Support Conv3dTranspose for GPU

This commit is contained in:
Li Kesen 2021-06-16 22:32:56 +08:00
parent 9852cced86
commit 7d94095730
6 changed files with 597 additions and 0 deletions

View File

@ -157,6 +157,48 @@ __global__ void PadGrad3d(const size_t size, const T* dy, const int num, const i
return;
}
// For internal OP use, not user facing
template <typename T>
__global__ void PadNDHWC(const size_t size, const T *input, const int num, const int old_depth, const int old_height,
const int old_width, const int channels, const int padded_depth, const int padded_height,
const int padded_width, const int pad_head, const int pad_top, const int pad_left,
float pad_value, T *output) {
T pad_value_ = static_cast<T>(pad_value);
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
int block_num = pos / (channels * padded_width * padded_height * padded_depth);
const int padded_w = pos / channels % padded_width;
const int padded_h = pos / (channels * padded_width) % padded_height;
const int padded_d = pos / (channels * padded_width * padded_height) % padded_depth;
if (padded_d - pad_head < 0 || padded_h - pad_top < 0 || padded_w - pad_left < 0 ||
padded_d - pad_head >= old_depth || padded_h - pad_top >= old_height || padded_w - pad_left >= old_width) {
output[pos] = pad_value_;
} else {
output[pos] =
input[(((block_num * old_depth + padded_d - pad_head) * old_height + padded_h - pad_top) * old_width +
padded_w - pad_left) *
channels +
pos % channels];
}
}
return;
}
template <typename T>
__global__ void PadGradNDHWC(const size_t size, const T *dy, const int num, const int old_depth, const int old_height,
const int old_width, const int channels, const int padded_depth, const int padded_height,
const int padded_width, const int pad_head, const int pad_top, const int pad_left, T *dx) {
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
int block_num = pos / (channels * old_width * old_height);
const int padded_w = pos / channels % old_width + pad_left;
const int padded_h = pos / (channels * old_width) % old_height + pad_top;
const int padded_d = pos / (channels * old_width * old_height) % old_depth + pad_head;
dx[pos] =
dy[(((block_num * padded_depth + padded_d) * padded_height + padded_h) * padded_width + padded_w) * channels +
pos % channels];
}
return;
}
template <typename T>
void CalPad(const size_t size, const T* input, const int num, const int channels, const int old_height,
const int old_width, const int padded_height, const int padded_width, const int pad_top, const int pad_left,
@ -237,6 +279,28 @@ void CalPadGrad3d(const size_t size, const T* dy, const int num, const int chann
return;
}
template <typename T>
void CalPadNDHWC(const size_t size, const T *input, const int num, const int old_depth, const int old_height,
const int old_width, const int channels, const int padded_depth, const int padded_height,
const int padded_width, const int pad_head, const int pad_top, const int pad_left,
const float pad_value, T *output, cudaStream_t cuda_stream) {
PadNDHWC<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, num, old_depth, old_height, old_width,
channels, padded_depth, padded_height, padded_width,
pad_head, pad_top, pad_left, pad_value, output);
return;
}
template <typename T>
void CalPadGradNDHWC(const size_t size, const T *dy, const int num, const int old_depth, const int old_height,
const int old_width, const int channels, const int padded_depth, const int padded_height,
const int padded_width, const int pad_head, const int pad_top, const int pad_left, T *dx,
cudaStream_t cuda_stream) {
PadGradNDHWC<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dy, num, old_depth, old_height, old_width,
channels, padded_depth, padded_height, padded_width,
pad_head, pad_top, pad_left, dx);
return;
}
template void CalPad<float>(const size_t size, const float* input, const int num, const int channels,
const int old_height, const int old_width, const int padded_height, const int padded_width,
const int pad_top, const int pad_left, float pad_value, float* output,
@ -302,3 +366,13 @@ template void CalPadGrad3d<half>(const size_t size, const half* dy, const int nu
const int padded_depth, const int padded_height, const int padded_width,
const int pad_head, const int pad_top, const int pad_left, half* dx,
cudaStream_t cuda_stream);
template void CalPadGradNDHWC<float>(const size_t size, const float *dy, const int num, const int old_depth,
const int old_height, const int old_width, const int channels,
const int padded_depth, const int padded_height, const int padded_width,
const int pad_head, const int pad_top, const int pad_left, float *dx,
cudaStream_t cuda_stream);
template void CalPadGradNDHWC<half>(const size_t size, const half *dy, const int num, const int old_depth,
const int old_height, const int old_width, const int channels,
const int padded_depth, const int padded_height, const int padded_width,
const int pad_head, const int pad_top, const int pad_left, half *dx,
cudaStream_t cuda_stream);

