forked from mindspore-Ecosystem/mindspore
Add RGB2GRAY operation
This commit is contained in:
parent
c69142fdc1
commit
7b56d1772e
|
@ -134,6 +134,9 @@ std::shared_ptr<TensorOperation> CenterCrop::Parse(const MapTargetDevice &env) {
|
|||
return std::make_shared<CenterCropOperation>(data_->size_);
|
||||
}
|
||||
|
||||
// RGB2GRAY Transform Operation.
|
||||
std::shared_ptr<TensorOperation> RGB2GRAY::Parse() { return std::make_shared<RgbToGrayOperation>(); }
|
||||
|
||||
// Crop Transform Operation.
|
||||
struct Crop::Data {
|
||||
Data(const std::vector<int32_t> &coordinates, const std::vector<int32_t> &size)
|
||||
|
|
|
@ -91,6 +91,22 @@ class CenterCrop : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RGB2GRAY TensorTransform.
|
||||
/// \notes Convert RGB image or color image to grayscale image
|
||||
class RGB2GRAY : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
RGB2GRAY() = default;
|
||||
|
||||
/// \brief Destructor.
|
||||
~RGB2GRAY() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief Crop TensorTransform.
|
||||
/// \notes Crop an image based on location and crop size
|
||||
class Crop : public TensorTransform {
|
||||
|
|
|
@ -44,6 +44,7 @@ add_library(kernels-image OBJECT
|
|||
random_sharpness_op.cc
|
||||
rescale_op.cc
|
||||
resize_op.cc
|
||||
rgb_to_gray_op.cc
|
||||
rgba_to_bgr_op.cc
|
||||
rgba_to_rgb_op.cc
|
||||
sharpness_op.cc
|
||||
|
|
|
@ -1096,6 +1096,23 @@ Status RgbaToBgr(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *
|
|||
}
|
||||
}
|
||||
|
||||
Status RgbToGray(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
try {
|
||||
std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input));
|
||||
if (input_cv->Rank() != 3 || input_cv->shape()[2] != 3) {
|
||||
RETURN_STATUS_UNEXPECTED("RgbToGray: image shape is not <H,W,C> or channel is not 3.");
|
||||
}
|
||||
TensorShape out_shape = TensorShape({input_cv->shape()[0], input_cv->shape()[1]});
|
||||
std::shared_ptr<CVTensor> output_cv;
|
||||
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(out_shape, input_cv->type(), &output_cv));
|
||||
cv::cvtColor(input_cv->mat(), output_cv->mat(), static_cast<int>(cv::COLOR_RGB2GRAY));
|
||||
*output = std::static_pointer_cast<Tensor>(output_cv);
|
||||
return Status::OK();
|
||||
} catch (const cv::Exception &e) {
|
||||
RETURN_STATUS_UNEXPECTED("RgbToGray: " + std::string(e.what()));
|
||||
}
|
||||
}
|
||||
|
||||
Status GetJpegImageInfo(const std::shared_ptr<Tensor> &input, int *img_width, int *img_height) {
|
||||
struct jpeg_decompress_struct cinfo {};
|
||||
struct JpegErrorManagerCustom jerr {};
|
||||
|
|
|
@ -293,6 +293,12 @@ Status RgbaToRgb(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *
|
|||
/// \return Status code
|
||||
Status RgbaToBgr(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
/// \brief Take in a 3 channel image in RBG to GRAY
|
||||
/// \param[in] input The input image
|
||||
/// \param[out] output The output image
|
||||
/// \return Status code
|
||||
Status RgbToGray(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
/// \brief Get jpeg image width and height
|
||||
/// \param input: CVTensor containing the not decoded image 1D bytes
|
||||
/// \param img_width: the jpeg image width
|
||||
|
|
|
@ -1672,5 +1672,25 @@ bool GetAffineTransform(std::vector<Point> src_point, std::vector<Point> dst_poi
|
|||
return true;
|
||||
}
|
||||
|
||||
bool ConvertRgbToGray(const LiteMat &src, LDataType data_type, int w, int h, LiteMat &mat) {
|
||||
if (data_type == LDataType::UINT8) {
|
||||
if (mat.IsEmpty()) {
|
||||
mat.Init(w, h, 1, LDataType::UINT8);
|
||||
}
|
||||
