forked from mindspore-Ecosystem/mindspore
master codex
This commit is contained in:
parent
f606951063
commit
82d4a811e3
|
@ -23,7 +23,9 @@
|
|||
#include "include/model.h"
|
||||
#include "include/context.h"
|
||||
#include "include/lite_session.h"
|
||||
|
||||
namespace {
|
||||
constexpr int kNumPrintOfOutData = 50;
|
||||
}
|
||||
std::string RealPath(const char *path) {
|
||||
const size_t max = 4096;
|
||||
if (path == nullptr) {
|
||||
|
@ -90,7 +92,7 @@ void GenerateRandomData(int size, void *data, Distribution distribution) {
|
|||
std::mt19937 random_engine;
|
||||
int elements_num = size / sizeof(T);
|
||||
(void)std::generate_n(static_cast<T *>(data), elements_num,
|
||||
[&]() { return static_cast<T>(distribution(random_engine)); });
|
||||
[&distribution, &random_engine]() { return static_cast<T>(distribution(random_engine)); });
|
||||
}
|
||||
|
||||
int GenerateInputDataWithRandom(std::vector<mindspore::tensor::MSTensor *> inputs) {
|
||||
|
@ -129,7 +131,7 @@ int Run(mindspore::session::LiteSession *session) {
|
|||
<< " tensor elements num is:" << tensor.second->ElementsNum() << std::endl;
|
||||
auto out_data = reinterpret_cast<float *>(tensor.second->MutableData());
|
||||
std::cout << "output data is:";
|
||||
for (int i = 0; i < tensor.second->ElementsNum() && i <= 50; i++) {
|
||||
for (int i = 0; i < tensor.second->ElementsNum() && i <= kNumPrintOfOutData; i++) {
|
||||
std::cout << out_data[i] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
|
|
@ -659,16 +659,16 @@ int RunCallback(const char *model_path) {
|
|||
GetInputsByTensorNameAndSetData(session);
|
||||
|
||||
// Definition of callback function before forwarding operator.
|
||||
auto before_call_back = [&](const std::vector<mindspore::tensor::MSTensor *> &before_inputs,
|
||||
const std::vector<mindspore::tensor::MSTensor *> &before_outputs,
|
||||
const mindspore::CallBackParam &call_param) {
|
||||
auto before_call_back = [](const std::vector<mindspore::tensor::MSTensor *> &before_inputs,
|
||||
const std::vector<mindspore::tensor::MSTensor *> &before_outputs,
|
||||
const mindspore::CallBackParam &call_param) {
|
||||
std::cout << "Before forwarding " << call_param.node_name << " " << call_param.node_type << std::endl;
|
||||
return true;
|
||||
};
|
||||
// Definition of callback function after forwarding operator.
|
||||
auto after_call_back = [&](const std::vector<mindspore::tensor::MSTensor *> &after_inputs,
|
||||
const std::vector<mindspore::tensor::MSTensor *> &after_outputs,
|
||||
const mindspore::CallBackParam &call_param) {
|
||||
auto after_call_back = [](const std::vector<mindspore::tensor::MSTensor *> &after_inputs,
|
||||
const std::vector<mindspore::tensor::MSTensor *> &after_outputs,
|
||||
const mindspore::CallBackParam &call_param) {
|
||||
std::cout << "After forwarding " << call_param.node_name << " " << call_param.node_type << std::endl;
|
||||
return true;
|
||||
};
|
||||
|
|
|
@ -62,7 +62,7 @@ char *ReadFile(const char *file, size_t *size) {
|
|||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
*size = ifs.tellg();
|
||||
std::unique_ptr<char[]> buf(new (std::nothrow) char[*size]);
|
||||
auto buf = std::make_unique<char[]>(*size);
|
||||
if (buf == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc buf failed, file: " << real_path;
|
||||
ifs.close();
|
||||
|
|
|
@ -31,11 +31,21 @@ constexpr const char *ANDROID_LOG_TAG = "MS_LITE";
