||||
/// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, smaller edge of the image will be resized to this value with
|
||||
/// the same image aspect ratio. If the size has 2 values, it should be (height, width).
|
||||
explicit SoftDvppDecodeResizeJpeg(std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~SoftDvppDecodeResizeJpeg() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -917,8 +885,7 @@ class SoftDvppDecodeResizeJpeg final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief SwapRedBlue TensorOp.
|
||||
/// \note Swaps the red and blue channels in image.
|
||||
/// \brief Swap the red and blue channels of the input image.
|
||||
class SwapRedBlue final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -928,35 +895,34 @@ class SwapRedBlue final : public TensorTransform {
|
|||
~SwapRedBlue() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief UniformAugment TensorTransform.
|
||||
/// \note Tensor operation to perform randomly selected augmentation.
|
||||
/// \brief Randomly perform transformations, as selected from input transform list, on the input tensor.
|
||||
class UniformAugment final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms Raw pointer to vector of TensorTransform operations.
|
||||
/// \param[in] num_ops An integer representing the number of OPs to be selected and applied.
|
||||
/// \param[in] num_ops An integer representing the number of operations to be selected and applied.
|
||||
explicit UniformAugment(const std::vector<TensorTransform *> &transforms, int32_t num_ops = 2);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms Smart pointer to vector of TensorTransform operations.
|
||||
/// \param[in] num_ops An integer representing the number of OPs to be selected and applied.
|
||||
/// \param[in] num_ops An integer representing the number of operations to be selected and applied.
|
||||
explicit UniformAugment(const std::vector<std::shared_ptr<TensorTransform>> &transforms, int32_t num_ops = 2);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms Object pointer to vector of TensorTransform operations.
|
||||
/// \param[in] num_ops An integer representing the number of OPs to be selected and applied.
|
||||
/// \param[in] num_ops An integer representing the number of operations to be selected and applied.
|
||||
explicit UniformAugment(const std::vector<std::reference_wrapper<TensorTransform>> &transforms, int32_t num_ops = 2);
|
||||
|
||||
/// \brief Destructor.
|
||||
~UniformAugment() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -965,8 +931,7 @@ class UniformAugment final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief VerticalFlip TensorTransform.
|
||||
/// \note Flip the input image Vertically.
|
||||
/// \brief Flip the input image vertically.
|
||||
class VerticalFlip final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -976,7 +941,7 @@ class VerticalFlip final : public TensorTransform {
|
|||
~VerticalFlip() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
|
|
@ -34,17 +34,19 @@ namespace vision {
|
|||
|
||||
/* ##################################### API class ###########################################*/
|
||||
|
||||
/// \brief Decode and resize JPEG image using the hardware algorithm of
|
||||
/// Ascend series chip DVPP module.
|
||||
class DvppDecodeResizeJpeg final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] resize A vector of int value for each dimension, w.r.t H,W order.
|
||||
/// \param[in] resize A vector of int value for each dimension, with respect to H,W order.
|
||||
explicit DvppDecodeResizeJpeg(std::vector<uint32_t> resize);
|
||||
|
||||
/// \brief Destructor.
|
||||
~DvppDecodeResizeJpeg() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -55,18 +57,20 @@ class DvppDecodeResizeJpeg final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Decode, resize and crop JPEG image using the hardware algorithm of
|
||||
/// Ascend series chip DVPP module.
|
||||
class DvppDecodeResizeCropJpeg final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] crop A vector of int value for each dimension after final crop, w.r.t H,W order.
|
||||
/// \param[in] resize A vector of int value for each dimension after resize, w.r.t H,W order.
|
||||
/// \param[in] crop A vector of int value for each dimension after final cropping, with respect to H,W order.
|
||||
/// \param[in] resize A vector of int value for each dimension after resizing, with respect to H,W order.
|
||||
explicit DvppDecodeResizeCropJpeg(std::vector<uint32_t> crop, std::vector<uint32_t> resize);
|
||||
|
||||
/// \brief Destructor.