View File

@ -50,4 +50,14 @@ void CalPadGrad3d(const size_t size, const T* dy, const int num, const int chann
const int old_height, const int old_width, const int padded_depth, const int padded_height,
const int padded_width, const int pad_head, const int pad_top, const int pad_left, T* dx,
cudaStream_t cuda_stream);
template <typename T>
void CalPadNDHWC(const size_t size, const T *input, const int num, const int old_depth, const int old_height,
const int old_width, const int channels, const int padded_depth, const int padded_height,
const int padded_width, const int pad_head, const int pad_top, const int pad_left,
const float pad_value, T *output, cudaStream_t cuda_stream);
template <typename T>
void CalPadGradNDHWC(const size_t size, const T *dy, const int num, const int old_depth, const int old_height,
const int old_width, const int channels, const int padded_depth, const int padded_height,
const int padded_width, const int pad_head, const int pad_top, const int pad_left, T *dx,
cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_PADIMPL_H_

View File

@ -142,6 +142,13 @@ class GpuKernel : public KernelMod {
std::swap((*shape)[2], (*shape)[1]);
}
// transpose shape: NCDHW To NDHWC
void ShapeNCDHW2NDHWC(std::vector<size_t> *shape) {
std::swap((*shape)[1], (*shape)[2]);
std::swap((*shape)[2], (*shape)[3]);
std::swap((*shape)[3], (*shape)[4]);
}
void SetDimA(const std::vector<size_t> &shape, int *dimA, size_t len, const std::string &format) {
if (shape.size() != len) {
MS_EXCEPTION(ValueError) << "Invalid size of input shape " << shape.size() << "-D with dimA " << len << "-D.";

