forked from mindspore-Ecosystem/mindspore
support PReLU for GPU platform
This commit is contained in:
parent
cac91018ad
commit
7d1a35bedb
|
@ -95,3 +95,19 @@ template void ReluGradV2(const size_t num, const int64_t *dy, const uint32_t *ma
|
|||
cudaStream_t cuda_stream);
|
||||
template void ReluGradV2(const size_t num, const uint8_t *dy, const uint32_t *mask, uint8_t *dx,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
template <typename T>
|
||||
__global__ void CalPReLUKernel(int size, T *input_addr, T *weight_addr, T *output_addr) {
|
||||
for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
output_addr[pos] = input_addr[pos] > static_cast<T>(0) ? input_addr[pos] : *weight_addr * input_addr[pos];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalPReLU(int size, T *input_addr, T *weight_addr, T *output_addr, cudaStream_t cuda_stream) {
|
||||
CalPReLUKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input_addr, weight_addr, output_addr);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalPReLU(int size, float *input_addr, float *weight_addr, float *output_addr, cudaStream_t cuda_stream);
|
||||
template void CalPReLU(int size, half *input_addr, half *weight_addr, half *output_addr, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -25,4 +25,7 @@ template <typename T>
|
|||
void ReluV2(const size_t num, const T *x, T *y, uint32_t *mask, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void ReluGradV2(const size_t num, const T *dy, const uint32_t *mask, T *dx, cudaStream_t cuda_stream);
|
||||
|
||||
template <typename T>
|
||||
void CalPReLU(int input_size, T *input_addr, T *weight_addr, T *output_addr, cudaStream_t cuda_stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_H_
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/prelu_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
PReLU,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
PReLUGpuKernel, half)
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
PReLU,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
PReLUGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,111 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/relu_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class PReLUGpuKernel : public GpuKernel {
|
||||
public:
|
||||
PReLUGpuKernel() { ResetResource(); }
|
||||
~PReLUGpuKernel() override {}
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
if (is_null_input_) {
|
||||
return true;
|
||||
}
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *weight = GetDeviceAddress<T>(inputs, 1);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
const int size = input_size_ / sizeof(T);
|
||||
CalPReLU(size, input, weight, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
MS_LOG(ERROR) << "Argument number is " << input_num << ", but ReLUGpuFwdKernel needs 2.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "PReLUGpuFwdKernel input is null.";
|
||||
}
|
||||
size_t size = 1;
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
size *= input_shape[i];
|
||||
}
|
||||
input_size_ = size * sizeof(T);
|
||||
|
||||
auto weight_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 1);
|
||||
is_null_input_ = CHECK_NULL_INPUT(weight_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "PReLUGpuFwdKernel weight is null.";
|
||||
}
|
||||
size = 1;
|
||||
for (size_t i = 0; i < weight_shape.size(); i++) {
|
||||
size *= weight_shape[i];
|
||||
}
|
||||
weight_size_ = size * sizeof(T);
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
is_null_input_ = false;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
input_size_ = 0;
|
||||
workspace_size_ = 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
bool is_null_input_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
size_t input_size_;
|
||||
size_t weight_size_;
|
||||
size_t workspace_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GPU_KERNEL_H_
|
|
@ -548,7 +548,7 @@ class PReLU(Cell):
|
|||
ValueError: If length of shape of `input_data` is equal to 1.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[[[0.1, 0.6], [0.9, 0.9]]]]), mindspore.float32)
|
||||
|
|
|
@ -1145,7 +1145,7 @@ class BatchNorm(PrimitiveWithInfer):
|
|||
TypeError: If dtype of `input_x`, `scale` or `mean` is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.ones([2, 2]), mindspore.float32)
|
||||
|
@ -3533,7 +3533,7 @@ class PReLU(PrimitiveWithInfer):
|
|||
ValueError: If length of shape of `weight` is not equal to 1.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
class NetPReLU(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetPReLU, self).__init__()
|
||||
self.prelu = P.PReLU()
|
||||
|
||||
def construct(self, x, weight):
|
||||
return self.prelu(x, weight)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_prelu_float16():
|
||||
weight = Tensor(np.array([0.25]).astype(np.float16))
|
||||
x = Tensor(np.array([[[[-1, 1, 10],
|
||||
[1, -1, 1],
|
||||
[10, 1, -1]]]]).astype(np.float16))
|
||||
expect = np.array([[[[-0.25, 1, 10,],
|
||||
[1, -0.25, 1,],
|
||||
[10, 1, -0.25]]]]).astype(np.float16)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
prelu = NetPReLU()
|
||||
output = prelu(x, weight)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
prelu = NetPReLU()
|
||||
output = prelu(x, weight)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_prelu_float32():
|
||||
weight = Tensor(np.array([0.25]).astype(np.float32))
|
||||
x = Tensor(np.array([[[[-1, 1, 10],
|
||||
[1, -1, 1],
|
||||
[10, 1, -1]]]]).astype(np.float32))
|
||||
expect = np.array([[[[-0.25, 1, 10,],
|
||||
[1, -0.25, 1,],
|
||||
[10, 1, -0.25]]]]).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
prelu = NetPReLU()
|
||||
output = prelu(x, weight)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
prelu = NetPReLU()
|
||||
output = prelu(x, weight)
|
||||
assert (output.asnumpy() == expect).all()
|
Loading…
Reference in New Issue