|
||||
~DvppDecodeResizeCropJpeg() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -77,6 +81,8 @@ class DvppDecodeResizeCropJpeg final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Decode PNG image using the hardware algorithm of
|
||||
/// Ascend series chip DVPP module.
|
||||
class DvppDecodePng final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -86,7 +92,7 @@ class DvppDecodePng final : public TensorTransform {
|
|||
~DvppDecodePng() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
|
|
@ -35,18 +35,17 @@ namespace vision {
|
|||
// Forward Declarations
|
||||
class RotateOperation;
|
||||
|
||||
/// \brief Affine TensorTransform.
|
||||
/// \note Apply affine transform on input image.
|
||||
/// \brief Apply affine transform on the input image.
|
||||
class Affine final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] degrees The degrees to rotate the image by.
|
||||
/// \param[in] translation The value representing vertical and horizontal translation (default = {0.0, 0.0}).
|
||||
/// The first value represent the x axis translation while the second represents y axis translation.
|
||||
/// \param[in] degrees The degrees to rotate the image.
|
||||
/// \param[in] translation The values representing vertical and horizontal translation (default = {0.0, 0.0}).
|
||||
/// The first value represents the x axis translation while the second represents the y axis translation.
|
||||
/// \param[in] scale The scaling factor for the image (default = 0.0).
|
||||
/// \param[in] shear A float vector of size 2, representing the shear degrees (default = {0.0, 0.0}).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transformation
|
||||
/// in the output image. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
explicit Affine(float_t degrees, const std::vector<float> &translation = {0.0, 0.0}, float scale = 0.0,
|
||||
|
@ -57,7 +56,7 @@ class Affine final : public TensorTransform {
|
|||
/// \brief Destructor.
|
||||
~Affine() = default;
|
||||
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -66,21 +65,20 @@ class Affine final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief CenterCrop TensorTransform.
|
||||
/// \note Crops the input image at the center to the given size.
|
||||
/// \brief Crop the input image at the center to the given size.
|
||||
class CenterCrop final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, a squared crop of size (size, size) is returned.
|
||||
/// If the size has 2 values, it should be (height, width).
|
||||
explicit CenterCrop(std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~CenterCrop() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -92,7 +90,7 @@ class CenterCrop final : public TensorTransform {
|
|||
};
|
||||
|
||||
/// \brief RGB2BGR TensorTransform.
|
||||
/// \notes Convert RGB image to BGR image
|
||||
/// \notes Convert the format of input image from RGB to BGR.
|
||||
class RGB2BGR final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -102,13 +100,14 @@ class RGB2BGR final : public TensorTransform {
|
|||
~RGB2BGR() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief RGB2GRAY TensorTransform.
|
||||
/// \note Convert RGB image or color image to grayscale image.
|
||||
/// \brief Convert a RGB image or color image to a grayscale one.
|
||||
class RGB2GRAY final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -118,27 +117,26 @@ class RGB2GRAY final : public TensorTransform {
|
|||
~RGB2GRAY() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief Crop TensorTransform.
|
||||
/// \note Crop an image based on location and crop size.
|
||||
/// \brief Crop an image based on location and crop size.
|
||||
class Crop final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] coordinates Starting location of crop. Must be a vector of two values, in the form of {x_coor, y_coor}.
|
||||
/// \param[in] size Size of the cropped area.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, a squared crop of size (size, size) is returned.
|
||||
/// If the size has 2 values, it should be (height, width).
|
||||
Crop(std::vector<int32_t> coordinates, std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Crop() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -147,19 +145,18 @@ class Crop final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Decode TensorTransform.
|
||||
/// \note Decode the input image in RGB mode.
|
||||
/// \brief Decode the input image in RGB mode.
|
||||
class Decode final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] rgb A boolean of whether to decode in RGB mode or not.
|
||||
/// \param[in] rgb A boolean indicating whether to decode the image in RGB mode or not.
|
||||
explicit Decode(bool rgb = true);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Decode() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -170,12 +167,11 @@ class Decode final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief GaussianBlur TensorTransform.
|
||||
/// \notes Blur the input image with specified Gaussian kernel.
|
||||
/// \brief Blur the input image with the specified Gaussian kernel.
