forked from mindspore-Ecosystem/mindspore
Support Conv3dTranspose for GPU
This commit is contained in:
parent
9852cced86
commit
7d94095730
|
@ -157,6 +157,48 @@ __global__ void PadGrad3d(const size_t size, const T* dy, const int num, const i
|
|||
return;
|
||||
}
|
||||
|
||||
// For internal OP use, not user facing
|
||||
template <typename T>
|
||||
__global__ void PadNDHWC(const size_t size, const T *input, const int num, const int old_depth, const int old_height,
|
||||
const int old_width, const int channels, const int padded_depth, const int padded_height,
|
||||
const int padded_width, const int pad_head, const int pad_top, const int pad_left,
|
||||
float pad_value, T *output) {
|
||||
T pad_value_ = static_cast<T>(pad_value);
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
|
||||
int block_num = pos / (channels * padded_width * padded_height * padded_depth);
|
||||
const int padded_w = pos / channels % padded_width;
|
||||
const int padded_h = pos / (channels * padded_width) % padded_height;
|
||||
const int padded_d = pos / (channels * padded_width * padded_height) % padded_depth;
|
||||
if (padded_d - pad_head < 0 || padded_h - pad_top < 0 || padded_w - pad_left < 0 ||
|
||||
padded_d - pad_head >= old_depth || padded_h - pad_top >= old_height || padded_w - pad_left >= old_width) {
|
||||
output[pos] = pad_value_;
|
||||
} else {
|
||||
output[pos] =
|
||||
input[(((block_num * old_depth + padded_d - pad_head) * old_height + padded_h - pad_top) * old_width +
|
||||
padded_w - pad_left) *
|
||||
channels +
|
||||
pos % channels];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void PadGradNDHWC(const size_t size, const T *dy, const int num, const int old_depth, const int old_height,
|
||||
const int old_width, const int channels, const int padded_depth, const int padded_height,
|
||||
const int padded_width, const int pad_head, const int pad_top, const int pad_left, T *dx) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
|
||||
int block_num = pos / (channels * old_width * old_height);
|
||||
const int padded_w = pos / channels % old_width + pad_left;
|
||||
const int padded_h = pos / (channels * old_width) % old_height + pad_top;
|
||||
const int padded_d = pos / (channels * old_width * old_height) % old_depth + pad_head;
|
||||
dx[pos] =
|
||||
dy[(((block_num * padded_depth + padded_d) * padded_height + padded_h) * padded_width + padded_w) * channels +
|
||||
pos % channels];
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalPad(const size_t size, const T* input, const int num, const int channels, const int old_height,
|
||||
const int old_width, const int padded_height, const int padded_width, const int pad_top, const int pad_left,
|
||||
|
@ -237,6 +279,28 @@ void CalPadGrad3d(const size_t size, const T* dy, const int num, const int chann
|
|||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalPadNDHWC(const size_t size, const T *input, const int num, const int old_depth, const int old_height,
|
||||
const int old_width, const int channels, const int padded_depth, const int padded_height,
|
||||
const int padded_width, const int pad_head, const int pad_top, const int pad_left,
|
||||
const float pad_value, T *output, cudaStream_t cuda_stream) {
|
||||
PadNDHWC<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, num, old_depth, old_height, old_width,
|
||||
channels, padded_depth, padded_height, padded_width,
|
||||
pad_head, pad_top, pad_left, pad_value, output);
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalPadGradNDHWC(const size_t size, const T *dy, const int num, const int old_depth, const int old_height,
|
||||
const int old_width, const int channels, const int padded_depth, const int padded_height,
|
||||
const int padded_width, const int pad_head, const int pad_top, const int pad_left, T *dx,
|
||||
cudaStream_t cuda_stream) {
|
||||
PadGradNDHWC<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dy, num, old_depth, old_height, old_width,
|
||||
channels, padded_depth, padded_height, padded_width,
|
||||
