!23378 Add test cases of break

Merge pull request !23378 from chenfei_mindspore/add_break_test_cases
This commit is contained in:
i-robot 2021-09-14 13:16:47 +00:00 committed by Gitee
commit 784a236e54
1 changed files with 474 additions and 0 deletions

View File

@ -0,0 +1,474 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore.common import dtype as mstype
from mindspore import nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore import context
from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
grad_all = C.GradOperation(get_all=True)
class Grad(nn.Cell):
def __init__(self, net):
super(Grad, self).__init__(auto_prefix=False)
self.forward_net = net
self.grad = C.GradOperation(get_all=True)
def construct(self, *inputs):
grads = self.grad(self.forward_net)(*inputs)
return grads
class ForBreakForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(ForBreakForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
for i in range(self.max_cycles):
if i % 2 == 0:
continue
out = x * y + out
if out == 20:
return out
if out > 20:
break
return out
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_for_break_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForBreakForwardNet(max_cycles=3)
graph_out = forward_net(x, y)
assert graph_out == Tensor(np.array(3), mstype.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_for_break_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = ForBreakForwardNet(max_cycles=3)
backward_net = Grad(forward_net)
graph_grads = backward_net(x, y)
assert graph_grads == (Tensor(np.array(3), mstype.int32), Tensor(np.array(1), mstype.int32))
class WhileBreakForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(WhileBreakForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
i = self.i
out = self.zero
while i < self.max_cycles:
if i % 2 == 0:
i = i + 1
continue
out = x * y + out
if out > 20:
break
if out == 20:
return out
i = i + 1
return out
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_break_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = WhileBreakForwardNet(max_cycles=10)
graph_mode_out = forward_net(x, y)
assert graph_mode_out == Tensor(np.array(15))
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_break_backward():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = WhileBreakForwardNet(max_cycles=10)
backward_net = Grad(forward_net)
graph_grads = backward_net(x, y)
assert graph_grads == (Tensor(np.array(15), mstype.int32), Tensor(np.array(5), mstype.int32))
class IfAfterIfInWhileBreakForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(IfAfterIfInWhileBreakForwardNet, self).__init__()
self.max_cycles = max_cycles
self.i = Tensor(np.array(0), mstype.int32)
self.zero = Tensor(np.array(0), mstype.int32)
self.weight = Parameter(Tensor(np.array(0), mstype.int32))
def construct(self, x, y):
i = self.i
out = self.zero
while i < self.max_cycles:
self.weight = i
if self.weight % 2 == 0:
i = i + 1
continue
if out <= 20:
self.weight = i
out = x * y + out
else:
break
i = i + 1
if out >= 30:
self.weight = out
out = out - 30
return out
out = out + 1
return out
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_after_if_in_while_break_forward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
# Graph Mode
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
graph_forward_net = IfAfterIfInWhileBreakForwardNet(max_cycles=10)
graph_mode_out = graph_forward_net(x, y)
assert graph_mode_out == Tensor(np.array(16), mstype.int32)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_after_if_in_while_break_backward():
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
# Graph Mode
context.set_context(mode=context.GRAPH_MODE)
graph_forward_net = IfAfterIfInWhileBreakForwardNet(max_cycles=10)
graph_backward_net = Grad(graph_forward_net)
graph_mode_grads = graph_backward_net(x, y)
assert graph_mode_grads == (Tensor(np.array(15), mstype.int32), Tensor(np.array(5), mstype.int32))
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_after_for_in_if_break():
class IfAfterForInIfNet(nn.Cell):
def __init__(self):
super().__init__()
self.param_a = Parameter(Tensor(5, mstype.int32), name='a')
self.param_b = Parameter(Tensor(4, mstype.int32), name='b')
def construct(self, x):
out = x + self.param_a
if self.param_a > self.param_b:
for _ in range(4):
self.param_a += 1
if self.param_b < 0:
continue
self.param_b -= 3
if self.param_a > 6:
break
self.param_b += 15
if x < self.param_b:
out -= self.param_b
return out
out = self.param_b + out
return out
x = Tensor(2, mstype.int32)
# graph mode
forward_net = IfAfterForInIfNet()
graph_forward_res = forward_net(x)
context.set_context(mode=context.GRAPH_MODE)
if_after_for_in_if_net = IfAfterForInIfNet()
net = Grad(if_after_for_in_if_net)
graph_backward_res = net(x)
assert graph_forward_res == Tensor(-6, mstype.int32)
assert graph_backward_res == (Tensor(1, mstype.int32),)
@pytest.mark.skip(reason="ME EvalCNode error.")