|
||||
class GaussianBlur final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] kernel_size A vector of Gaussian kernel size for width and height. The values must be positive and odd.
|
||||
/// \param[in] kernel_size A vector of Gaussian kernel size for width and height. The value must be positive and odd.
|
||||
/// \param[in] sigma A vector of Gaussian kernel standard deviation sigma for width and height. The values must be
|
||||
/// positive. Using default value 0 means to calculate the sigma according to the kernel size.
|
||||
GaussianBlur(const std::vector<int32_t> &kernel_size, const std::vector<float> &sigma = {0., 0.});
|
||||
|
@ -184,7 +180,7 @@ class GaussianBlur final : public TensorTransform {
|
|||
~GaussianBlur() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -193,14 +189,13 @@ class GaussianBlur final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Normalize TensorTransform.
|
||||
/// \note Normalize the input image with respect to mean and standard deviation.
|
||||
/// \brief Normalize the input image with respect to mean and standard deviation.
|
||||
class Normalize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] mean A vector of mean values for each channel, w.r.t channel order.
|
||||
/// \param[in] mean A vector of mean values for each channel, with respect to channel order.
|
||||
/// The mean values must be in range [0.0, 255.0].
|
||||
/// \param[in] std A vector of standard deviations for each channel, w.r.t. channel order.
|
||||
/// \param[in] std A vector of standard deviations for each channel, with respect to channel order.
|
||||
/// The standard deviation values must be in range (0.0, 255.0].
|
||||
Normalize(std::vector<float> mean, std::vector<float> std);
|
||||
|
||||
|
@ -208,7 +203,7 @@ class Normalize final : public TensorTransform {
|
|||
~Normalize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -219,25 +214,24 @@ class Normalize final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomAffine TensorTransform.
|
||||
/// \note Applies a Random Affine transformation on input image in RGB or Greyscale mode.
|
||||
/// \brief Apply a Random Affine transformation on the input image in RGB or Greyscale mode.
|
||||
class RandomAffine final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] degrees A float vector of size 2, representing the starting and ending degree.
|
||||
/// \param[in] translate_range A float vector of size 2 or 4, representing percentages of translation on x and y axes.
|
||||
/// If size is 2, (min_dx, max_dx, 0, 0).
|
||||
/// if size is 4, (min_dx, max_dx, min_dy, max_dy),
|
||||
/// If the size is 2, (min_dx, max_dx, 0, 0).
|
||||
/// If the size is 4, (min_dx, max_dx, min_dy, max_dy),
|
||||
/// all values are in range [-1, 1].
|
||||
/// \param[in] scale_range A float vector of size 2, representing the starting and ending scales in the range.
|
||||
/// \param[in] shear_ranges A float vector of size 2 or 4, representing the starting and ending shear degrees
|
||||
/// vertically and horizontally.
|
||||
/// If size is 2, (min_shear_x, max_shear_x, 0, 0),
|
||||
/// if size is 4, (min_shear_x, max_shear_x, min_shear_y, max_shear_y).
|
||||
/// If the size is 2, (min_shear_x, max_shear_x, 0, 0),
|
||||
/// if the size is 4, (min_shear_x, max_shear_x, min_shear_y, max_shear_y).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform
|
||||
/// in the output image. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
/// If 3 values are provided, it is used to fill R, G and B channels respectively.
|
||||
explicit RandomAffine(const std::vector<float_t> °rees,
|
||||
const std::vector<float_t> &translate_range = {0.0, 0.0, 0.0, 0.0},
|
||||
const std::vector<float_t> &scale_range = {1.0, 1.0},
|
||||
|
@ -248,7 +242,7 @@ class RandomAffine final : public TensorTransform {
|
|||
/// \brief Destructor.
|
||||
~RandomAffine() = default;
|
||||
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -257,14 +251,13 @@ class RandomAffine final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Resize TensorTransform.
|
||||
/// \note Resize the input image to the given size.
|
||||
/// \brief Resize the input image to the given size.