pad_head, pad_top, pad_left, dx);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalPad<float>(const size_t size, const float* input, const int num, const int channels,
|
||||
const int old_height, const int old_width, const int padded_height, const int padded_width,
|
||||
const int pad_top, const int pad_left, float pad_value, float* output,
|
||||
|
@ -302,3 +366,13 @@ template void CalPadGrad3d<half>(const size_t size, const half* dy, const int nu
|
|||
const int padded_depth, const int padded_height, const int padded_width,
|
||||
const int pad_head, const int pad_top, const int pad_left, half* dx,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalPadGradNDHWC<float>(const size_t size, const float *dy, const int num, const int old_depth,
|
||||
const int old_height, const int old_width, const int channels,
|
||||
const int padded_depth, const int padded_height, const int padded_width,
|
||||
const int pad_head, const int pad_top, const int pad_left, float *dx,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalPadGradNDHWC<half>(const size_t size, const half *dy, const int num, const int old_depth,
|
||||
const int old_height, const int old_width, const int channels,
|
||||
const int padded_depth, const int padded_height, const int padded_width,
|
||||
const int pad_head, const int pad_top, const int pad_left, half *dx,
|
||||
cudaStream_t cuda_stream);
|
||||
|
|
|
@ -50,4 +50,14 @@ void CalPadGrad3d(const size_t size, const T* dy, const int num, const int chann
|
|||
const int old_height, const int old_width, const int padded_depth, const int padded_height,
|
||||
const int padded_width, const int pad_head, const int pad_top, const int pad_left, T* dx,
|
||||
cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void CalPadNDHWC(const size_t size, const T *input, const int num, const int old_depth, const int old_height,
|
||||
const int old_width, const int channels, const int padded_depth, const int padded_height,
|
||||
const int padded_width, const int pad_head, const int pad_top, const int pad_left,
|
||||
const float pad_value, T *output, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void CalPadGradNDHWC(const size_t size, const T *dy, const int num, const int old_depth, const int old_height,
|
||||
const int old_width, const int channels, const int padded_depth, const int padded_height,
|
||||
const int padded_width, const int pad_head, const int pad_top, const int pad_left, T *dx,
|
||||
cudaStream_t cuda_stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_PADIMPL_H_
|
||||
|
|
|
@ -142,6 +142,13 @@ class GpuKernel : public KernelMod {
|
|||
std::swap((*shape)[2], (*shape)[1]);
|
||||
}
|
||||
|
||||
// transpose shape: NCDHW To NDHWC
|
||||
void ShapeNCDHW2NDHWC(std::vector<size_t> *shape) {
|
||||
std::swap((*shape)[1], (*shape)[2]);
|
||||
std::swap((*shape)[2], (*shape)[3]);
|
||||
std::swap((*shape)[3], (*shape)[4]);
|
||||
}
|
||||
|
||||
void SetDimA(const std::vector<size_t> &shape, int *dimA, size_t len, const std::string &format) {
|
||||
if (shape.size() != len) {
|
||||
MS_EXCEPTION(ValueError) << "Invalid size of input shape " << shape.size() << "-D with dimA " << len << "-D.";
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/conv3d_transpose_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Conv3DTranspose,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
Conv3dTransposeGpuFwdKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Conv3DTranspose,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
Conv3dTransposeGpuFwdKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,411 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_CONV3D_TRANSPOSE_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_CONV3D_TRANSPOSE_GPU_KERNEL_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/pad_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/kernel_constants.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class Conv3dTransposeGpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
Conv3dTransposeGpuFwdKernel() { ResetResource(); }
|
||||
~Conv3dTransposeGpuFwdKernel() override { DestroyResource(); }
