diff --git a/model_zoo/research/cv/squeezenet/README.md b/model_zoo/research/cv/squeezenet/README.md index 207e22f6b00..a22defbf589 100644 --- a/model_zoo/research/cv/squeezenet/README.md +++ b/model_zoo/research/cv/squeezenet/README.md @@ -100,37 +100,6 @@ After installing MindSpore via the official website, you can start training and sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] ``` - If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start training and evaluation as follows: - -```python -# run distributed training on modelarts example -# (1) First, Perform a or b. -# a. Set "enable_modelarts=True" on yaml file. -# Set other parameters on yaml file you need. -# b. Add "enable_modelarts=True" on the website UI interface. -# Add other parameters on the website UI interface. -# (2) Set the Dataset directory in config file. -# (3) Set the code directory to "/path/squeezenet" on the website UI interface. -# (4) Set the startup file to "train.py" on the website UI interface. -# (5) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface. -# (6) Create your job. - -# run evaluation on modelarts example -# (1) Copy or upload your trained model to S3 bucket. -# (2) Perform a or b. -# a. Set "enable_modelarts=True" on yaml file. -# Set "checkpoint_file_path='/cache/checkpoint_path/model.ckpt'" on yaml file. -# Set "checkpoint_url=/The path of checkpoint in S3/" on yaml file. -# b. Add "enable_modelarts=True" on the website UI interface. -# Add "checkpoint_file_path='/cache/checkpoint_path/model.ckpt'" on the website UI interface. -# Add "checkpoint_url=/The path of checkpoint in S3/" on the website UI interface. -# (3) Set the Dataset directory in config file. -# (4) Set the code directory to "/path/squeezenet" on the website UI interface. -# (5) Set the startup file to "eval.py" on the website UI interface. -# (6) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface. -# (7) Create your job. -``` - # [Script Description](#contents) ## [Script and Sample Code](#contents) @@ -140,29 +109,21 @@ After installing MindSpore via the official website, you can start training and └── squeezenet ├── README.md ├── scripts - ├── run_distribute_train.sh # launch ascend distributed training(8 pcs) - ├── run_standalone_train.sh # launch ascend standalone training(1 pcs) - ├── run_distribute_train_gpu.sh # launch gpu distributed training(8 pcs) - ├── run_standalone_train_gpu.sh # launch gpu standalone training(1 pcs) - ├── run_eval.sh # launch ascend evaluation - └── run_eval_gpu.sh # launch gpu evaluation + ├── run_distribute_train.sh # launch ascend distributed training(8 pcs) + ├── run_standalone_train.sh # launch ascend standalone training(1 pcs) + ├── run_distribute_train_gpu.sh # launch gpu distributed training(8 pcs) + ├── run_standalone_train_gpu.sh # launch gpu standalone training(1 pcs) + ├── run_eval.sh # launch ascend evaluation + └── run_eval_gpu.sh # launch gpu evaluation ├── src - ├── dataset.py # data preprocessing - ├── CrossEntropySmooth.py # loss definition for ImageNet dataset - ├── lr_generator.py # generate learning rate for each step - └── squeezenet.py # squeezenet architecture, including squeezenet and squeezenet_residual - ├── model_utils - │ ├── device_adapter.py # device adapter - │ ├── local_adapter.py # local adapter - │ ├── moxing_adapter.py # moxing adapter - │ ├── config.py # parameter analysis - ├── squeezenet_cifar10_config.yaml # parameter configuration - ├── squeezenet_imagenet_config.yaml # parameter configuration - ├── squeezenet_residual_cifar10_config.yaml # parameter configuration - ├── squeezenet_residual_imagenet_config.yaml # parameter configuration - ├── train.py # train net - ├── eval.py # eval net - └── export.py # export checkpoint files into geir/onnx + ├── config.py # parameter configuration + ├── dataset.py # data preprocessing + ├── CrossEntropySmooth.py # loss definition for ImageNet dataset + ├── lr_generator.py # generate learning rate for each step + └── squeezenet.py # squeezenet architecture, including squeezenet and squeezenet_residual + ├── train.py # train net + ├── eval.py # eval net + └── export.py # export checkpoint files into geir/onnx ``` ## [Script Parameters](#contents) diff --git a/model_zoo/research/cv/squeezenet/eval.py