|
|||
#endif
|
||||
|
||||
int StrToInt(const char *env) {
|
||||
if (env == nullptr) return 2;
|
||||
if (strcmp(env, "0") == 0) return 0;
|
||||
if (strcmp(env, "1") == 0) return 1;
|
||||
if (strcmp(env, "2") == 0) return 2;
|
||||
if (strcmp(env, "3") == 0) return 3;
|
||||
if (env == nullptr) {
|
||||
return 2;
|
||||
}
|
||||
if (strcmp(env, "0") == 0) {
|
||||
return 0;
|
||||
}
|
||||
if (strcmp(env, "1") == 0) {
|
||||
return 1;
|
||||
}
|
||||
if (strcmp(env, "2") == 0) {
|
||||
return 2;
|
||||
}
|
||||
if (strcmp(env, "3") == 0) {
|
||||
return 3;
|
||||
}
|
||||
return 2;
|
||||
}
|
||||
|
||||
|
|
|
@ -20,7 +20,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
|
||||
std::vector<StringPack> ParseTensorBuffer(Tensor *tensor) {
|
||||
if (tensor->data_c() == nullptr) {
|
||||
MS_LOG(ERROR) << "Tensor data is null, cannot be parsed";
|
||||
|
@ -193,7 +192,7 @@ uint64_t HashStringLen0to16(const char *s, size_t len) {
|
|||
uint8_t c = s[len - 1];
|
||||
uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
|
||||
uint32_t z = len + (static_cast<uint32_t>(c) << 2);
|
||||
return ShiftMix(y * k2 ^ z * k0) * k2;
|
||||
return ShiftMix((y * k2) ^ (z * k0)) * k2;
|
||||
}
|
||||
return k2;
|
||||
}
|
||||
|
|
|
@ -23,9 +23,9 @@ namespace mindspore::lite {
|
|||
int Executor::Run(const std::vector<Tensor *> &in_tensors, const std::vector<Tensor *> &out_tensors,
|
||||
const std::vector<kernel::LiteKernel *> &kernels, mindspore::Allocator *allocator,
|
||||
const KernelCallBack &before, const KernelCallBack &after) {
|
||||
MS_ASSERT(nullptr != allocator);
|
||||
MS_ASSERT(allocator != nullptr);
|
||||
auto ret = CheckTensorsInvalid(in_tensors);
|
||||
if (RET_OK != ret) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "CheckInputs failed";
|
||||
return ret;
|
||||
}
|
||||
|
@ -44,9 +44,9 @@ int Executor::Run(const std::vector<Tensor *> &in_tensors, const std::vector<Ten
|
|||
while (!kernel_queue.empty()) {
|
||||
auto cur_kernel = kernel_queue.front();
|
||||
kernel_queue.pop();
|
||||
MS_ASSERT(nullptr != cur_kernel);
|
||||
MS_ASSERT(cur_kernel != nullptr);
|
||||
ret = cur_kernel->Execute(before, after);
|
||||
if (RET_OK != ret) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "run kernel failed, name: " << cur_kernel->name();
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -123,10 +123,10 @@ void MindrtExecutor::TransferGraphOutput() {
|
|||
int MindrtExecutor::Run(const std::vector<Tensor *> &in_tensors, const std::vector<Tensor *> &out_tensors,
|
||||
const std::vector<kernel::LiteKernel *> &kernels, mindspore::Allocator *allocator,
|
||||
const KernelCallBack &before, const KernelCallBack &after) {
|
||||
MS_ASSERT(nullptr != allocator);
|
||||
MS_ASSERT(allocator != nullptr);
|
||||
if (kernels.front()->type() != schema::PrimitiveType_Merge) {
|
||||
auto ret = CheckTensorsInvalid(in_tensors);
|
||||
if (RET_OK != ret) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "CheckInputs failed";
|
||||
return ret;
|
||||
}
|
||||
|
@ -137,7 +137,7 @@ int MindrtExecutor::Run(const std::vector<Tensor *> &in_tensors, const std::vect
|
|||
}
|
||||
|
||||
auto ret = MindrtRun<Tensor>(input_data_, &output_data_, &before, &after);
|
||||
if (RET_OK != ret) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "MindrtRun failed";
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -35,7 +35,7 @@ static int RunKernel(void *data, int index, float lhs_scale, float rhs_scale) {
|
|||
auto kernel = executor->GetReadyKernel(index);
|
||||
auto ret = kernel->Execute();
|
||||
executor->SetResult(index, ret);
|
||||
if (0 != ret) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "run kernel failed, name: " << kernel->name();
|
||||
return 0;
|
||||
}
|
||||
|
@ -46,7 +46,7 @@ static int RunKernel(void *data, int index, float lhs_scale, float rhs_scale) {
|
|||
int ParallelExecutor::Run(const std::vector<Tensor *> &in_tensors, const std::vector<Tensor *> &out_tensors,
|
||||
const std::vector<kernel::LiteKernel *> &kernels, mindspore::Allocator *allocator,
|
||||
const KernelCallBack &before, const KernelCallBack &after) {
|
||||
MS_ASSERT(nullptr != allocator);
|
||||
MS_ASSERT(allocator != nullptr);
|
||||
for (auto &inTensor : in_tensors) {
|
||||
if (inTensor == nullptr) {
|
||||
MS_LOG(ERROR) << "Graph input tensor is nullptr";
|
||||
|
@ -69,7 +69,7 @@ int ParallelExecutor::Run(const std::vector<Tensor *> &in_tensors, const std::ve
|
|||
std::vector<kernel::LiteKernel *> newReadyKernels;
|
||||
while (!readyKernels.empty()) {
|
||||
results.resize(readyKernels.size(), RET_OK);
|
||||
if (0 != thread_pool_->ParallelLaunch(RunKernel, this, readyKernels.size())) {
|
||||
if (thread_pool_->ParallelLaunch(RunKernel, this, readyKernels.size()) != 0) {
|
||||
MS_LOG(ERROR) << "ParallelLaunch failed ";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
@ -94,8 +94,6 @@ int ParallelExecutor::Run(const std::vector<Tensor *> &in_tensors, const std::ve
|
|||
readyKernels.clear();
|
||||
readyKernels = std::move(newReadyKernels);
|
||||
}
|
||||
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
} // namespace mindspore::lite
|
||||
|
|
|
@ -25,7 +25,9 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
#define kMaxMallocSize 1024 * 1024 * 300
|
||||
namespace {
|
||||
constexpr int kMaxMallocSize = 1024 * 1024 * 300;
|
||||
} // namespace
|
||||
Tensor::Tensor(const TypeId data_type, std::vector<int> shape, const schema::Format &format, Category category)
|
||||
: data_type_(data_type), shape_(std::move(shape)), format_(format), category_(category) {}
|
||||
|
||||
|
@ -73,7 +75,7 @@ Tensor *Tensor::CopyTensor(const Tensor &src_tensor, bool copy_data) {
|
|||
}
|
||||
|
||||
Tensor::~Tensor() {
|
||||
if (nullptr != this->data_ && this->own_data_) {
|
||||
if (this->data_ != nullptr && this->own_data_) {
|
||||
if (this->allocator_ != nullptr) {
|
||||
this->allocator_->Free(this->data_);
|
||||
} else {
|
||||
|
@ -287,7 +289,7 @@ void Tensor::set_root_tensor(Tensor *tensor) {
|
|||
}
|
||||
|
||||
int Tensor::MallocData(const AllocatorPtr allocator) {
|
||||
if (nullptr != this->data_) {
|
||||
if (this->data_ != nullptr) {
|
||||
return RET_OK;
|
||||
}
|
||||
if (allocator != nullptr) {
|
||||
|
@ -303,7 +305,7 @@ int Tensor::MallocData(const AllocatorPtr allocator) {
|
|||
} else {
|
||||
this->data_ = allocator_->Malloc(data_size);
|
||||
}
|
||||
if (nullptr == this->data_) {
|
||||
if (this->data_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Malloc tensor data failed, size=" << data_size;
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
@ -312,13 +314,13 @@ int Tensor::MallocData(const AllocatorPtr allocator) {
|
|||
}
|
||||
|
||||
void Tensor::FreeData() {
|
||||
if (nullptr == this->data_) {
|
||||