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
if (is_null_input_) {
|
||||
return true;
|
||||
}
|
||||
T *input_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
T *filter_addr = GetDeviceAddress<T>(inputs, 1);
|
||||
T *output_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
T *work_space = nullptr;
|
||||
if (workspace_size_ != 0) {
|
||||
work_space = GetDeviceAddress<T>(workspace, 0);
|
||||
}
|
||||
|
||||
const float alpha = 1;
|
||||
if (use_pad_) {
|
||||
T *padded = GetDeviceAddress<T>(workspace, 1);
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudnnConvolutionBackwardData(cudnn_handle_, &alpha, filter_desc_, filter_addr,
|
||||
input_desc_, input_addr, conv_desc_, algo_, work_space,
|
||||
workspace_size_, &beta_, padded_descriptor_, padded),
|
||||
"ConvolutionBackwardData failed");
|
||||
if (data_format_ == kOpFormat_NCDHW) {
|
||||
CalPadGrad3d(output_size_ / sizeof(T), padded, n_, c_, old_depth_, old_height_, old_width_,
|
||||
old_depth_ + pad_depth_, old_height_ + pad_height_, old_width_ + pad_width_, pad_head_, pad_top_,
|
||||
pad_left_, output_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "ConvTranspose3d only support NCDHW format right now.";
|
||||
}
|
||||
|
||||
} else {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
kernel_node_,
|
||||
cudnnConvolutionBackwardData(cudnn_handle_, &alpha, filter_desc_, filter_addr, input_desc_, input_addr,
|
||||
conv_desc_, algo_, work_space, workspace_size_, &beta_, output_desc_, output_addr),
|
||||
"ConvolutionBackwardData failed");
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
kernel_node_ = kernel_node;
|
||||
InitResource();
|
||||
if (!CheckParam(kernel_node)) return false;
|
||||
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
|
||||
data_format_ = AnfAlgo::GetInputFormat(kernel_node, 0);
|
||||
auto format_attr = GetAttr<std::string>(kernel_node, "format");
|
||||
if (format_attr == kOpFormat_NDHWC) {
|
||||
data_format_ = kOpFormat_NDHWC;
|
||||
}
|
||||
auto filter_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
|
||||
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "Conv3dTransposeGpuBkwKernel input is null.";
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
std::vector<size_t> output_shape;
|
||||
GetInputShape(kernel_node, &output_shape);
|
||||
if (data_format_ == kOpFormat_NDHWC) {
|
||||
compute_format_ = CUDNN_TENSOR_NHWC;
|
||||
if (format_attr == kOpFormat_NCDHW) {
|
||||
ShapeNCDHW2NDHWC(&output_shape);
|
||||
}
|
||||
}
|
||||
SetNCDHW(output_shape, &n_, &c_, &old_depth_, &old_height_, &old_width_, data_format_);
|
||||
Set5DDesc(input_shape, output_shape, filter_shape);
|
||||
group_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "groups"));
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnSetConvolutionGroupCount(conv_desc_, group_),
|
||||
"cudnnSetConvGroupCount failed");
|
||||
std::vector<int> pad_list;
|
||||
std::vector<int64_t> pad_list_me = GetAttr<std::vector<int64_t>>(kernel_node, "pad_list");
|
||||
(void)std::transform(pad_list_me.begin(), pad_list_me.end(), std::back_inserter(pad_list),
|
||||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
pad_depth_ = pad_list[0];
|
||||
pad_height_ = pad_list[2];
|
||||
pad_width_ = pad_list[4];
|
||||
use_pad_ = !((pad_depth_ == pad_list[1]) && (pad_height_ == pad_list[3]) && (pad_width_ == pad_list[5]));
|
||||
pad_mode_ = GetAttr<std::string>(kernel_node, "pad_mode");
|
||||
SetStrideAndDilation(kernel_node);
|
||||
cudnnTensorDescriptor_t output_desc_real = nullptr;
|
||||
int padA[3];
|
||||
int strideA[3] = {stride_[2], stride_[3], stride_[4]};
|
||||
int dilaA[3] = {dilation_[2], dilation_[3], dilation_[4]};
|
||||
if (use_pad_) {
|
||||
pad_depth_ = pad_list[0] + pad_list[1];
|
||||
pad_height_ = pad_list[2] + pad_list[3];
|
||||
pad_width_ = pad_list[4] + pad_list[5];
|
||||
pad_head_ = pad_list[0];
|
||||
pad_top_ = pad_list[2];
|
||||
pad_left_ = pad_list[4];
|
||||
int dim_a[5];
|
||||
int strideApadded[5];
|
||||
if (data_format_ == kOpFormat_NCDHW) {
|
||||
auto padded_shape = {IntToSize(n_), IntToSize(c_), IntToSize(old_depth_ + pad_depth_),
|
||||
IntToSize(old_height_ + pad_height_), IntToSize(old_width_ + pad_width_)};
|
||||
SetDimA(padded_shape, dim_a, 5, data_format_);
|
||||
SetStrideA(padded_shape, strideApadded, 5, data_format_);
|
||||
} else if (data_format_ == kOpFormat_NDHWC) {
|
||||
auto padded_shape = {IntToSize(n_), IntToSize(old_depth_ + pad_depth_), IntToSize(old_height_ + pad_height_),
|
||||
IntToSize(old_width_ + pad_width_), IntToSize(c_)};
|
||||
SetDimA(padded_shape, dim_a, 5, data_format_);
|
||||
SetStrideA(padded_shape, strideApadded, 5, data_format_);
|
||||
}
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
kernel_node_, cudnnSetTensorNdDescriptor(padded_descriptor_, cudnn_data_type_, 5, dim_a, strideApadded),
|
||||
"cudnnSetTensor5dDescriptor failed");
|
||||
padA[0] = 0;
|
||||
padA[1] = 0;
|
||||
padA[2] = 0;
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
kernel_node_,
|
||||
cudnnSetConvolutionNdDescriptor(conv_desc_, 3, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
|
||||
"cudnnSetConvolutionNdDescriptor failed");
|
||||
output_desc_real = padded_descriptor_;
|
||||
} else {
|
||||
if (pad_mode_ == kValidPadModeUpperCase || pad_mode_ == kValidPadModeLowerCase) {
|
||||
pad_depth_ = 0;
|
||||
pad_height_ = 0;
|
||||
pad_width_ = 0;
|
||||
}
|
||||
padA[0] = pad_depth_;
|
||||
padA[1] = pad_height_;
|
||||
padA[2] = pad_width_;
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
kernel_node_,
|
||||
cudnnSetConvolutionNdDescriptor(conv_desc_, 3, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
|
||||
"cudnnSetConvolution3dDescriptor failed");
|
||||
output_desc_real = output_desc_;
|
||||
}
|
||||
if (cudnn_data_type_ == CUDNN_DATA_HALF) {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnSetConvolutionMathType(conv_desc_, CUDNN_TENSOR_OP_MATH),
|
||||
"cudnnSetConvolutionMathType failed.")
|
||||
}
|
||||
SelectAlgorithm(output_desc_real);
|
||||
beta_ = GetAttrWithDefault(kernel_node, "inplace_algo", std::string("cover")) == "cover" ? 0 : 1;
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
cudnn_handle_ = nullptr;
|
||||
input_desc_ = nullptr;
|
||||
output_desc_ = nullptr;
|
||||
filter_desc_ = nullptr;
|
||||
conv_desc_ = nullptr;
|
||||
algo_selected_ = false;
|
||||
padded_descriptor_ = nullptr;
|
||||
cudnn_data_type_ = CUDNN_DATA_FLOAT;
|
||||
compute_format_ = CUDNN_TENSOR_NCHW;
|
||||
old_height_ = 0;
|
||||
old_width_ = 0;
|
||||
old_depth_ = 0;
|
||||
pad_depth_ = 0;
|
||||
pad_height_ = 0;
|
||||
pad_width_ = 0;
|
||||
pad_head_ = 0;
|
||||
pad_tail_ = 0;
|
||||
pad_top_ = 0;
|
||||
pad_left_ = 0;
|
||||
n_ = 0;
|
||||
c_ = 0;
|
||||
beta_ = 0;
|
||||
stride_.clear();
|
||||
dilation_.clear();
|
||||
group_ = 1;
|
||||
is_null_input_ = false;
|
||||
input_size_ = 0;
|
||||
filter_size_ = 0;
|
||||
output_size_ = 0;
|
||||
padded_size_ = 0;
|
||||
workspace_size_ = 0;
|
||||
use_pad_ = true;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyFilterDescriptor(filter_desc_),
|
||||
"cudnnDestroyFilterDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyTensorDescriptor(padded_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyTensorDescriptor(input_desc_),
|
||||
"cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyTensorDescriptor(output_desc_),
|
||||
"cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateTensorDescriptor(&output_desc_),
|
||||
"cudnnCreateTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateTensorDescriptor(&input_desc_),
|
||||
"cudnnCreateTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateTensorDescriptor(&padded_descriptor_),
|
||||
"cudnnCreateTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateFilterDescriptor(&filter_desc_),
|
||||
"cudnnCreateFilterDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateConvolutionDescriptor(&conv_desc_),
|
||||
"cudnnCreateConvolutionDescriptor failed");
|
||||
}
|
||||
void InitSizeLists() override {
|
||||
if (!is_null_input_) {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnGetTensorSizeInBytes(input_desc_, &input_size_),