unsigned char *ptr = mat;
|
||||
const unsigned char *data_ptr = src;
|
||||
for (int y = 0; y < h; y++) {
|
||||
for (int x = 0; x < w; x++) {
|
||||
*ptr = (data_ptr[2] * B2GRAY + data_ptr[1] * G2GRAY + data_ptr[0] * R2GRAY + GRAYSHIFT_DELTA) >> GRAYSHIFT;
|
||||
ptr++;
|
||||
data_ptr += 3;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -137,6 +137,9 @@ bool ConvRowCol(const LiteMat &src, const LiteMat &kx, const LiteMat &ky, LiteMa
|
|||
/// \brief Filter the image by a Sobel kernel
|
||||
bool Sobel(const LiteMat &src, LiteMat &dst, int flag_x, int flag_y, int ksize, PaddBorderType pad_type);
|
||||
|
||||
/// \brief Convert RGB image or color image to grayscale image
|
||||
bool ConvertRgbToGray(const LiteMat &src, LDataType data_type, int w, int h, LiteMat &mat);
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // IMAGE_PROCESS_H_
|
||||
|
|
|
@ -421,6 +421,40 @@ Status Resize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *out
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status RgbToGray(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
if (input->Rank() != 3) {
|
||||
RETURN_STATUS_UNEXPECTED("RgbToGray: input image is not in shape of <H,W,C>");
|
||||
}
|
||||
if (input->type() != DataType::DE_UINT8) {
|
||||
RETURN_STATUS_UNEXPECTED("RgbToGray: image datatype is not uint8.");
|
||||
}
|
||||
|
||||
try {
|
||||
int output_height = input->shape()[0];
|
||||
int output_width = input->shape()[1];
|
||||
|
||||
LiteMat lite_mat_rgb(input->shape()[1], input->shape()[0], input->shape()[2],
|
||||
const_cast<void *>(reinterpret_cast<const void *>(input->GetBuffer())),
|
||||
GetLiteCVDataType(input->type()));
|
||||
LiteMat lite_mat_convert;
|
||||
std::shared_ptr<Tensor> output_tensor;
|
||||
TensorShape new_shape = TensorShape({output_height, output_width, 1});
|
||||
RETURN_IF_NOT_OK(Tensor::CreateEmpty(new_shape, input->type(), &output_tensor));
|
||||
uint8_t *buffer = reinterpret_cast<uint8_t *>(&(*output_tensor->begin<uint8_t>()));
|
||||
lite_mat_convert.Init(output_width, output_height, 1, reinterpret_cast<void *>(buffer),
|
||||
GetLiteCVDataType(input->type()));
|
||||
|
||||
bool ret =
|
||||
ConvertRgbToGray(lite_mat_rgb, GetLiteCVDataType(input->type()), output_width, output_height, lite_mat_convert);
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(ret, "RgbToGray: RGBToGRAY failed.");
|
||||
|
||||
*output = output_tensor;
|
||||
} catch (std::runtime_error &e) {
|
||||
RETURN_STATUS_UNEXPECTED("RgbToGray: " + std::string(e.what()));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const int32_t &pad_top,
|
||||
const int32_t &pad_bottom, const int32_t &pad_left, const int32_t &pad_right, const BorderType &border_types,
|
||||
uint8_t fill_r, uint8_t fill_g, uint8_t fill_b) {
|
||||
|
|
|
@ -95,6 +95,12 @@ Status Resize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *out
|
|||
int32_t output_width, double fx = 0.0, double fy = 0.0,
|
||||
InterpolationMode mode = InterpolationMode::kLinear);
|
||||
|
||||
/// \brief Take in a 3 channel image in RBG to GRAY
|
||||
/// \param[in] input The input image
|
||||
/// \param[out] output The output image
|
||||
/// \return Status code
|
||||
Status RgbToGray(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
/// \brief Pads the input image and puts the padded image in the output
|
||||
/// \param[in] input: input Tensor
|
||||
/// \param[out] output: padded Tensor
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/kernels/image/rgb_to_gray_op.h"
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#else
|
||||
#include "minddata/dataset/kernels/image/lite_image_utils.h"