b/model_zoo/research/cv/squeezenet/eval.py index 352afdca88c..a1eda27f3e1 100755 --- a/model_zoo/research/cv/squeezenet/eval.py +++ b/model_zoo/research/cv/squeezenet/eval.py @@ -14,34 +14,44 @@ # ============================================================================ """eval squeezenet.""" import os +import argparse from mindspore import context from mindspore.common import set_seed from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net -from model_utils.config import config -from model_utils.moxing_adapter import moxing_wrapper from src.CrossEntropySmooth import CrossEntropySmooth +parser = argparse.ArgumentParser(description='Image classification') +parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], + help='Model.') +parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') +parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') +parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') +parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') +args_opt = parser.parse_args() + set_seed(1) -if config.net_name == "squeezenet": +if args_opt.net == "squeezenet": from src.squeezenet import SqueezeNet as squeezenet - if config.dataset == "cifar10": + if args_opt.dataset == "cifar10": + from src.config import config1 as config from src.dataset import create_dataset_cifar as create_dataset else: + from src.config import config2 as config from src.dataset import create_dataset_imagenet as create_dataset else: from src.squeezenet import SqueezeNet_Residual as squeezenet - if config.dataset == "cifar10": + if args_opt.dataset == "cifar10": + from src.config import config3 as config from src.dataset import create_dataset_cifar as create_dataset else: + from src.config import config4 as config from src.dataset import create_dataset_imagenet as create_dataset -@moxing_wrapper() -def eval_net(): - """eval net """ - target = config.device_target +if __name__ == '__main__': + target = args_opt.device_target # init context device_id = int(os.getenv('DEVICE_ID')) @@ -50,21 +60,22 @@ def eval_net(): device_id=device_id) # create dataset - dataset = create_dataset(dataset_path=config.data_path, + dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size, target=target) + step_size = dataset.get_dataset_size() # define net net = squeezenet(num_classes=config.class_num) # load checkpoint - param_dict = load_checkpoint(config.checkpoint_file_path) + param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) # define loss - if config.dataset == "imagenet": + if args_opt.dataset == "imagenet": if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropySmooth(sparse=True, @@ -81,7 +92,4 @@ def eval_net(): # eval model res = model.eval(dataset) - print("result:", res, "ckpt=", config.checkpoint_file_path) - -if __name__ == '__main__': - eval_net() + print("result:", res, "ckpt=", args_opt.checkpoint_path) diff --git a/model_zoo/research/cv/squeezenet/export.py b/model_zoo/research/cv/squeezenet/export.py index d0b04d68466..b3d83d7306c 100755 --- a/model_zoo/research/cv/squeezenet/export.py +++ b/model_zoo/research/cv/squeezenet/export.py @@ -17,29 +17,36 @@ python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt """ +import argparse import numpy as np from mindspore import Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net, export -from model_utils.config import config if __name__ == '__main__': - if config.net_name == "squeezenet": + parser = argparse.ArgumentParser(description='Image classification') + parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], + help='Model.') + parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') + parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') + args_opt = parser.parse_args() + + if args_opt.net == "squeezenet": from src.squeezenet import SqueezeNet as squeezenet else: from src.squeezenet import SqueezeNet_Residual as squeezenet - if config.dataset == "cifar10": + if args_opt.dataset == "cifar10": num_classes = 10 else: num_classes = 1000 - onnx_filename = config.net_name + '_' + config.dataset - air_filename = config.net_name + '_' + config.dataset + onnx_filename = args_opt.net + '_' + args_opt.dataset + air_filename = args_opt.net + '_' + args_opt.dataset net = squeezenet(num_classes=num_classes) - assert config.checkpoint_file_path is not