if (this->data_ == nullptr) {
|
||||
return;
|
||||
}
|
||||
if (!this->own_data_) {
|
||||
return;
|
||||
}
|
||||
if (nullptr == allocator_) {
|
||||
if (allocator_ == nullptr) {
|
||||
free(this->data_);
|
||||
this->data_ = nullptr;
|
||||
} else {
|
||||
|
|
|
@ -23,7 +23,6 @@
|
|||
#include "src/tensor.h"
|
||||
|
||||
namespace mindspore::lite {
|
||||
|
||||
TensorList::TensorList(std::vector<int> shape, std::vector<int> element_shape, Category category)
|
||||
: Tensor(kObjectTypeTensorType, std::move(shape), schema::Format::Format_NHWC, category),
|
||||
element_shape_(std::move(element_shape)) {}
|
||||
|
@ -300,5 +299,4 @@ STATUS TensorList::Decode(const int *data) {
|
|||
}
|
||||
|
||||
bool TensorList::IsConst() const { return this->category_ == CONST_TENSOR || this->category_ == CONST_SCALAR; }
|
||||
|
||||
} // namespace mindspore::lite
|
||||
|
|
|
@ -238,8 +238,8 @@ int AnfExporter::SetGraphInputIndex(const std::unique_ptr<schema::MetaGraphT> &m
|
|||
int AnfExporter::SetGraphoutputIndex(const CNodePtr &cnode, const size_t subgraph_index,
|
||||
const std::unique_ptr<schema::MetaGraphT> &meta_graphT,
|
||||
schema::CNodeT *return_node) {
|
||||
MS_ASSERT(nullptr != meta_graphT);
|
||||
MS_ASSERT(nullptr != return_node);
|
||||
MS_ASSERT(meta_graphT != nullptr);
|
||||
MS_ASSERT(return_node != nullptr);
|
||||
for (size_t i = 1; i < cnode->inputs().size(); i++) {
|
||||
auto input_node = cnode->input(i);
|
||||
if (input_node == nullptr) {
|
||||
|
@ -556,8 +556,8 @@ int AnfExporter::ConvertInputValueNode(const CNodePtr &cnode, size_t index, cons
|
|||
|
||||
int AnfExporter::SetOpInputNode(const CNodePtr &cnode, const std::unique_ptr<schema::MetaGraphT> &meta_graphT,
|
||||
schema::CNodeT *fb_node) {
|
||||
MS_ASSERT(nullptr != meta_graphT);
|
||||
MS_ASSERT(nullptr != fb_node);
|
||||
MS_ASSERT(meta_graphT != nullptr);
|
||||
MS_ASSERT(fb_node != nullptr);
|
||||
if (cnode->inputs().size() <= 1) {
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -36,6 +36,9 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
namespace {
|
||||
constexpr int kNumPrintMin = 5;
|
||||
}
|
||||
static const char *DELIM_COLON = ":";
|
||||
static const char *DELIM_COMMA = ",";
|
||||
static const char *DELIM_SLASH = "/";
|
||||
|
@ -376,7 +379,7 @@ int Benchmark::CompareStringData(const std::string &name, tensor::MSTensor *tens
|
|||
std::vector<std::string> calib_strings = iter->second->strings_data;
|
||||
std::vector<std::string> output_strings = MSTensorToStrings(tensor);
|
||||
size_t compare_num = std::min(calib_strings.size(), output_strings.size());
|
||||
size_t print_num = std::min(compare_num, static_cast<size_t>(5));
|
||||
size_t print_num = std::min(compare_num, static_cast<size_t>(kNumPrintMin));
|
||||
|
||||
std::cout << "Data of node " << name << " : " << std::endl;
|
||||
for (size_t i = 0; i < compare_num; i++) {
|
||||
|
@ -703,8 +706,7 @@ void BenchmarkFlags::InitInputDataList() {
|
|||
}
|
||||
|
||||
void BenchmarkFlags::InitResizeDimsList() {
|
||||
std::string content;
|
||||
content = this->resize_dims_in_;
|
||||
std::string content = this->resize_dims_in_;
|
||||
std::vector<int> shape;
|
||||
auto shape_strs = StringSplit(content, std::string(DELIM_COLON));
|
||||
for (const auto &shape_str : shape_strs) {
|
||||
|
|
|
@ -268,7 +268,7 @@ int AnfTransform::DoQuantize(const FuncGraphPtr &old_graph, const converter::Fla
|
|||
}
|
||||
|
||||
FuncGraphPtr AnfTransform::TransformFuncGraph(const FuncGraphPtr &old_graph, const converter::Flags *config) {
|
||||
MS_ASSERT(nullptr != old_graph);
|
||||
MS_ASSERT(old_graph != nullptr);
|
||||
if (config == nullptr) {
|
||||
MS_LOG(ERROR) << "config should be specified";
|
||||
return nullptr;
|
||||
|
|
|
@ -107,7 +107,7 @@ schema::MetaGraphT *Converter::Convert(const std::unique_ptr<converter::Flags> &
|
|||
|
||||
int RunConverter(int argc, const char **argv) {
|
||||
std::ostringstream oss;
|
||||
std::unique_ptr<converter::Flags> flags(new (std::nothrow) converter::Flags);
|
||||
auto flags = std::make_unique<converter::Flags>();
|
||||
if (flags == nullptr) {
|
||||
oss.clear();
|
||||
oss << "NEW FLAGS ERROR:" << RET_MEMORY_FAILED << " " << GetErrorInfo(RET_MEMORY_FAILED);
|
||||
|
|
|
@ -112,7 +112,6 @@ STATUS FusionPass::MatchPatterns(schema::MetaGraphT *graph) {
|
|||
STATUS FusionPass::MatchOnePattern(schema::MetaGraphT *graph, FusionPattern *pattern) {
|
||||
MS_ASSERT(graph != nullptr);
|
||||
MS_ASSERT(pattern != nullptr);
|
||||
// std::vector<std::unordered_map<std::string, Path *>> patternMatchPaths;
|
||||
auto outputOp = pattern->GetPatternOp(pattern->GetOutput());
|
||||
if (outputOp == nullptr) {
|
||||
MS_LOG(ERROR) << "Can not find the output of the pattern";
|
||||
|
|
|
@ -23,8 +23,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
// using namespace std;
|
||||
|
||||
FusionPattern::FusionPattern(std::string name) { this->name = std::move(name); }
|
||||
|
||||
FusionPattern::~FusionPattern() = default;
|
||||
|
@ -50,7 +48,7 @@ FusionPattern &FusionPattern::AddPatternOp(const std::string &id, const std::vec
|
|||
hasError = true;
|
||||
}
|
||||
|
||||
std::shared_ptr<PatternOp> op(new PatternOp());
|
||||
auto op = std::make_shared<PatternOp>();
|
||||
if (op == nullptr) {
|
||||
MS_LOG(ERROR) << "new an object failed";
|
||||
hasError = true;
|
||||
|
|
|
@ -44,7 +44,7 @@ STATUS MulAddFusionPass::DefinePattern() {
|
|||
baOp->types = {schema::PrimitiveType_AddFusion};
|
||||
baOp->left = mulOp;
|
||||
|
||||
std::unique_ptr<FusionPattern> fusionPattern(new (std::nothrow) FusionPattern("MulAddFusion"));
|
||||
auto fusionPattern = std::make_unique<FusionPattern>("MulAddFusion");
|
||||
if (fusionPattern == nullptr) {
|
||||
MS_LOG(ERROR) << "new fusionPattern failed";
|
||||
return RET_ERROR;
|
||||
|
@ -137,7 +137,7 @@ STATUS MulAddFusionPass::AddNewScaleNode(MetaGraphT *graph, const std::unique_pt
|
|||
MS_ASSERT(addNode != nullptr);
|
||||
// replace mulNode as scale
|
||||
mulNode->primitive->value.type = schema::PrimitiveType_ScaleFusion;
|
||||
std::unique_ptr<ScaleFusionT> scaleParam(new (std::nothrow) ScaleFusionT());
|
||||
auto scaleParam = std::make_unique<ScaleFusionT>();
|
||||
if (scaleParam == nullptr) {
|
||||
MS_LOG(ERROR) << "new transposeParam failed";
|
||||
return RET_ERROR;
|
||||
|
@ -160,7 +160,7 @@ STATUS MulAddFusionPass::AddNewScaleNode(MetaGraphT *graph, const std::unique_pt
|
|||
}
|
||||
} else {
|
||||
// replace addnode as activation
|
||||
std::unique_ptr<ActivationT> activationParam(new ActivationT());
|
||||
auto activationParam = std::make_unique<ActivationT>();
|
||||
MS_ASSERT(addNode->primitive != nullptr);
|
||||
MS_ASSERT(addNode->primitive->value.AsAddFusion() != nullptr);
|
||||