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
Status RgbToGrayOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
IO_CHECK(input, output);
|
||||
return RgbToGray(input, output);
|
||||
}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,42 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGB_TO_GRAY_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGB_TO_GRAY_OP_H_
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/kernels/tensor_op.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class RgbToGrayOp : public TensorOp {
|
||||
public:
|
||||
RgbToGrayOp() = default;
|
||||
|
||||
~RgbToGrayOp() override = default;
|
||||
|
||||
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
|
||||
|
||||
std::string Name() const override { return kRgbToGrayOp; }
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGB_TO_GRAY_OP_H_
|
|
@ -72,6 +72,7 @@
|
|||
#include "minddata/dataset/kernels/image/rgba_to_bgr_op.h"
|
||||
#include "minddata/dataset/kernels/image/rgba_to_rgb_op.h"
|
||||
#endif
|
||||
#include "minddata/dataset/kernels/image/rgb_to_gray_op.h"
|
||||
#include "minddata/dataset/kernels/image/rotate_op.h"
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "minddata/dataset/kernels/image/soft_dvpp/soft_dvpp_decode_random_crop_resize_jpeg_op.h"
|
||||
|
@ -232,6 +233,11 @@ Status CenterCropOperation::to_json(nlohmann::json *out_json) {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// RGB2GRAYOperation
|
||||
Status RgbToGrayOperation::ValidateParams() { return Status::OK(); }
|
||||
|
||||
std::shared_ptr<TensorOp> RgbToGrayOperation::Build() { return std::make_shared<RgbToGrayOp>(); }
|
||||
|
||||
// CropOperation.
|
||||
CropOperation::CropOperation(std::vector<int32_t> coordinates, std::vector<int32_t> size)
|
||||
: coordinates_(coordinates), size_(size) {}
|
||||
|
|
|
@ -74,6 +74,7 @@ constexpr char kResizeOperation[] = "Resize";
|
|||
constexpr char kResizeWithBBoxOperation[] = "ResizeWithBBox";
|
||||
constexpr char kRgbaToBgrOperation[] = "RgbaToBgr";
|
||||
constexpr char kRgbaToRgbOperation[] = "RgbaToRgb";
|
||||
constexpr char kRgbToGrayOperation[] = "RgbToGray";
|
||||
constexpr char kRotateOperation[] = "Rotate";
|
||||
constexpr char kSoftDvppDecodeRandomCropResizeJpegOperation[] = "SoftDvppDecodeRandomCropResizeJpeg";
|
||||
constexpr char kSoftDvppDecodeResizeJpegOperation[] = "SoftDvppDecodeResizeJpeg";
|
||||
|
@ -163,6 +164,19 @@ class CenterCropOperation : public TensorOperation {
|
|||
std::vector<int32_t> size_;
|
||||
};
|
||||
|
||||
class RgbToGrayOperation : public TensorOperation {
|
||||
public:
|
||||
RgbToGrayOperation() = default;
|
||||
|
||||
~RgbToGrayOperation() = default;
|
||||
|
||||
std::shared_ptr<TensorOp> Build() override;
|
||||
|
||||
Status ValidateParams() override;
|
||||
|
||||
std::string Name() const override { return kRgbToGrayOperation; }
|
||||
};
|
||||
|
||||
class CropOperation : public TensorOperation {
|
||||
public:
|
||||
CropOperation(std::vector<int32_t> coordinates, std::vector<int32_t> size);
|
||||
|
|
|
@ -97,6 +97,7 @@ constexpr char kResizeOp[] = "ResizeOp";
|
|||
constexpr char kResizeWithBBoxOp[] = "ResizeWithBBoxOp";
|
||||
constexpr char kRgbaToBgrOp[] = "RgbaToBgrOp";
|
||||
constexpr char kRgbaToRgbOp[] = "RgbaToRgbOp";
|
||||
constexpr char kRgbToGrayOp[] = "RgbToGrayOp";
|
||||
constexpr char kSharpnessOp[] = "SharpnessOp";
|
||||
constexpr char kSolarizeOp[] = "SolarizeOp";
|
||||
constexpr char kSwapRedBlueOp[] = "SwapRedBlueOp";
|
||||
|
|
|
@ -88,6 +88,22 @@ class CenterCrop : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RGB2GRAY TensorTransform.