None, "checkpoint_file_path is None." + assert args_opt.checkpoint_path is not None, "checkpoint_path is None." - param_dict = load_checkpoint(config.checkpoint_file_path) + param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) input_arr = Tensor(np.zeros([1, 3, 227, 227], np.float32)) diff --git a/model_zoo/research/cv/squeezenet/model_utils/config.py b/model_zoo/research/cv/squeezenet/model_utils/config.py deleted file mode 100644 index 5d591e2c50e..00000000000 --- a/model_zoo/research/cv/squeezenet/model_utils/config.py +++ /dev/null @@ -1,124 +0,0 @@ -# Copyright 2021 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ - -"""Parse arguments""" - -import os -import ast -import argparse -from pprint import pformat -import yaml - -_config_path = "./squeezenet_cifar10_config.yaml" - -class Config: - """ - Configuration namespace. Convert dictionary to members. - """ - def __init__(self, cfg_dict): - for k, v in cfg_dict.items(): - if isinstance(v, (list, tuple)): - setattr(self, k, [Config(x) if isinstance(x, dict) else x for x in v]) - else: - setattr(self, k, Config(v) if isinstance(v, dict) else v) - - def __str__(self): - return pformat(self.__dict__) - - def __repr__(self): - return self.__str__() - - -def parse_cli_to_yaml(parser, cfg, helper=None, choices=None, cfg_path="squeezenet_cifar10_config.yaml"): - """ - Parse command line arguments to the configuration according to the default yaml. - - Args: - parser: Parent parser. - cfg: Base configuration. - helper: Helper description. - cfg_path: Path to the default yaml config. - """ - parser = argparse.ArgumentParser(description="[REPLACE THIS at config.py]", - parents=[parser]) - helper = {} if helper is None else helper - choices = {} if choices is None else choices - for item in cfg: - if not isinstance(cfg[item], list) and not isinstance(cfg[item], dict): - help_description = helper[item] if item in helper else "Please reference to {}".format(cfg_path) - choice = choices[item] if item in choices else None - if isinstance(cfg[item], bool): - parser.add_argument("--" + item, type=ast.literal_eval, default=cfg[item], choices=choice, - help=help_description) - else: - parser.add_argument("--" + item, type=type(cfg[item]), default=cfg[item], choices=choice, - help=help_description) - args = parser.parse_args() - return args - - -def parse_yaml(yaml_path): - """ - Parse the yaml config file. - - Args: - yaml_path: Path to the yaml config. - """ - with open(yaml_path, 'r') as fin: - try: - cfgs = yaml.load_all(fin.read(), Loader=yaml.FullLoader) - cfgs = [x for x in cfgs] - if len(cfgs) == 1: - cfg_helper = {} - cfg = cfgs[0] - elif len(cfgs) == 2: - cfg, cfg_helper = cfgs - else: - raise ValueError("At most 2 docs (config and help description for help) are supported in config yaml") - print(cfg_helper) - except: - raise ValueError("Failed to parse yaml") - return cfg, cfg_helper - - -def merge(args, cfg): - """ - Merge the base config from yaml file and command line arguments. - - Args: - args: Command line arguments. - cfg: Base configuration. - """ - args_var = vars(args) - for item in args_var: - cfg[item] = args_var[item] - return cfg - - -def get_config(): - """ - Get Config according to the yaml file and cli arguments. - """ - parser = argparse.ArgumentParser(description="default name", add_help=False) - current_dir = os.path.dirname(os.path.abspath(__file__)) - parser.add_argument("--config_path", type=str, default=os.path.join(current_dir, \ - "../squeezenet_cifar10_config.yaml"), help="Config file path") - path_args, _ = parser.parse_known_args() - default, helper = parse_yaml(path_args.config_path) - args = parse_cli_to_yaml(parser, default, helper, path_args.config_path) - final_config = merge(args, default) - return Config(final_config) - -config = get_config() diff --git a/model_zoo/research/cv/squeezenet/model_utils/device_adapter.py b/model_zoo/research/cv/squeezenet/model_utils/device_adapter.py deleted file mode 100644 index 44811a34245..00000000000 --- a/model_zoo/research/cv/squeezenet/model_utils/device_adapter.py +++ /dev/null @@ -1,27 +0,0 @@ -# Copyright 2021 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ - -"""Device adapter for ModelArts""" - -from model_utils.config import config - -if config.enable_modelarts: - from model_utils.moxing_adapter import get_device_id, get_device_num, get_rank_id, get_job_id -else: - from model_utils.local_adapter import get_device_id, get_device_num, get_rank_id, get_job_id - -__all__ = [ - "get_device_id", "get_device_num", "get_rank_id", "get_job_id" -] diff --git a/model_zoo/research/cv/squeezenet/model_utils/local_adapter.py b/model_zoo/research/cv/squeezenet/model_utils/local_adapter.py deleted file mode 100644 index 769fa6dc78e..00000000000 --- a/model_zoo/research/cv/squeezenet/model_utils/local_adapter.py +++ /dev/null @@ -1,36 +0,0 @@ -# Copyright 2021 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ - -"""Local adapter""" - -import os - -def get_device_id(): - device_id = os.getenv('DEVICE_ID', '0') - return int(device_id) - - -def get_device_num(): - device_num = os.getenv('RANK_SIZE', '1') - return int(device_num) - - -def get_rank_id(): - global_rank_id = os.getenv('RANK_ID', '0') - return int(global_rank_id) - - -def get_job_id(): - return "Local Job" diff --git a/model_zoo/research/cv/squeezenet/model_utils/moxing_adapter.py b/model_zoo/research/cv/squeezenet/model_utils/moxing_adapter.py deleted file mode 100644 index 4638424066a..00000000000 --- a/model_zoo/research/cv/squeezenet/model_utils/moxing_adapter.py +++ /dev/null @@ -1,115 +0,0 @@ -# Copyright 2021 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ - -"""Moxing adapter for ModelArts""" - -import os -import functools -from mindspore import context -from model_utils.config import config - -_global_sync_count = 0 - -def get_device_id(): - device_id = os.getenv('DEVICE_ID', '0') - return int(device_id) - - -def get_device_num(): - device_num = os.getenv('RANK_SIZE', '1') - return int(device_num) - - -def get_rank_id(): - global_rank_id = os.getenv('RANK_ID', '0') - return int(global_rank_id) - - -def get_job_id(): - job_id = os.getenv('JOB_ID') - job_id = job_id if job_id != "" else "default" - return job_id - -def sync_data(from_path, to_path): - """ - Download data from remote obs to local directory if the first url is remote url and the second one is local path - Upload data from local directory to remote obs in contrast. - """ - import moxing as mox - import time - global _global_sync_count - sync_lock = "/tmp/copy_sync.lock" + str(_global_sync_count) - _global_sync_count += 1 - - # Each server contains 8 devices as most. - if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock): - print("from path: ", from_path) - print("to path: ", to_path) - mox.file.copy_parallel(from_path, to_path) - print("===finish data synchronization===") - try: - os.mknod(sync_lock) - except IOError: - pass - print("===save flag===") - - while True: - if os.path.exists(sync_lock): - break - time.sleep(1) - - print("Finish sync data from {} to {}.".format(from_path, to_path)) - - -def moxing_wrapper(pre_process=None, post_process=None): - """ - Moxing wrapper to download dataset and upload outputs. - """ - def wrapper(run_func): - @functools.wraps(run_func) - def wrapped_func(*args, **kwargs): - # Download data from data_url - if config.enable_modelarts: - if config.data_url: - sync_data(config.data_url, config.data_path) - print("Dataset downloaded: ", os.listdir(config.data_path)) - if config.checkpoint_url: - sync_data(config.checkpoint_url, config.load_path) - print("Preload downloaded: ", os.listdir(config.load_path)) - if config.train_url: - sync_data(config.train_url, config.output_path) - print("Workspace downloaded: ", os.listdir(config.output_path)) - - context.set_context(save_graphs_path=os.path.join(config.output_path, str(get_rank_id()))) - config.device_num = get_device_num() - config.device_id = get_device_id() - if not os.path.exists(config.output_path): - os.makedirs(config.output_path) - - if pre_process: - pre_process() - - run_func(*args, **kwargs) - - # Upload data to train_url - if config.enable_modelarts: - if post_process: - post_process() - - if config.train_url: - print("Start to copy output directory") - sync_data(config.output_path, config.train_url) - return wrapped_func - return wrapper diff --git a/model_zoo/research/cv/squeezenet/scripts/run_distribute_train.sh b/model_zoo/research/cv/squeezenet/scripts/run_distribute_train.sh index a507a1ceec5..ee8c13651f1 100755 --- a/model_zoo/research/cv/squeezenet/scripts/run_distribute_train.sh +++ b/model_zoo/research/cv/squeezenet/scripts/run_distribute_train.sh @@ -44,7 +44,7 @@ PATH1=$(get_real_path $3) PATH2=$(get_real_path $4) if [ $# == 5 ] -then +then PATH3=$(get_real_path $5) fi @@ -74,22 +74,6 @@ export RANK_TABLE_FILE=$PATH1 export SERVER_ID=0 rank_start=$((DEVICE_NUM * SERVER_ID)) -BASE_PATH=$(dirname "$(dirname "$(readlink -f $0)")") -CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" - -if [ $1 == "squeezenet" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" -elif [ $1 == "squeezenet" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_imagenet_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_cifar10_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_imagenet_config.yaml" -else - echo "error: the selected dataset is not in supported set{squeezenet, squeezenet_residual, cifar10, imagenet}" -exit 1 -fi - for((i=0; i<${DEVICE_NUM}; i++)) do export DEVICE_ID=${i} @@ -98,21 +82,17 @@ do mkdir ./train_parallel$i cp ./train.py ./train_parallel$i cp -r ./src ./train_parallel$i - cp -r ./model_utils ./train_parallel$i - cp -r ./*.yaml ./train_parallel$i cd ./train_parallel$i || exit echo "start training for rank $RANK_ID, device $DEVICE_ID" env > env.log if [ $# == 4 ] then - python train.py --net_name=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --data_path=$PATH2 \ - --config_path=$CONFIG_FILE --output_path './output' &> log & + python train.py --net=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log & fi if [ $# == 5 ] then - python train.py --net_name=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --data_path=$PATH2 \ - --pre_trained=$PATH3 --config_path=$CONFIG_FILE --output_path './output' &> log & + python train.py --net=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log & fi cd .. diff --git a/model_zoo/research/cv/squeezenet/scripts/run_distribute_train_gpu.sh b/model_zoo/research/cv/squeezenet/scripts/run_distribute_train_gpu.sh index 5f617060321..2df3f9719eb 100755 --- a/model_zoo/research/cv/squeezenet/scripts/run_distribute_train_gpu.sh +++ b/model_zoo/research/cv/squeezenet/scripts/run_distribute_train_gpu.sh @@ -64,42 +64,22 @@ ulimit -u unlimited export DEVICE_NUM=8 export RANK_SIZE=8 -BASE_PATH=$(dirname "$(dirname "$(readlink -f $0)")") -CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" - -if [ $1 == "squeezenet" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" -elif [ $1 == "squeezenet" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_imagenet_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_cifar10_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_imagenet_config.yaml" -else - echo "error: the selected dataset is not in supported set{squeezenet, squeezenet_residual, cifar10, imagenet}" -exit 1 -fi - rm -rf ./train_parallel mkdir ./train_parallel cp ./train.py ./train_parallel cp -r ./src ./train_parallel -cp -r ./model_utils ./train_parallel -cp -r ./*.yaml ./train_parallel cd ./train_parallel || exit if [ $# == 3 ] then mpirun --allow-run-as-root -n $RANK_SIZE --output-filename log_output --merge-stderr-to-stdout \ - python train.py --net_name=$1 --dataset=$2 --run_distribute=True \ - --device_num=$DEVICE_NUM --device_target="GPU" --data_path=$PATH1 \ - --config_path=$CONFIG_FILE --output_path './output' &> log & + python train.py --net=$1 --dataset=$2 --run_distribute=True \ + --device_num=$DEVICE_NUM --device_target="GPU" --dataset_path=$PATH1 &> log & fi if [ $# == 4 ] then mpirun --allow-run-as-root -n $RANK_SIZE --output-filename log_output --merge-stderr-to-stdout \ - python train.py --net_name=$1 --dataset=$2 --run_distribute=True \ - --device_num=$DEVICE_NUM --device_target="GPU" --data_path=$PATH1 --pre_trained=$PATH2 \ - --config_path=$CONFIG_FILE --output_path './output' &> log & + python train.py --net=$1 --dataset=$2 --run_distribute=True \ + --device_num=$DEVICE_NUM --device_target="GPU" --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & fi diff --git a/model_zoo/research/cv/squeezenet/scripts/run_eval.sh b/model_zoo/research/cv/squeezenet/scripts/run_eval.sh index c0ff51408b6..8ac34e25ce2 100755 --- a/model_zoo/research/cv/squeezenet/scripts/run_eval.sh +++ b/model_zoo/research/cv/squeezenet/scripts/run_eval.sh @@ -62,22 +62,6 @@ export DEVICE_ID=$3 export RANK_SIZE=$DEVICE_NUM export RANK_ID=0 -BASE_PATH=$(dirname "$(dirname "$(readlink -f $0)")") -CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" - -if [ $1 == "squeezenet" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" -elif [ $1 == "squeezenet" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_imagenet_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_cifar10_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_imagenet_config.yaml" -else - echo "error: the selected dataset is not in supported set{squeezenet, squeezenet_residual, cifar10, imagenet}" -exit 1 -fi - if [ -d "eval" ]; then rm -rf ./eval @@ -85,11 +69,8 @@ fi mkdir ./eval cp ./eval.py ./eval cp -r ./src ./eval -cp -r ./model_utils ./eval -cp -r ./*.yaml ./eval cd ./eval || exit env > env.log echo "start evaluation for device $DEVICE_ID" -python eval.py --net_name=$1 --dataset=$2 --data_path=$PATH1 --checkpoint_file_path=$PATH2 \ ---config_path=$CONFIG_FILE --output_path './output' &> log & +python eval.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --checkpoint_path=$PATH2 &> log & cd .. diff --git a/model_zoo/research/cv/squeezenet/scripts/run_eval_gpu.sh b/model_zoo/research/cv/squeezenet/scripts/run_eval_gpu.sh index 29a199d8ddb..f5bfaa4ade0 100755 --- a/model_zoo/research/cv/squeezenet/scripts/run_eval_gpu.sh +++ b/model_zoo/research/cv/squeezenet/scripts/run_eval_gpu.sh @@ -62,22 +62,6 @@ export DEVICE_ID=$3 export RANK_SIZE=$DEVICE_NUM export RANK_ID=0 -BASE_PATH=$(dirname "$(dirname "$(readlink -f $0)")") -CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" - -if [ $1 == "squeezenet" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" -elif [ $1 == "squeezenet" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_imagenet_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_cifar10_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_imagenet_config.yaml" -else - echo "error: the selected dataset is not in supported set{squeezenet, squeezenet_residual, cifar10, imagenet}" -exit 1 -fi - if [ -d "eval" ]; then rm -rf ./eval @@ -85,11 +69,8 @@ fi mkdir ./eval cp ./eval.py ./eval cp -r ./src ./eval -cp -r ./model_utils ./eval -cp -r ./*.yaml ./eval cd ./eval || exit env > env.log echo "start evaluation for device $DEVICE_ID" -python eval.py --net_name=$1 --dataset=$2 --data_path=$PATH1 --checkpoint_file_path=$PATH2 --device_target="GPU" \ ---config_path=$CONFIG_FILE --output_path './output' &> log & +python eval.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --checkpoint_path=$PATH2 --device_target="GPU" &> log & cd .. diff --git a/model_zoo/research/cv/squeezenet/scripts/run_standalone_train.sh b/model_zoo/research/cv/squeezenet/scripts/run_standalone_train.sh index fd9d42f6502..cd4c637075f 100755 --- a/model_zoo/research/cv/squeezenet/scripts/run_standalone_train.sh +++ b/model_zoo/research/cv/squeezenet/scripts/run_standalone_train.sh @@ -65,22 +65,6 @@ export DEVICE_ID=$3 export RANK_ID=0 export RANK_SIZE=1 -BASE_PATH=$(dirname "$(dirname "$(readlink -f $0)")") -CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" - -if [ $1 == "squeezenet" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" -elif [ $1 == "squeezenet" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_imagenet_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_cifar10_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_imagenet_config.yaml" -else - echo "error: the selected dataset is not in supported set{squeezenet, squeezenet_residual, cifar10, imagenet}" -exit 1 -fi - if [ -d "train" ]; then rm -rf ./train @@ -88,19 +72,16 @@ fi mkdir ./train cp ./train.py ./train cp -r ./src ./train -cp -r ./model_utils ./train -cp -r ./*.yaml ./train cd ./train || exit echo "start training for device $DEVICE_ID" env > env.log if [ $# == 4 ] then - python train.py --net_name=$1 --dataset=$2 --data_path=$PATH1 --config_path=$CONFIG_FILE &> log & + python train.py --net=$1 --dataset=$2 --dataset_path=$PATH1 &> log & fi if [ $# == 5 ] then - python train.py --net_name=$1 --dataset=$2 --data_path=$PATH1 --pre_trained=$PATH2 --config_path=$CONFIG_FILE \ - --output_path './output' &> log & + python train.