|
||||
"cudnnGetTensorSizeInBytes failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnGetFilterSizeInBytes(filter_desc_, &filter_size_),
|
||||
"cudnnGetTensorSizeInBytes failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnGetTensorSizeInBytes(output_desc_, &output_size_),
|
||||
"cudnnGetTensorSizeInBytes failed");
|
||||
}
|
||||
input_size_list_.push_back(input_size_);
|
||||
input_size_list_.push_back(filter_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
|
||||
if (use_pad_ && !is_null_input_) {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnGetTensorSizeInBytes(padded_descriptor_, &padded_size_),
|
||||
"cudnnGetTensorSizeInBytes failed");
|
||||
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
kernel_node_,
|
||||
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle_, filter_desc_, input_desc_, conv_desc_,
|
||||
padded_descriptor_, algo_, &workspace_size_),
|
||||
"cudnnGetConvolutionBackwardDataWorkspaceSize failed");
|
||||
workspace_size_list_.push_back(padded_size_);
|
||||
} else {
|
||||
if (!is_null_input_) {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
kernel_node_,
|
||||
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle_, filter_desc_, input_desc_, conv_desc_,
|
||||
output_desc_, algo_, &workspace_size_),
|
||||
"cudnnGetConvolutionBackwardDataWorkspaceSize failed");
|
||||
}
|
||||
}
|
||||
(void)workspace_size_list_.insert(workspace_size_list_.begin(), workspace_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but Conv3dTranspose needs 2 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but Conv3dTranspose needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void SetPad(const std::vector<int> &output_shape, const CNodePtr &kernel_node) {
|
||||
std::vector<int> pad_list;
|
||||
std::vector<int64_t> pad_list_me = GetAttr<std::vector<int64_t>>(kernel_node, "pad_list");
|
||||
(void)std::transform(pad_list_me.begin(), pad_list_me.end(), std::back_inserter(pad_list),
|
||||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
}
|
||||
|
||||
void SelectAlgorithm(cudnnTensorDescriptor_t output_desc_real) {
|
||||
constexpr int requested_algo_count = 1;
|
||||
int returned_algo_count;
|
||||
cudnnConvolutionBwdDataAlgoPerf_t perf_results;
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudnnGetConvolutionBackwardDataAlgorithm_v7(
|
||||
cudnn_handle_, filter_desc_, input_desc_, conv_desc_, output_desc_real,
|
||||
requested_algo_count, &returned_algo_count, &perf_results),
|
||||
"cudnnGetConvolutionBackwardDataAlgorithm_v7 failed");
|
||||
algo_ = perf_results.algo;
|
||||
if (compute_format_ == CUDNN_TENSOR_NHWC && cudnn_data_type_ == CUDNN_DATA_HALF && CUDNN_MAJOR < 8) {
|
||||
MS_LOG(ERROR) << "Conv3dTransposeGpuFwdKernel does not support float16 data with NDHWC format.";
|
||||
}
|
||||
}
|
||||
|
||||
void GetInputShape(const CNodePtr &kernel_node, std::vector<size_t> *input_shape) {
|
||||
auto shp_tuple_x = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("input_size")->cast<ValueTuplePtr>()->value();
|
||||
(void)std::transform(std::begin(shp_tuple_x), std::end(shp_tuple_x), std::back_inserter(*input_shape),
|
||||
[](const ValuePtr &e) -> size_t { return static_cast<int>(e->cast<Int64ImmPtr>()->value()); });
|
||||
}
|
||||
|
||||
void Set5DDesc(const std::vector<size_t> &input_shape, const std::vector<size_t> &output_shape,
|
||||
const std::vector<size_t> &filter_shape) {
|
||||
const int nbDims = 5;
|
||||
int dim_a[5];
|
||||
int stride_a_in[5];
|
||||
int dim_a_dy[5];
|
||||
int stride_a_dy[5];
|
||||
int filter_dim_a[5];
|
||||
SetDimA(output_shape, dim_a, 5, data_format_);
|
||||
SetStrideA(output_shape, stride_a_in, 5, data_format_);
|
||||
SetDimA(input_shape, dim_a_dy, 5, data_format_);
|
||||
SetStrideA(input_shape, stride_a_dy, 5, data_format_);
|
||||
SetDimA(filter_shape, filter_dim_a, 5, data_format_);
|
||||
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
kernel_node_, cudnnSetTensorNdDescriptor(input_desc_, cudnn_data_type_, nbDims, dim_a_dy, stride_a_dy),