|
||||
/// \notes Convert RGB image or color image to grayscale image
|
||||
class RGB2GRAY : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
RGB2GRAY() = default;
|
||||
|
||||
/// \brief Destructor.
|
||||
~RGB2GRAY() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief Crop TensorTransform.
|
||||
/// \notes Crop an image based on location and crop size
|
||||
class Crop : public TensorTransform {
|
||||
|
|
|
@ -191,13 +191,14 @@ if(BUILD_MINDDATA STREQUAL "full")
|
|||
${MINDDATA_DIR}/util/cond_var.cc
|
||||
${MINDDATA_DIR}/engine/data_schema.cc
|
||||
${MINDDATA_DIR}/kernels/tensor_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/affine_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/lite_image_utils.cc
|
||||
${MINDDATA_DIR}/kernels/image/center_crop_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/crop_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/decode_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/normalize_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/affine_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/resize_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/rgb_to_gray_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/rotate_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/random_affine_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/math_utils.cc
|
||||
|
@ -279,6 +280,7 @@ elseif(BUILD_MINDDATA STREQUAL "wrapper")
|
|||
${MINDDATA_DIR}/kernels/image/crop_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/normalize_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/resize_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/rgb_to_gray_op.cc
|
||||
${MINDDATA_DIR}/kernels/image/rotate_op.cc
|
||||
${MINDDATA_DIR}/kernels/data/compose_op.cc
|
||||
${MINDDATA_DIR}/kernels/data/duplicate_op.cc
|
||||
|
@ -377,6 +379,7 @@ elseif(BUILD_MINDDATA STREQUAL "lite")
|
|||
"${MINDDATA_DIR}/kernels/image/random_vertical_flip_with_bbox_op.cc"
|
||||
"${MINDDATA_DIR}/kernels/image/random_sharpness_op.cc"
|
||||
"${MINDDATA_DIR}/kernels/image/rescale_op.cc"
|
||||
"${MINDDATA_DIR}/kernels/image/rgb_to_gray_op.cc"
|
||||
"${MINDDATA_DIR}/kernels/image/rgba_to_bgr_op.cc"
|
||||
"${MINDDATA_DIR}/kernels/image/rgba_to_rgb_op.cc"
|
||||
"${MINDDATA_DIR}/kernels/image/sharpness_op.cc"
|
||||
|
|
|
@ -195,3 +195,39 @@ TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) {
|
|||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestRGB2GRAYSucess) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRGB2GRAYSucess.";
|
||||
// Create an ImageFolder Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data/";
|
||||
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, std::make_shared<SequentialSampler>(0, 1));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> convert(new mindspore::dataset::vision::RGB2GRAY());
|
||||
|
||||
ds = ds->Map({convert});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
iter->GetNextRow(&row);
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 1);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
}
|
||||
|
|
|
@ -1714,3 +1714,25 @@ TEST_F(MindDataImageProcess, TestSobelFlag) {
|
|||
distance_x = sqrt(distance_x / total_size);
|
||||
EXPECT_EQ(distance_x, 0.0f);
|
||||
}
|
||||
|
||||
TEST_F(MindDataImageProcess, testConvertRgbToGray) {
|
||||
std::string filename = "data/dataset/apple.jpg";
|
||||
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
|
||||
cv::Mat rgb_mat;
|
||||
cv::Mat rgb_mat1;
|
||||
|
||||
cv::cvtColor(image, rgb_mat, CV_BGR2GRAY);
|
||||
cv::imwrite("./opencv_image.jpg", rgb_mat);
|
||||
|
||||
cv::cvtColor(image, rgb_mat1, CV_BGR2RGB);
|
||||
|
||||
LiteMat lite_mat_rgb;
|
||||
lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
|
||||
LiteMat lite_mat_gray;
|
||||
bool ret = ConvertRgbToGray(lite_mat_rgb, LDataType::UINT8, image.cols, image.rows, lite_mat_gray);
|
||||
ASSERT_TRUE(ret == true);
|
||||
|
||||
cv::Mat dst_image(lite_mat_gray.height_, lite_mat_gray.width_, CV_8UC1, lite_mat_gray.data_ptr_);
|
||||
cv::imwrite("./mindspore_image.jpg", dst_image);
|
||||
CompareMat(rgb_mat, lite_mat_gray);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue