forked from mindspore-Ecosystem/mindspore
modify Note
This commit is contained in:
parent
38b76acdbd
commit
7ed181ec7c
|
@ -87,10 +87,10 @@ class WithLossCell(Cell):
|
|||
>>> net_with_criterion = nn.WithLossCell(net, loss_fn)
|
||||
>>>
|
||||
>>> batch_size = 2
|
||||
>>> data = Tensor(np.ones([batch_size, 3, 64, 64]).astype(np.float32) * 0.01)
|
||||
>>> label = Tensor(np.ones([batch_size, 1, 1, 1]).astype(np.int32))
|
||||
>>> data = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||
>>> label = Tensor(np.ones([batch_size, 10]).astype(np.float32))
|
||||
>>>
|
||||
>>> net_with_criterion(data, label)
|
||||
>>> output_data = net_with_criterion(data, label)
|
||||
"""
|
||||
|
||||
def __init__(self, backbone, loss_fn):
|
||||
|
@ -205,20 +205,20 @@ class TrainOneStepCell(Cell):
|
|||
>>> train_net = nn.TrainOneStepCell(loss_net, optim)
|
||||
>>>
|
||||
>>> #2) Using user-defined WithLossCell
|
||||
>>> class MyWithLossCell(nn.cell):
|
||||
>>> def __init__(self, backbone, loss_fn):
|
||||
>>> super(MyWithLossCell, self).__init__(auto_prefix=False)
|
||||
>>> self._backbone = backbone
|
||||
>>> self._loss_fn = loss_fn
|
||||
>>>
|
||||
>>> def construct(self, x, y, label):
|
||||
>>> out = self._backbone(x, y)
|
||||
>>> return self._loss_fn(out, label)
|
||||
>>>
|
||||
>>> @property
|
||||
>>> def backbone_network(self):
|
||||
>>> return self._backbone
|
||||
>>>
|
||||
>>> class MyWithLossCell(Cell):
|
||||
... def __init__(self, backbone, loss_fn):
|
||||
... super(MyWithLossCell, self).__init__(auto_prefix=False)
|
||||
... self._backbone = backbone
|
||||
... self._loss_fn = loss_fn
|
||||
...
|
||||
... def construct(self, x, y, label):
|
||||
... out = self._backbone(x, y)
|
||||
... return self._loss_fn(out, label)
|
||||
...
|
||||
... @property
|
||||
... def backbone_network(self):
|
||||
... return self._backbone
|
||||
...
|
||||
>>> loss_net = MyWithLossCell(net, loss_fn)
|
||||
>>> train_net = nn.TrainOneStepCell(loss_net, optim)
|
||||
"""
|
||||
|
@ -408,7 +408,7 @@ class ParameterUpdate(Cell):
|
|||
>>> update = nn.ParameterUpdate(param)
|
||||
>>> update.phase = "update_param"
|
||||
>>> weight = Tensor(np.arrange(12).reshape((4, 3)), mindspore.float32)
|
||||
>>> update(weight)
|
||||
>>> network_updata = update(weight)
|
||||
"""
|
||||
|
||||
def __init__(self, param):
|
||||
|
|
|
@ -85,16 +85,16 @@ class DynamicLossScaleUpdateCell(Cell):
|
|||
>>> from mindspore.nn.wrap.cell_wrapper import WithLossCell
|
||||
>>>
|
||||
>>> class Net(nn.Cell):
|
||||
>>> def __init__(self, in_features, out_features):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.weight = Parameter(Tensor(np.ones([in_features, out_features]).astype(np.float32)),
|
||||
>>> name='weight')
|
||||
>>> self.matmul = P.MatMul()
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> output = self.matmul(x, self.weight)
|
||||
>>> return output
|
||||
>>>
|
||||
... def __init__(self, in_features, out_features):
|
||||
... super(Net, self).__init__()
|
||||
... self.weight = Parameter(Tensor(np.ones([in_features, out_features]).astype(np.float32)),
|
||||
... name='weight')
|
||||
... self.matmul = P.MatMul()
|
||||
...
|
||||
... def construct(self, x):
|
||||
... output = self.matmul(x, self.weight)
|
||||
... return output
|
||||
...
|
||||
>>> in_features, out_features = 16, 10
|
||||
>>> net = Net(in_features, out_features)
|
||||
>>> loss = nn.MSELoss()
|
||||
|
@ -168,16 +168,16 @@ class FixedLossScaleUpdateCell(Cell):
|
|||
>>> from mindspore.nn.wrap.cell_wrapper import WithLossCell
|
||||
>>>
|
||||
>>> class Net(nn.Cell):
|
||||
>>> def __init__(self, in_features, out_features):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.weight = Parameter(Tensor(np.ones([in_features, out_features]).astype(np.float32)),
|
||||
>>> name='weight')
|
||||
>>> self.matmul = P.MatMul()
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> output = self.matmul(x, self.weight)
|
||||
>>> return output
|
||||
>>>
|
||||
... def __init__(self, in_features, out_features):
|
||||
... super(Net, self).__init__()
|
||||
... self.weight = Parameter(Tensor(np.ones([in_features, out_features]).astype(np.float32)),
|
||||
... name='weight')
|
||||
... self.matmul = P.MatMul()
|
||||
...
|
||||
... def construct(self, x):
|
||||
... output = self.matmul(x, self.weight)
|
||||
... return output
|
||||
...
|
||||
>>> in_features, out_features = 16, 10
|
||||
>>> net = Net(in_features, out_features)
|
||||
>>> loss = nn.MSELoss()
|
||||
|
@ -237,16 +237,16 @@ class TrainOneStepWithLossScaleCell(TrainOneStepCell):
|
|||
>>> from mindspore.common import dtype as mstype
|
||||
>>>
|
||||
>>> class Net(nn.Cell):
|
||||
>>> def __init__(self, in_features, out_features):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.weight = Parameter(Tensor(np.ones([in_features, out_features]).astype(np.float32)),
|
||||
>>> name='weight')
|
||||
>>> self.matmul = P.MatMul()
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> output = self.matmul(x, self.weight)
|
||||
>>> return output
|
||||
>>>
|
||||
... def __init__(self, in_features, out_features):
|
||||
... super(Net, self).__init__()
|
||||
... self.weight = Parameter(Tensor(np.ones([in_features, out_features]).astype(np.float32)),
|
||||
... name='weight')
|
||||
... self.matmul = P.MatMul()
|
||||
...
|
||||
... def construct(self, x):
|
||||
... output = self.matmul(x, self.weight)
|
||||
... return output
|
||||
...
|
||||
>>> size, in_features, out_features = 16, 16, 10
|
||||
>>> #1) when the type of scale_sense is Cell:
|
||||
>>> net = Net(in_features, out_features)
|
||||
|
|
Loading…
Reference in New Issue