|
||||
class Resize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, the image will be resized to this value with
|
||||
/// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
/// If the size is a single value, the image will be resized to this value with
|
||||
/// the same image aspect ratio. If the size has 2 values, it should be (height, width).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation.
|
||||
explicit Resize(std::vector<int32_t> size, InterpolationMode interpolation = InterpolationMode::kLinear);
|
||||
|
||||
|
@ -272,7 +265,7 @@ class Resize final : public TensorTransform {
|
|||
~Resize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -283,8 +276,7 @@ class Resize final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief ResizePreserveAR TensorTransform.
|
||||
/// \note Keep the original picture ratio and fill the rest.
|
||||
/// \brief Keep the original picture ratio and fills the rest.
|
||||
class ResizePreserveAR final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -297,7 +289,7 @@ class ResizePreserveAR final : public TensorTransform {
|
|||
~ResizePreserveAR() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
@ -306,8 +298,7 @@ class ResizePreserveAR final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Rotate TensorTransform.
|
||||
/// \note Rotate the input image according to parameters.
|
||||
/// \brief Rotate the input image according to parameters.
|
||||
class Rotate final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
|
@ -318,7 +309,7 @@ class Rotate final : public TensorTransform {
|
|||
/// \param[in] resample An enum for the mode of interpolation.
|
||||
/// \param[in] expand A boolean representing whether the image is expanded after rotation.
|
||||
/// \param[in] center A float vector of size 2, representing the x and y center of rotation.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform
|
||||
/// in the output image. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
Rotate(float degrees, InterpolationMode resample = InterpolationMode::kNearestNeighbour, bool expand = false,
|
||||
|
@ -328,7 +319,7 @@ class Rotate final : public TensorTransform {
|
|||
~Rotate() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \brief The function to convert a TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_RESIZE_WITH_BBOX_OP_H
|
||||
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#include "minddata/dataset/kernels/tensor_op.h"
|
||||
|
@ -36,9 +37,21 @@ class ResizeWithBBoxOp : public ResizeOp {
|
|||
|
||||
void Print(std::ostream &out) const override { out << Name() << ": " << size1_ << " " << size2_; }
|
||||
|
||||
// Use in pipeline mode
|
||||
Status Compute(const TensorRow &input, TensorRow *output) override;
|
||||
|
||||
// Use in execute mode
|
||||
// ResizeWithBBoxOp is inherited from ResizeOp and this function has been overridden by ResizeOp,
|
||||
// thus we need to change the behaviour back to basic class (TensorOp).
|
||||
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override {
|
||||
return TensorOp::Compute(input, output);
|
||||
}
|
||||
|
||||
std::string Name() const override { return kResizeWithBBoxOp; }
|
||||
|
||||
uint32_t NumInput() override { return 2; }
|
||||
|
||||
uint32_t NumOutput() override { return 2; }
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -437,15 +437,16 @@ class ShuffleDataset : public Dataset {
|
|||
~ShuffleDataset() = default;
|
||||
};
|
||||
|
||||
/// \brief Function to create a SchemaObj
|
||||
/// \param[in] schema_file Path of schema file
|
||||
/// \note This api exists because std::string will constrained by ABI compile macro but char don't.
|
||||
/// \return Shared pointer to the current schema
|
||||
/// \brief Function to create a SchemaObj.
|
||||
/// \param[in] schema_file Path of schema file.
|
||||
/// \note The reason for using this API is that std::string will be constrained by the
|
||||
/// compiler option '_GLIBCXX_USE_CXX11_ABI' while char is free of this restriction.
|
||||
/// \return Shared pointer to the current schema.
|
||||
std::shared_ptr<SchemaObj> SchemaCharIF(const std::vector<char> &schema_file);
|
||||
|
||||
/// \brief Function to create a SchemaObj
|
||||
/// \param[in] schema_file Path of schema file
|
||||
/// \return Shared pointer to the current schema
|
||||
/// \brief Function to create a SchemaObj.
|
||||
/// \param[in] schema_file Path of schema file.
|
||||
/// \return Shared pointer to the current schema.
|
||||
inline std::shared_ptr<SchemaObj> Schema(const std::string &schema_file = "") {
|
||||
return SchemaCharIF(StringToChar(schema_file));
|
||||
}
|
||||
|
|
|
@ -38,6 +38,12 @@ class TruncateSequencePairOp : public TensorOp {
|
|||
|
||||
std::string Name() const override { return kTruncateSequencePairOp; }
|
||||
|
||||
// Unknown input size
|
||||
uint32_t NumInput() override { return -1; }
|
||||
|
||||
// Unknown output size
|
||||
uint32_t NumOutput() override { return -1; }
|
||||
|
||||
private:
|
||||
dsize_t max_length_;
|
||||
};
|
||||
|
|
|
@ -1573,12 +1573,25 @@ class Dataset:
|
|||
return self.dataset_size
|
||||
|
||||
def set_dynamic_columns(self, columns=None):
|
||||
"""
|
||||
Set dynamic shape information of source data, it should be set after the pipeline is defined.
|
||||
|
||||
Args:
|
||||
columns (dict): A dict contains shape information of each column in dataset.
|
||||
The value of shape[i] is :py:obj:`None` indicates that the data length of shape[i] is dynamic.
|
||||
"""
|
||||
if not isinstance(columns, dict):
|
||||
raise TypeError("Pass a dict to set dynamic shape, example: {\"data1\": [16, None, 256]}")
|
||||
self.dynamic_setting[0] = True
|
||||
self.dynamic_setting[1] = columns
|
||||
|
||||
def dynamic_min_max_shapes(self):
|
||||
"""
|
||||
Get minimum and maximum data length of dynamic source data, for graph compilation of ME.
|
||||
|
||||
Returns:
|
||||
lists, min_shapes, max_shapes of source data.
|
||||
"""
|
||||
if self.saved_min_shapes is None or self.saved_max_shapes is None:
|
||||
self.saved_output_shapes, self.saved_min_shapes, self.saved_max_shapes = self._dynamic_output_shapes()
|
||||
return self.saved_min_shapes, self.saved_max_shapes
|
||||
|
@ -1591,7 +1604,7 @@ class Dataset:
|
|||
lists, dynamic_shapes, min_shapes, max_shapes of source data.
|
||||
"""
|
||||
if not self.dynamic_setting[1]:
|
||||
raise RuntimeError("dynamic_columns is not set, call set_dynamic_columns() first.")
|
||||
raise RuntimeError("dynamic_columns is not set, call set_dynamic_columns() by final Dataset Op.")
|
||||
|
||||
if self.saved_output_shapes is not None and self.saved_min_shapes is not None and \
|
||||
self.saved_max_shapes is not None:
|
||||
|
@ -1648,12 +1661,16 @@ class Dataset:
|
|||
dynamic_shapes.append(dynamic_shape.tolist())
|
||||
else:
|
||||
# Also append fix shape to keep order of column shape
|
||||
if col in dynamic_columns:
|
||||
logger.warning("column [" + col + "] has no dynamic shape but set by set_dynamic_columns()")
|
||||
fix_shape = list(list(shape_set)[0])
|
||||
max_shapes.append(fix_shape)
|
||||
min_shapes.append(fix_shape)
|
||||
dynamic_shapes.append(fix_shape)
|
||||
if col in dynamic_columns:
|
||||
logger.warning("column [" + col + "] has no dynamic shape but set by set_dynamic_columns()")
|
||||
# Set min shape to 1 due to unknown shuffle
|
||||
min_shapes[-1] = np.where(np.equal(dynamic_columns[col], None), 1, fix_shape).tolist()
|
||||
# Set dynamic dim to -1 for ME
|
||||
dynamic_shapes[-1] = np.where(np.equal(dynamic_columns[col], None), -1, fix_shape).tolist()
|
||||
return dynamic_shapes, min_shapes, max_shapes
|
||||
|
||||
def num_classes(self):
|
||||
|
@ -3109,7 +3126,7 @@ class ImageFolderDataset(MappableDataset):
|
|||
decode (bool, optional): Decode the images after reading (default=False).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, `num_samples` reflects
|
||||
the max sample number of per shard.