View File

@ -0,0 +1,30 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/conv3d_transpose_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(
Conv3DTranspose,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
Conv3dTransposeGpuFwdKernel, float)
MS_REG_GPU_KERNEL_ONE(
Conv3DTranspose,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
Conv3dTransposeGpuFwdKernel, half)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,411 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_CONV3D_TRANSPOSE_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_CONV3D_TRANSPOSE_GPU_KERNEL_H_
#include <algorithm>
#include <string>
#include <vector>
#include "backend/kernel_compiler/gpu/cuda_impl/pad_impl.cuh"
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/kernel_constants.h"
namespace mindspore {
namespace kernel {
template <typename T>
class Conv3dTransposeGpuFwdKernel : public GpuKernel {
public:
Conv3dTransposeGpuFwdKernel() { ResetResource(); }
~Conv3dTransposeGpuFwdKernel() override { DestroyResource(); }
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
if (is_null_input_) {
return true;
}
T *input_addr = GetDeviceAddress<T>(inputs, 0);
T *filter_addr = GetDeviceAddress<T>(inputs, 1);
T *output_addr = GetDeviceAddress<T>(outputs, 0);
T *work_space = nullptr;
if (workspace_size_ != 0) {
work_space = GetDeviceAddress<T>(workspace, 0);
}
const float alpha = 1;
if (use_pad_) {
T *padded = GetDeviceAddress<T>(workspace, 1);
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_,
cudnnConvolutionBackwardData(cudnn_handle_, &alpha, filter_desc_, filter_addr,
input_desc_, input_addr, conv_desc_, algo_, work_space,
workspace_size_, &beta_, padded_descriptor_, padded),
"ConvolutionBackwardData failed");
if (data_format_ == kOpFormat_NCDHW) {
CalPadGrad3d(output_size_ / sizeof(T), padded, n_, c_, old_depth_, old_height_, old_width_,
old_depth_ + pad_depth_, old_height_ + pad_height_, old_width_ + pad_width_, pad_head_, pad_top_,
pad_left_, output_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
} else {
MS_LOG(EXCEPTION) << "ConvTranspose3d only support NCDHW format right now.";
}
} else {
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnConvolutionBackwardData(cudnn_handle_, &alpha, filter_desc_, filter_addr, input_desc_, input_addr,
conv_desc_, algo_, work_space, workspace_size_, &beta_, output_desc_, output_addr),
"ConvolutionBackwardData failed");
}
return true;
}
bool Init(const CNodePtr &kernel_node) override {
kernel_node_ = kernel_node;
InitResource();
if (!CheckParam(kernel_node)) return false;
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
data_format_ = AnfAlgo::GetInputFormat(kernel_node, 0);
auto format_attr = GetAttr<std::string>(kernel_node, "format");
if (format_attr == kOpFormat_NDHWC) {
data_format_ = kOpFormat_NDHWC;
}
auto filter_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
is_null_input_ = CHECK_NULL_INPUT(input_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "Conv3dTransposeGpuBkwKernel input is null.";
InitSizeLists();
return true;
}
std::vector<size_t> output_shape;
GetInputShape(kernel_node, &output_shape);
if (data_format_ == kOpFormat_NDHWC) {
compute_format_ = CUDNN_TENSOR_NHWC;
if (format_attr == kOpFormat_NCDHW) {
ShapeNCDHW2NDHWC(&output_shape);
}
}
SetNCDHW(output_shape, &n_, &c_, &old_depth_, &old_height_, &old_width_, data_format_);
Set5DDesc(input_shape, output_shape, filter_shape);
group_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "groups"));
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnSetConvolutionGroupCount(conv_desc_, group_),
"cudnnSetConvGroupCount failed");
std::vector<int> pad_list;
std::vector<int64_t> pad_list_me = GetAttr<std::vector<int64_t>>(kernel_node, "pad_list");
(void)std::transform(pad_list_me.begin(), pad_list_me.end(), std::back_inserter(pad_list),