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_after_for_in_for_break():
class IfAfterForInForNet(nn.Cell):
def __init__(self):
super().__init__()
self.param_a = Parameter(Tensor(5, mstype.int32), name='a')
self.param_b = Parameter(Tensor(2, mstype.int32), name='b')
def construct(self, x):
out = x + self.param_a
for _ in range(0, 10):
x *= 2
if self.param_a % 2 == 0:
self.param_a += 1
continue
for _ in range(0, 5):
self.param_a += 1
x += self.param_b
if x > 10:
break
if x > 100:
return x
if self.param_a > self.param_b:
out += x
return out
x = Tensor(2, mstype.int32)
# graph mode
forward_net = IfAfterForInForNet()
graph_forward_res = forward_net(x)
if_after_for_in_for_net = IfAfterForInForNet()
net = Grad(if_after_for_in_for_net)
graph_backward_res = net(x)
print("test_if_after_for_in_for_break graph_forward_res:", graph_forward_res)
print("test_if_after_for_in_for_break graph_backward_res:", graph_backward_res)
# assert graph_forward_res == Tensor(12285, mstype.int32)
# assert graph_backward_res == (Tensor(1025, mstype.int32),)
class WhileAfterWhileInWhileBreakForwardNet(nn.Cell):
def __init__(self, max_cycles=10):
super(WhileAfterWhileInWhileBreakForwardNet, self).__init__()
self.max_cycles = max_cycles
self.zero = Tensor(np.array(0), mstype.int32)
self.i = Tensor(np.array(0), mstype.int32)
def construct(self, x, y):
out = self.zero
i = self.i
while i < self.max_cycles:
j = self.i
while j < self.max_cycles + 3:
out = x * y + out
j = j + 1
if j > 4:
break
i = i + 1
if i > 2:
break
i = self.i
while i < self.max_cycles:
out = x * y + out
i = i + 1
return out
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_after_while_in_while_break_forward():
context.set_context(mode=context.GRAPH_MODE)
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = WhileAfterWhileInWhileBreakForwardNet(max_cycles=3)
graph_out = forward_net(x, y)
assert graph_out == Tensor(np.array(54), mstype.int32)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_after_while_in_while_break_backward():
context.set_context(mode=context.GRAPH_MODE)
x = Tensor(np.array(1), mstype.int32)
y = Tensor(np.array(3), mstype.int32)
forward_net = WhileAfterWhileInWhileBreakForwardNet(max_cycles=3)
backward_net = Grad(forward_net)
graph_grads = backward_net(x, y)
assert graph_grads == (Tensor(np.array(54), mstype.int32), Tensor(np.array(18), mstype.int32))
class TwoBreakDeadForwardNet(nn.Cell):
def __init__(self):
super(TwoBreakDeadForwardNet, self).__init__()
self.zero = Tensor(np.array(0), mstype.int32)
def construct(self, x):
while x < 5:
if x > 3:
x -= 2
elif x == 3:
break
else:
break
x = x + 1
return x
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_2break_dead_block():
x = Tensor(np.array(1), mstype.int32)
forward_net = TwoBreakDeadForwardNet()
graph_out = forward_net(x)
assert graph_out == Tensor(np.array(1), mstype.int32)
class ForInFor2BreakForwardNet(nn.Cell):
def __init__(self):
super(ForInFor2BreakForwardNet, self).__init__()
self.relu = P.ReLU()
self.add = P.TensorAdd()
def construct(self, x, y, z):
out = z
for _ in range(2):
for _ in range(3):
if 2 * x < y:
out = self.add(out, out)
x = x + 1
if x + 6 == y:
break
out = self.relu(out)
return out
@pytest.mark.skip(reason="Get wrong parent graph")
def test_for_in_for_break():
x = Tensor(np.array(7), mstype.float32)
y = Tensor(np.array(20), mstype.float32)
z = Tensor(np.array(2), mstype.float32)
forward_net = ForInFor2BreakForwardNet()
graph_out = forward_net(x, y, z)
print("test_for_in_for_break graph out:", graph_out)
# raise a endless loop exception.
@pytest.mark.skip(reason="Infer raise a endless loop exception")
def test_while_true_break():
context.set_context(save_graphs=True)
class WhileTrueBreakNet(nn.Cell):
def __init__(self, t):
super(WhileTrueBreakNet, self).__init__()
self.add = P.Add()
self.mul = P.Mul()
self.para = Parameter(Tensor(t, mstype.int32), name="a")
def construct(self, x, y):
out = self.mul(y, self.para)
while True:
if x == 5:
x = x - 3
continue
if x == 2:
break
out = self.add(out, out)
return out
t = np.array([1]).astype(np.int32)
y = Tensor([1], mstype.int32)
x = Tensor([5], mstype.int32)
net = WhileTrueBreakNet(t)
grad_net = Grad(net)
grad_out = grad_net(x, y)
print(grad_out)
# stuck in vm backend
@pytest.mark.skip(reason="Stuck in vm backend")
def test_continue_stuck_in_vm():
context.set_context(save_graphs=True)
class NetWork(nn.Cell):
def __init__(self, t):
super().__init__()
self.add = P.Add()
self.mul = P.Mul()
self.para = Parameter(Tensor(t, mstype.int32), name="a")
def construct(self, x, y):
out = self.mul(y, y)
while x != 3:
while self.para > 5:
# self.param -= 1 if set after if_switch, which is wrong
self.para -= 1
x += 1
if x > 3:
self.para -= x
return out
out = self.add(out, y)
continue
out = self.mul(out, y)
return out
x = Tensor(2, mstype.int32)
t = 8
y = Tensor(1, mstype.int32)
net = NetWork(t)
grad_net = Grad(net)
grad = grad_net(x, y)
print(grad)