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -3229,7 +3246,7 @@ class MnistDataset(MappableDataset):
|
|||
sampler (Sampler, optional): Object used to choose samples from the
|
||||
dataset (default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
When this argument is specified, `num_samples` reflects the max sample number of per shard.
|
||||
When this argument is specified, `num_samples` reflects the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within `num_shards` (default=None). This
|
||||
argument can only be specified when `num_shards` is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -3347,7 +3364,7 @@ class MindDataset(MappableDataset):
|
|||
- Shuffle.INFILE: Keep the file sequence the same but shuffle the data within each file.
|
||||
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
When this argument is specified, 'num_samples' reflects the max sample number of per shard.
|
||||
When this argument is specified, 'num_samples' reflects the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
sampler (Sampler, optional): Object used to choose samples from the
|
||||
|
@ -3786,8 +3803,8 @@ class GeneratorDataset(MappableDataset):
|
|||
sampler (Union[Sampler, Iterable], optional): Object used to choose samples from the dataset. Random accessible
|
||||
input is required (default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
Random accessible input is required. When this argument is specified, `num_samples`s reflects the max sample
|
||||
number of per shard.
|
||||
Random accessible input is required. When this argument is specified, `num_samples` reflects the maximum
|
||||
sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This argument must be specified only
|
||||
when num_shards is also specified. Random accessible input is required.
|
||||
python_multiprocessing (bool, optional): Parallelize Python operations with multiple worker process. This
|
||||
|
@ -4007,12 +4024,13 @@ class TFRecordDataset(SourceDataset):
|
|||
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, `num_samples` reflects
|
||||
the max sample number of per shard.
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
shard_equal_rows (bool, optional): Get equal rows for all shards(default=False). If shard_equal_rows
|
||||
is false, number of rows of each shard may be not equal. This
|
||||
argument should only be specified when num_shards is also specified.
|
||||
is false, number of rows of each shard may be not equal, and may lead to a failure in distributed training.
|
||||
When the number of samples of per TFRecord file are not equal, it is suggested to set to true.
|
||||
This argument should only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
(default=None, which means no cache is used).
|
||||
|
||||
|
@ -4200,7 +4218,7 @@ class Cifar10Dataset(MappableDataset):
|
|||
dataset (default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, `num_samples` reflects
|
||||
the max sample number of per shard.
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -4324,7 +4342,7 @@ class Cifar100Dataset(MappableDataset):
|
|||
dataset (default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, 'num_samples' reflects
|
||||
the max sample number of per shard.
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -4437,7 +4455,7 @@ class RandomDataset(SourceDataset):
|
|||
(default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, 'num_samples' reflects
|
||||
the max sample number of per shard.
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
"""
|
||||
|
@ -4600,7 +4618,7 @@ class VOCDataset(MappableDataset):
|
|||
(default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, `num_samples` reflects
|
||||
the max sample number of per shard.
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -4771,7 +4789,7 @@ class CocoDataset(MappableDataset):
|
|||
:py:obj:`[category_id, dtype=uint32]`, :py:obj:`[iscrowd, dtype=uint32]`.
|
||||
- task = :py:obj:`Stuff`, output columns: :py:obj:`[image, dtype=uint8]`, :py:obj:`[segmentation,dtype=float32]`, \
|
||||
:py:obj:`[iscrowd,dtype=uint32]`.
|
||||
- task = :py:obj:`Keypoint, output columns: :py:obj:`[image, dtype=uint8]`, \
|
||||
- task = :py:obj:`Keypoint`, output columns: :py:obj:`[image, dtype=uint8]`, \
|
||||
:py:obj:`[keypoints, dtype=float32]`, :py:obj:`[num_keypoints, dtype=uint32]`.
|
||||
- task = :py:obj:`Panoptic`, output columns: :py:obj:`[image, dtype=uint8]`, :py:obj:`[bbox, dtype=float32]`, \
|
||||
:py:obj:`[category_id, dtype=uint32]`, :py:obj:`[iscrowd, dtype=uint32]`, :py:obj:`[area, dtype=uint32]`.
|
||||
|
@ -4792,7 +4810,7 @@ class CocoDataset(MappableDataset):
|
|||
(default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, `num_samples` reflects
|
||||
the max sample number of per shard.