[](const int64_t &value) { return static_cast<int>(value); });
pad_depth_ = pad_list[0];
pad_height_ = pad_list[2];
pad_width_ = pad_list[4];
use_pad_ = !((pad_depth_ == pad_list[1]) && (pad_height_ == pad_list[3]) && (pad_width_ == pad_list[5]));
pad_mode_ = GetAttr<std::string>(kernel_node, "pad_mode");
SetStrideAndDilation(kernel_node);
cudnnTensorDescriptor_t output_desc_real = nullptr;
int padA[3];
int strideA[3] = {stride_[2], stride_[3], stride_[4]};
int dilaA[3] = {dilation_[2], dilation_[3], dilation_[4]};
if (use_pad_) {
pad_depth_ = pad_list[0] + pad_list[1];
pad_height_ = pad_list[2] + pad_list[3];
pad_width_ = pad_list[4] + pad_list[5];
pad_head_ = pad_list[0];
pad_top_ = pad_list[2];
pad_left_ = pad_list[4];
int dim_a[5];
int strideApadded[5];
if (data_format_ == kOpFormat_NCDHW) {
auto padded_shape = {IntToSize(n_), IntToSize(c_), IntToSize(old_depth_ + pad_depth_),
IntToSize(old_height_ + pad_height_), IntToSize(old_width_ + pad_width_)};
SetDimA(padded_shape, dim_a, 5, data_format_);
SetStrideA(padded_shape, strideApadded, 5, data_format_);
} else if (data_format_ == kOpFormat_NDHWC) {
auto padded_shape = {IntToSize(n_), IntToSize(old_depth_ + pad_depth_), IntToSize(old_height_ + pad_height_),
IntToSize(old_width_ + pad_width_), IntToSize(c_)};
SetDimA(padded_shape, dim_a, 5, data_format_);
SetStrideA(padded_shape, strideApadded, 5, data_format_);
}
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_, cudnnSetTensorNdDescriptor(padded_descriptor_, cudnn_data_type_, 5, dim_a, strideApadded),
"cudnnSetTensor5dDescriptor failed");
padA[0] = 0;
padA[1] = 0;
padA[2] = 0;
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnSetConvolutionNdDescriptor(conv_desc_, 3, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolutionNdDescriptor failed");
output_desc_real = padded_descriptor_;
} else {
if (pad_mode_ == kValidPadModeUpperCase || pad_mode_ == kValidPadModeLowerCase) {
pad_depth_ = 0;
pad_height_ = 0;
pad_width_ = 0;
}
padA[0] = pad_depth_;
padA[1] = pad_height_;
padA[2] = pad_width_;
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnSetConvolutionNdDescriptor(conv_desc_, 3, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolution3dDescriptor failed");
output_desc_real = output_desc_;
}
if (cudnn_data_type_ == CUDNN_DATA_HALF) {
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnSetConvolutionMathType(conv_desc_, CUDNN_TENSOR_OP_MATH),
"cudnnSetConvolutionMathType failed.")
}
SelectAlgorithm(output_desc_real);
beta_ = GetAttrWithDefault(kernel_node, "inplace_algo", std::string("cover")) == "cover" ? 0 : 1;
InitSizeLists();
return true;
}
void ResetResource() noexcept override {
cudnn_handle_ = nullptr;
input_desc_ = nullptr;
output_desc_ = nullptr;
filter_desc_ = nullptr;
conv_desc_ = nullptr;
algo_selected_ = false;
padded_descriptor_ = nullptr;
cudnn_data_type_ = CUDNN_DATA_FLOAT;
compute_format_ = CUDNN_TENSOR_NCHW;
old_height_ = 0;
old_width_ = 0;
old_depth_ = 0;
pad_depth_ = 0;
pad_height_ = 0;
pad_width_ = 0;
pad_head_ = 0;
pad_tail_ = 0;
pad_top_ = 0;
pad_left_ = 0;
n_ = 0;
c_ = 0;
beta_ = 0;
stride_.clear();
dilation_.clear();
group_ = 1;
is_null_input_ = false;
input_size_ = 0;
filter_size_ = 0;
output_size_ = 0;
padded_size_ = 0;
workspace_size_ = 0;
use_pad_ = true;
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
}
void DestroyResource() noexcept override {
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyConvolutionDescriptor(conv_desc_),
"cudnnDestroyConvolutionDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyFilterDescriptor(filter_desc_),
"cudnnDestroyFilterDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyTensorDescriptor(padded_descriptor_),
"cudnnDestroyTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyTensorDescriptor(input_desc_),
"cudnnDestroyTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyTensorDescriptor(output_desc_),