|
||||
"cudnnSetTensorNdDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
kernel_node_, cudnnSetFilterNdDescriptor(filter_desc_, cudnn_data_type_, compute_format_, nbDims, filter_dim_a),
|
||||
"cudnnSetFilterNdDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudnnSetTensorNdDescriptor(output_desc_, cudnn_data_type_, nbDims, dim_a, stride_a_in),
|
||||
"cudnnSetTensorNdDescriptor failed");
|
||||
}
|
||||
|
||||
void SetStrideAndDilation(const CNodePtr &kernel_node) {
|
||||
std::vector<int64_t> stride_me = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, "strides");
|
||||
std::vector<int64_t> dilation_me = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, "dilations");
|
||||
(void)std::transform(stride_me.begin(), stride_me.end(), std::back_inserter(stride_),
|
||||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
(void)std::transform(dilation_me.begin(), dilation_me.end(), std::back_inserter(dilation_),
|
||||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
if (stride_.size() != 5) {
|
||||
MS_LOG(EXCEPTION) << "Conv3dTransposeGpuFwdKernel's stride must be 5d!";
|
||||
}
|
||||
if (stride_[0] != 1 || stride_[1] != 1) {
|
||||
MS_LOG(EXCEPTION) << "Conv3dTransposeGpuFwdKernel stride only support 1 in N axis and C axis!";
|
||||
}
|
||||
if (dilation_.size() != 5) {
|
||||
MS_LOG(EXCEPTION) << "Conv3dTransposeGpuFwdKernel's dilation must be 5d!";
|
||||
}
|
||||
if (dilation_[0] != 1 || dilation_[1] != 1) {
|
||||
MS_LOG(EXCEPTION) << "Conv3dTransposeGpuFwdKernel dilation only support 1 in N axis and C axis!";
|
||||
}
|
||||
}
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnFilterDescriptor_t filter_desc_;
|
||||
cudnnConvolutionDescriptor_t conv_desc_;
|
||||
cudnnTensorDescriptor_t input_desc_;
|
||||
cudnnTensorDescriptor_t output_desc_;
|
||||
cudnnTensorDescriptor_t padded_descriptor_;
|
||||
cudnnConvolutionBwdDataAlgo_t algo_;
|
||||
bool algo_selected_;
|
||||
std::string pad_mode_;
|
||||
std::string data_format_ = kOpFormat_NCDHW;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
cudnnDataType_t cudnn_data_type_;
|
||||
cudnnTensorFormat_t compute_format_;
|
||||
int old_depth_;
|
||||
int old_height_;
|
||||
int old_width_;
|
||||
int pad_depth_;
|
||||
int pad_height_;
|
||||
int pad_width_;
|
||||
int pad_head_;
|
||||
int pad_tail_;
|
||||
int pad_top_;
|
||||
int pad_left_;
|
||||
int n_;
|
||||
int c_;
|
||||
std::vector<int> stride_;
|
||||
std::vector<int> dilation_;
|
||||
int group_;
|
||||
bool is_null_input_;
|
||||
size_t input_size_;
|
||||
size_t filter_size_;
|
||||
size_t output_size_;
|
||||
size_t padded_size_;
|
||||
size_t workspace_size_;
|
||||
bool use_pad_;
|
||||
float beta_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_CONV3D_TRANSPOSE_GPU_KERNEL_H_
|
|
@ -0,0 +1,65 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class NetConv3dTranspose(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetConv3dTranspose, self).__init__()
|
||||
in_channel = 2
|
||||
out_channel = 2
|
||||
kernel_size = 2
|
||||
self.conv_trans = P.Conv3DTranspose(in_channel, out_channel,
|
||||
kernel_size,
|
||||
pad_mode="pad",
|
||||
pad=1,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
group=1)
|
||||
|
||||
def construct(self, x, w):
|
||||
return self.conv_trans(x, w)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_conv3d_transpose():
|
||||
x = Tensor(np.arange(1 * 2 * 3 * 3 * 3).reshape(1, 2, 3, 3, 3).astype(np.float32))
|
||||
w = Tensor(np.ones((2, 2, 2, 2, 2)).astype(np.float32))
|
||||
expect = np.array([[[[[320., 336.],
|
||||
[368., 384.]],
|
||||
[[464., 480.],
|
||||
[512., 528.]]],
|
||||
[[[320., 336.],
|
||||
[368., 384.]],
|
||||
[[464., 480.],
|
||||
[512., 528.]]]]]).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
conv3dtranspose = NetConv3dTranspose()
|
||||
output = conv3dtranspose(x, w)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
conv3dtranspose = NetConv3dTranspose()
|
||||
output = conv3dtranspose(x, w)
|
||||
assert (output.asnumpy() == expect).all()
|
Loading…
Reference in New Issue