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -4973,7 +4991,7 @@ class CelebADataset(MappableDataset):
|
|||
(default=None, will include all images).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, `num_samples` reflects
|
||||
the max sample number of per shard.
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within `num_shards` (default=None). This
|
||||
argument can only be specified when `num_shards` is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -5183,7 +5201,7 @@ class CLUEDataset(SourceDataset):
|
|||
- Shuffle.FILES: Shuffle files only.
|
||||
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
When this argument is specified, `num_samples` reflects the max sample number of per shard.
|
||||
When this argument is specified, `num_samples` reflects the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -5268,7 +5286,7 @@ class CSVDataset(SourceDataset):
|
|||
- Shuffle.FILES: Shuffle files only.
|
||||
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
When this argument is specified, `num_samples` reflects the max sample number of per shard.
|
||||
When this argument is specified, `num_samples` reflects the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
@ -5323,7 +5341,7 @@ class TextFileDataset(SourceDataset):
|
|||
- Shuffle.FILES: Shuffle files only.
|
||||
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
When this argument is specified, `num_samples` reflects the max sample number of per shard.
|
||||
When this argument is specified, `num_samples` reflects the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
|
|
|
@ -279,4 +279,19 @@ TEST_F(MindDataTestExecute, TestRotate) {
|
|||
Status rc = transform(image, &image);
|
||||
|
||||
EXPECT_EQ(rc, Status::OK());
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestExecute, TestResizeWithBBox) {
|
||||
auto image = ReadFileToTensor("data/dataset/apple.jpg");
|
||||
std::shared_ptr<TensorTransform> decode_op = std::make_shared<vision::Decode>();
|
||||
std::shared_ptr<TensorTransform> resizewithbbox_op =
|
||||
std::make_shared<vision::ResizeWithBBox>(std::vector<int32_t>{250, 500});
|
||||
|
||||
// Test Compute(Tensor, Tensor) method of ResizeWithBBox
|
||||
auto transform = Execute({decode_op, resizewithbbox_op});
|
||||
|
||||
// Expect fail since Compute(Tensor, Tensor) is not a valid behaviour for this Op,
|
||||
// while Compute(TensorRow, TensorRow) is the correct one.
|
||||
Status rc = transform(image, &image);
|
||||
EXPECT_FALSE(rc.IsOk());
|
||||
}
|
||||
|
|
|
@ -24,7 +24,7 @@ def generator0():
|
|||
|
||||
|
||||
def test_get_dynamic_min_max_shapes_0():
|
||||
logger.info("Test dynamic_min_max_shapes with dynamic shape columns")
|
||||
logger.info("Test dynamic_min_max_shapes with dynamic shape columns.")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator0, ["data1", "data2", "data3"])
|
||||
|
||||
|
@ -47,7 +47,7 @@ def generator1():
|
|||
|
||||
|
||||
def test_get_dynamic_min_max_shapes_1():
|
||||
logger.info("Test dynamic_min_max_shapes with dynamic shape column and fix shape column")
|
||||
logger.info("Test dynamic_min_max_shapes with dynamic shape column and fix shape column.")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator1, ["data1", "data2"])
|
||||
|
||||
|
@ -66,7 +66,7 @@ def test_get_dynamic_min_max_shapes_1():
|
|||
|
||||
|
||||
def test_get_dynamic_min_max_shapes_2():
|
||||
logger.info("Test dynamic_min_max_shapes with all dynamic config")
|
||||
logger.info("Test dynamic_min_max_shapes with setting all columns to dynamic.")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator1, ["data1", "data2"])
|
||||
|
||||
|