activationParam->activation_type = addNode->primitive->value.AsAddFusion()->activation_type;
|
||||
|
|
|
@ -97,7 +97,7 @@ STATUS QuantCastFusionPass::DefinePattern() {
|
|||
dstOp->types = {schema::PrimitiveType_QuantDTypeCast};
|
||||
dstOp->left = srcOp;
|
||||
|
||||
std::unique_ptr<FusionPattern> fusionPattern(new (std::nothrow) FusionPattern(kQuantCastFusionPattern));
|
||||
auto fusionPattern = std::make_unique<FusionPattern>(kQuantCastFusionPattern);
|
||||
if (fusionPattern == nullptr) {
|
||||
MS_LOG(ERROR) << "new fusionPattern failde";
|
||||
return RET_ERROR;
|
||||
|
@ -122,7 +122,7 @@ STATUS QuantCastFusionPass::DefinePattern() {
|
|||
dstOp->types = {schema::PrimitiveType_QuantDTypeCast};
|
||||
dstOp->left = formatOp;
|
||||
|
||||
std::unique_ptr<FusionPattern> fusionPattern(new (std::nothrow) FusionPattern(kQuantCastPassFusionPattern));
|
||||
auto fusionPattern = std::make_unique<FusionPattern>(kQuantCastPassFusionPattern);
|
||||
if (fusionPattern == nullptr) {
|
||||
MS_LOG(ERROR) << "new fusionPattern failde";
|
||||
return RET_ERROR;
|
||||
|
|
|
@ -74,7 +74,7 @@ STATUS BatchNormConvertScalePass::ConvertBNToScale(MetaGraphT *graph, const std:
|
|||
MS_ASSERT(graph != nullptr);
|
||||
MS_ASSERT(bnNode != nullptr);
|
||||
bnNode->primitive->value.type = schema::PrimitiveType_ScaleFusion;
|
||||
std::unique_ptr<ScaleFusionT> scaleParam(new (std::nothrow) ScaleFusionT());
|
||||
auto scaleParam = std::make_unique<ScaleFusionT>();
|
||||
if (scaleParam == nullptr) {
|
||||
MS_LOG(ERROR) << "new scaleParam failed";
|
||||
return RET_ERROR;
|
||||
|
@ -101,7 +101,7 @@ STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std
|
|||
MS_ASSERT(graph != nullptr);
|
||||
MS_ASSERT(bnNode != nullptr);
|
||||
GetTransParam(graph, bnNode);
|
||||
newScaleWeightTensor = std::unique_ptr<TensorT>(new (std::nothrow) TensorT);
|
||||
newScaleWeightTensor = std::make_unique<TensorT>();
|
||||
if (newScaleWeightTensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new weightTensor failed";
|
||||
return RET_ERROR;
|
||||
|
@ -123,7 +123,7 @@ STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std
|
|||
return RET_ERROR;
|
||||
}
|
||||
|
||||
newScaleBiasTensor = std::unique_ptr<TensorT>(new (std::nothrow) TensorT);
|
||||
newScaleBiasTensor = std::make_unique<TensorT>();
|
||||
if (newScaleBiasTensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new weightTensor failed";
|
||||
return RET_ERROR;
|
||||
|
|
|
@ -267,7 +267,7 @@ NodeIter DTypeTransPass::InsertDTypeTransNode(schema::MetaGraphT *graph, NodeIte
|
|||
} else {
|
||||
tile_name = exist_node_name + "_post";
|
||||
}
|
||||
auto trans_node = std::unique_ptr<CNodeT>(new (std::nothrow) CNodeT);
|
||||
auto trans_node = std::make_unique<CNodeT>();
|
||||
if (trans_node == nullptr) {
|
||||
MS_LOG(ERROR) << "new TransNode failed";
|
||||
*error_code = RET_ERROR;
|
||||
|
|
|
@ -78,7 +78,7 @@ STATUS ComputeDataToInt8(const std::unique_ptr<TensorT> &tensor, int32_t index)
|
|||
STATUS ComputeDataToInt32(const std::unique_ptr<TensorT> &tensor) {
|
||||
MS_ASSERT(tensor != nullptr);
|
||||
auto bShapeSize = GetShapeSize(*(tensor));
|
||||
std::unique_ptr<int32_t[]> qDatas(new (std::nothrow) int32_t[bShapeSize]);
|
||||
auto qDatas = std::make_unique<int32_t[]>(bShapeSize);
|
||||
if (qDatas == nullptr) {
|
||||
MS_LOG(ERROR) << "new qDatas failed";
|
||||
return RET_ERROR;
|
||||
|
|
Loading…
Reference in New Issue