"cudnnDestroyTensorDescriptor failed");
}
protected:
void InitResource() override {
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateTensorDescriptor(&output_desc_),
"cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateTensorDescriptor(&input_desc_),
"cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateTensorDescriptor(&padded_descriptor_),
"cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateFilterDescriptor(&filter_desc_),
"cudnnCreateFilterDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateConvolutionDescriptor(&conv_desc_),
"cudnnCreateConvolutionDescriptor failed");
}
void InitSizeLists() override {
if (!is_null_input_) {
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnGetTensorSizeInBytes(input_desc_, &input_size_),
"cudnnGetTensorSizeInBytes failed");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnGetFilterSizeInBytes(filter_desc_, &filter_size_),
"cudnnGetTensorSizeInBytes failed");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnGetTensorSizeInBytes(output_desc_, &output_size_),
"cudnnGetTensorSizeInBytes failed");
}
input_size_list_.push_back(input_size_);
input_size_list_.push_back(filter_size_);
output_size_list_.push_back(output_size_);
if (use_pad_ && !is_null_input_) {
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnGetTensorSizeInBytes(padded_descriptor_, &padded_size_),
"cudnnGetTensorSizeInBytes failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle_, filter_desc_, input_desc_, conv_desc_,
padded_descriptor_, algo_, &workspace_size_),
"cudnnGetConvolutionBackwardDataWorkspaceSize failed");
workspace_size_list_.push_back(padded_size_);
} else {
if (!is_null_input_) {
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle_, filter_desc_, input_desc_, conv_desc_,
output_desc_, algo_, &workspace_size_),
"cudnnGetConvolutionBackwardDataWorkspaceSize failed");
}
}
(void)workspace_size_list_.insert(workspace_size_list_.begin(), workspace_size_);
}
private:
bool CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but Conv3dTranspose needs 2 inputs.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but Conv3dTranspose needs 1 output.";
return false;
}
return true;
}
void SetPad(const std::vector<int> &output_shape, const CNodePtr &kernel_node) {
std::vector<int> pad_list;
std::vector<int64_t> pad_list_me = GetAttr<std::vector<int64_t>>(kernel_node, "pad_list");
(void)std::transform(pad_list_me.begin(), pad_list_me.end(), std::back_inserter(pad_list),
[](const int64_t &value) { return static_cast<int>(value); });
}
void SelectAlgorithm(cudnnTensorDescriptor_t output_desc_real) {
constexpr int requested_algo_count = 1;
int returned_algo_count;
cudnnConvolutionBwdDataAlgoPerf_t perf_results;
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_,
cudnnGetConvolutionBackwardDataAlgorithm_v7(
cudnn_handle_, filter_desc_, input_desc_, conv_desc_, output_desc_real,
requested_algo_count, &returned_algo_count, &perf_results),
"cudnnGetConvolutionBackwardDataAlgorithm_v7 failed");
algo_ = perf_results.algo;
if (compute_format_ == CUDNN_TENSOR_NHWC && cudnn_data_type_ == CUDNN_DATA_HALF && CUDNN_MAJOR < 8) {
MS_LOG(ERROR) << "Conv3dTransposeGpuFwdKernel does not support float16 data with NDHWC format.";
}
}
void GetInputShape(const CNodePtr &kernel_node, std::vector<size_t> *input_shape) {
auto shp_tuple_x = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("input_size")->cast<ValueTuplePtr>()->value();
(void)std::transform(std::begin(shp_tuple_x), std::end(shp_tuple_x), std::back_inserter(*input_shape),
[](const ValuePtr &e) -> size_t { return static_cast<int>(e->cast<Int64ImmPtr>()->value()); });
}
void Set5DDesc(const std::vector<size_t> &input_shape, const std::vector<size_t> &output_shape,
const std::vector<size_t> &filter_shape) {
const int nbDims = 5;
int dim_a[5];
int stride_a_in[5];
int dim_a_dy[5];
int stride_a_dy[5];