@ -88,7 +88,7 @@ def generator2():
|
|||
|
||||
|
||||
def test_get_dynamic_min_max_shapes_3():
|
||||
logger.info("Test dynamic_min_max_shapes with only config dynamic column")
|
||||
logger.info("Test dynamic_min_max_shapes only config dynamic column.")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator2, ["data1", "data2"])
|
||||
|
||||
|
@ -100,14 +100,57 @@ def test_get_dynamic_min_max_shapes_3():
|
|||
min_shapes, max_shapes = dataset.dynamic_min_max_shapes()
|
||||
|
||||
# check result
|
||||
# column with fix shape will be also appended to shapes list
|
||||
# column with fixed shape will also be appended to shapes list
|
||||
np.testing.assert_array_equal(min_shapes, [[16, 1, 83], [5, 5]])
|
||||
np.testing.assert_array_equal(max_shapes, [[16, 99, 83], [5, 5]])
|
||||
np.testing.assert_array_equal(dynamic_shapes, [[16, -1, 83], [5, 5]])
|
||||
|
||||
|
||||
def test_get_dynamic_min_max_shapes_4():
|
||||
logger.info("Test dynamic_min_max_shapes with unexpected column setting")
|
||||
logger.info("Test dynamic_min_max_shapes with dynamic setting for column with fixed shape.")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator2, ["data1", "data2"])
|
||||
|
||||
# only dynamic shape is required to config
|
||||
dataset.set_dynamic_columns(columns={"data1": [16, None, 83], "data2": [None, 5]})
|
||||
|
||||
# get dynamic information
|
||||
dynamic_shapes = dataset.output_shapes()
|
||||
min_shapes, max_shapes = dataset.dynamic_min_max_shapes()
|
||||
|
||||
# check result
|
||||
# column with fixed shape will also be appended to shapes list
|
||||
np.testing.assert_array_equal(min_shapes, [[16, 1, 83], [1, 5]])
|
||||
np.testing.assert_array_equal(max_shapes, [[16, 99, 83], [5, 5]])
|
||||
np.testing.assert_array_equal(dynamic_shapes, [[16, -1, 83], [-1, 5]])
|
||||
|
||||
|
||||
def test_get_dynamic_min_max_shapes_5():
|
||||
logger.info("Test dynamic_min_max_shapes with NumpySlicesDataset.")
|
||||
|
||||
np_data = [
|
||||
[[1, 2], [3, 4]],
|
||||
[[5, 6], [7, 8]],
|
||||
[[9, 10], [11, 12]],
|
||||
[[13, 14], [15, 16]]
|
||||
]
|
||||
|
||||
dataset = ds.NumpySlicesDataset(np_data, column_names=["col1"])
|
||||
dataset.set_dynamic_columns(columns={"col1": [2, None]})
|
||||
|
||||
# get dynamic information
|
||||
dynamic_shapes = dataset.output_shapes()
|
||||
min_shapes, max_shapes = dataset.dynamic_min_max_shapes()
|
||||
|
||||
# check result
|
||||
# column with fixed shape will also be appended to shapes list
|
||||
np.testing.assert_array_equal(min_shapes, [[2, 1]])
|
||||
np.testing.assert_array_equal(max_shapes, [[2, 2]])
|
||||
np.testing.assert_array_equal(dynamic_shapes, [[2, -1]])
|
||||
|
||||
|
||||
def test_get_dynamic_min_max_shapes_6():
|
||||
logger.info("Test dynamic_min_max_shapes with unexpected column setting.")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator1, ["data1", "data2"])
|
||||
|
||||
|
@ -120,7 +163,7 @@ def test_get_dynamic_min_max_shapes_4():
|
|||
# dynamic column is not set
|
||||
dataset.set_dynamic_columns(columns=dict())
|
||||
dataset.dynamic_min_max_shapes()
|
||||
assert "dynamic_columns is not set, call set_dynamic_columns() first" in str(info.value)
|
||||
assert "dynamic_columns is not set, call set_dynamic_columns()" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
# dynamic column is not set
|
||||
|
@ -153,4 +196,6 @@ if __name__ == "__main__":
|
|||
test_get_dynamic_min_max_shapes_2()
|
||||
test_get_dynamic_min_max_shapes_3()
|
||||
test_get_dynamic_min_max_shapes_4()
|
||||
test_get_dynamic_min_max_shapes_5()
|
||||
test_get_dynamic_min_max_shapes_6()
|
||||
|
Loading…
Reference in New Issue