int filter_dim_a[5];
SetDimA(output_shape, dim_a, 5, data_format_);
SetStrideA(output_shape, stride_a_in, 5, data_format_);
SetDimA(input_shape, dim_a_dy, 5, data_format_);
SetStrideA(input_shape, stride_a_dy, 5, data_format_);
SetDimA(filter_shape, filter_dim_a, 5, data_format_);
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_, cudnnSetTensorNdDescriptor(input_desc_, cudnn_data_type_, nbDims, dim_a_dy, stride_a_dy),
"cudnnSetTensorNdDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_, cudnnSetFilterNdDescriptor(filter_desc_, cudnn_data_type_, compute_format_, nbDims, filter_dim_a),
"cudnnSetFilterNdDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_,
cudnnSetTensorNdDescriptor(output_desc_, cudnn_data_type_, nbDims, dim_a, stride_a_in),
"cudnnSetTensorNdDescriptor failed");
}
void SetStrideAndDilation(const CNodePtr &kernel_node) {
std::vector<int64_t> stride_me = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, "strides");
std::vector<int64_t> dilation_me = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, "dilations");
(void)std::transform(stride_me.begin(), stride_me.end(), std::back_inserter(stride_),
[](const int64_t &value) { return static_cast<int>(value); });
(void)std::transform(dilation_me.begin(), dilation_me.end(), std::back_inserter(dilation_),
[](const int64_t &value) { return static_cast<int>(value); });
if (stride_.size() != 5) {
MS_LOG(EXCEPTION) << "Conv3dTransposeGpuFwdKernel's stride must be 5d!";
}
if (stride_[0] != 1 || stride_[1] != 1) {
MS_LOG(EXCEPTION) << "Conv3dTransposeGpuFwdKernel stride only support 1 in N axis and C axis!";
}
if (dilation_.size() != 5) {
MS_LOG(EXCEPTION) << "Conv3dTransposeGpuFwdKernel's dilation must be 5d!";
}
if (dilation_[0] != 1 || dilation_[1] != 1) {
MS_LOG(EXCEPTION) << "Conv3dTransposeGpuFwdKernel dilation only support 1 in N axis and C axis!";
}
}
cudnnHandle_t cudnn_handle_;
cudnnFilterDescriptor_t filter_desc_;
cudnnConvolutionDescriptor_t conv_desc_;
cudnnTensorDescriptor_t input_desc_;
cudnnTensorDescriptor_t output_desc_;
cudnnTensorDescriptor_t padded_descriptor_;
cudnnConvolutionBwdDataAlgo_t algo_;
bool algo_selected_;
std::string pad_mode_;
std::string data_format_ = kOpFormat_NCDHW;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
cudnnDataType_t cudnn_data_type_;
cudnnTensorFormat_t compute_format_;
int old_depth_;
int old_height_;
int old_width_;
int pad_depth_;
int pad_height_;
int pad_width_;
int pad_head_;
int pad_tail_;
int pad_top_;
int pad_left_;
int n_;
int c_;
std::vector<int> stride_;
std::vector<int> dilation_;
int group_;
bool is_null_input_;
size_t input_size_;
size_t filter_size_;
size_t output_size_;
size_t padded_size_;
size_t workspace_size_;
bool use_pad_;
float beta_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_CONV3D_TRANSPOSE_GPU_KERNEL_H_

View File

@ -0,0 +1,65 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetConv3dTranspose(nn.Cell):
def __init__(self):
super(NetConv3dTranspose, self).__init__()
in_channel = 2
out_channel = 2
kernel_size = 2
self.conv_trans = P.Conv3DTranspose(in_channel, out_channel,
kernel_size,
pad_mode="pad",
pad=1,
stride=1,
dilation=1,
group=1)
def construct(self, x, w):
return self.conv_trans(x, w)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_conv3d_transpose():
x = Tensor(np.arange(1 * 2 * 3 * 3 * 3).reshape(1, 2, 3, 3, 3).astype(np.float32))
w = Tensor(np.ones((2, 2, 2, 2, 2)).astype(np.float32))
expect = np.array([[[[[320., 336.],
[368., 384.]],
[[464., 480.],
[512., 528.]]],
[[[320., 336.],
[368., 384.]],
[[464., 480.],
[512., 528.]]]]]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
conv3dtranspose = NetConv3dTranspose()
output = conv3dtranspose(x, w)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
conv3dtranspose = NetConv3dTranspose()
output = conv3dtranspose(x, w)
assert (output.asnumpy() == expect).all()