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & fi cd .. diff --git a/model_zoo/research/cv/squeezenet/scripts/run_standalone_train_gpu.sh b/model_zoo/research/cv/squeezenet/scripts/run_standalone_train_gpu.sh index ea6462066ac..8a80526e048 100755 --- a/model_zoo/research/cv/squeezenet/scripts/run_standalone_train_gpu.sh +++ b/model_zoo/research/cv/squeezenet/scripts/run_standalone_train_gpu.sh @@ -65,22 +65,6 @@ export DEVICE_ID=$3 export RANK_ID=0 export RANK_SIZE=1 -BASE_PATH=$(dirname "$(dirname "$(readlink -f $0)")") -CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" - -if [ $1 == "squeezenet" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_cifar10_config.yaml" -elif [ $1 == "squeezenet" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_imagenet_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "cifar10" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_cifar10_config.yaml" -elif [ $1 == "squeezenet_residual" ] && [ $2 == "imagenet" ]; then - CONFIG_FILE="${BASE_PATH}/squeezenet_residual_imagenet_config.yaml" -else - echo "error: the selected dataset is not in supported set{squeezenet, squeezenet_residual, cifar10, imagenet}" -exit 1 -fi - if [ -d "train" ]; then rm -rf ./train @@ -88,20 +72,16 @@ fi mkdir ./train cp ./train.py ./train cp -r ./src ./train -cp -r ./model_utils ./train -cp -r ./*.yaml ./train cd ./train || exit echo "start training for device $DEVICE_ID" env > env.log if [ $# == 4 ] then - python train.py --net_name=$1 --dataset=$2 --device_target="GPU" --data_path=$PATH1 \ - --config_path=$CONFIG_FILE --output_path './output' &> log & + python train.py --net=$1 --dataset=$2 --device_target="GPU" --dataset_path=$PATH1 &> log & fi if [ $# == 5 ] then - python train.py --net_name=$1 --dataset=$2 --device_target="GPU" --data_path=$PATH1 --pre_trained=$PATH2 \ - --config_path=$CONFIG_FILE --output_path './output' &> log & + python train.py --net=$1 --dataset=$2 --device_target="GPU" --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & fi cd .. diff --git a/model_zoo/research/cv/squeezenet/squeezenet_cifar10_config.yaml b/model_zoo/research/cv/squeezenet/squeezenet_cifar10_config.yaml deleted file mode 100644 index a3073f44f97..00000000000 --- a/model_zoo/research/cv/squeezenet/squeezenet_cifar10_config.yaml +++ /dev/null @@ -1,60 +0,0 @@ -# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing) -enable_modelarts: False -# Url for modelarts -data_url: "" -train_url: "" -checkpoint_url: "" -# Path for local -run_distribute: False -enable_profiling: False -data_path: "/cache/data" -output_path: "/cache/train" -load_path: "/cache/checkpoint_path/" -device_num: 1 -device_id: 0 -device_target: 'Ascend' -checkpoint_path: './checkpoint/' -checkpoint_file_path: 'suqeezenet_cifar10-120_195.ckpt' - -# ============================================================================== -# Training options -net_name: "" -dataset : "cifar10" -class_num: 10 -batch_size: 32 -loss_scale: 1024 -momentum: 0.9 -weight_decay: 0.0001 -epoch_size: 120 -pretrain_epoch_size: 0 -save_checkpoint: True -save_checkpoint_epochs: 1 -keep_checkpoint_max: 10 -warmup_epochs: 5 -lr_decay_mode: "poly" -lr_init: 0 -lr_end: 0 -lr_max: 0.01 -pre_trained: "" - -# export -file_name: "squeezenet" -file_format: "AIR" - ---- -# Help description for each configuration -enable_modelarts: 'Whether training on modelarts, default: False' -data_url: 'Dataset url for obs' -train_url: 'Training output url for obs' -checkpoint_url: 'The location of checkpoint for obs' -data_path: 'Dataset path for local' -output_path: 'Training output path for local' -load_path: 'The location of checkpoint for obs' -device_target: 'Target device type, available: [Ascend, GPU, CPU]' -enable_profiling: 'Whether enable profiling while training, default: False' -num_classes: 'Class for dataset' -batch_size: "Batch size for training and evaluation" -epoch_size: "Total training epochs." -keep_checkpoint_max: "keep the last keep_checkpoint_max checkpoint" -checkpoint_path: "The location of the checkpoint file." -checkpoint_file_path: "The location of the checkpoint file." diff --git a/model_zoo/research/cv/squeezenet/squeezenet_imagenet_config.yaml b/model_zoo/research/cv/squeezenet/squeezenet_imagenet_config.yaml deleted file mode 100644 index 1ed1559f175..00000000000 --- a/model_zoo/research/cv/squeezenet/squeezenet_imagenet_config.yaml +++ /dev/null @@ -1,62 +0,0 @@ -# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing) -enable_modelarts: False -# Url for modelarts -data_url: "" -train_url: "" -checkpoint_url: "" -# Path for local -run_distribute: False -enable_profiling: False -data_path: "/cache/data" -output_path: "/cache/train" -load_path: "/cache/checkpoint_path/" -device_num: 1 -device_id: 0 -device_target: 'Ascend' -checkpoint_path: './checkpoint/' -checkpoint_file_path: 'suqeezenet_imagenet-200_5004.ckpt' - -# ============================================================================== -# Training options -net_name: "" -dataset : "imagenet" -class_num: 1000 -batch_size: 32 -loss_scale: 1024 -momentum: 0.9 -weight_decay: 0.00007 -epoch_size: 200 -pretrain_epoch_size: 0 -save_checkpoint: True -save_checkpoint_epochs: 1 -keep_checkpoint_max: 10 -warmup_epochs: 0 -lr_decay_mode: "poly" -use_label_smooth: True -label_smooth_factor: 0.1 -lr_init: 0 -lr_end: 0 -lr_max: 0.01 -pre_trained: "" - -# export -file_name: "squeezenet" -file_format: "AIR" - ---- -# Help description for each configuration -enable_modelarts: 'Whether training on modelarts, default: False' -data_url: 'Dataset url for obs' -train_url: 'Training output url for obs' -checkpoint_url: 'The location of checkpoint for obs' -data_path: 'Dataset path for local' -output_path: 'Training output path for local' -load_path: 'The location of checkpoint for obs' -device_target: 'Target device type, available: [Ascend, GPU, CPU]' -enable_profiling: 'Whether enable profiling while training, default: False' -num_classes: 'Class for dataset' -batch_size: "Batch size for training and evaluation" -epoch_size: "Total training epochs." -keep_checkpoint_max: "keep the last keep_checkpoint_max checkpoint" -checkpoint_path: "The location of the checkpoint file." -checkpoint_file_path: "The location of the checkpoint file." diff --git a/model_zoo/research/cv/squeezenet/squeezenet_residual_cifar10_config.yaml b/model_zoo/research/cv/squeezenet/squeezenet_residual_cifar10_config.yaml deleted file mode 100644 index d0ff7bc342b..00000000000 --- a/model_zoo/research/cv/squeezenet/squeezenet_residual_cifar10_config.yaml +++ /dev/null @@ -1,59 +0,0 @@ -# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing) -enable_modelarts: False -# Url for modelarts -data_url: "" -train_url: "" -checkpoint_url: "" -# Path for local -run_distribute: False -enable_profiling: False -data_path: "/cache/data" -output_path: "/cache/train" -load_path: "/cache/checkpoint_path/" -device_num: 1 -device_target: 'Ascend' -checkpoint_path: './checkpoint/' -checkpoint_file_path: 'suqeezenet_residual_cifar10-150_195.ckpt' - -# ============================================================================== -# Training options -net_name: "" -dataset : "cifar10" -class_num: 10 -batch_size: 32 -loss_scale: 1024 -momentum: 0.9 -weight_decay: 0.0001 -epoch_size: 150 -pretrain_epoch_size: 0 -save_checkpoint: True -save_checkpoint_epochs: 1 -keep_checkpoint_max: 10 -warmup_epochs: 5 -lr_decay_mode: "linear" -lr_init: 0 -lr_end: 0 -lr_max: 0.01 -pre_trained: "" - -#export -file_name: "squeezenet" -file_format: "AIR" - ---- -# Help description for each configuration -enable_modelarts: 'Whether training on modelarts, default: False' -data_url: 'Dataset url for obs' -train_url: 'Training output url for obs' -checkpoint_url: 'The location of checkpoint for obs' -data_path: 'Dataset path for local' -output_path: 'Training output path for local' -load_path: 'The location of checkpoint for obs' -device_target: 'Target device type, available: [Ascend, GPU, CPU]' -enable_profiling: 'Whether enable profiling while training, default: False' -num_classes: 'Class for dataset' -batch_size: "Batch size for training and evaluation" -epoch_size: "Total training epochs." -keep_checkpoint_max: "keep the last keep_checkpoint_max checkpoint" -checkpoint_path: "The location of the checkpoint file." -checkpoint_file_path: "The location of the checkpoint file." diff --git a/model_zoo/research/cv/squeezenet/squeezenet_residual_imagenet_config.yaml b/model_zoo/research/cv/squeezenet/squeezenet_residual_imagenet_config.yaml deleted file mode 100644 index f9f69e7147c..00000000000 --- a/model_zoo/research/cv/squeezenet/squeezenet_residual_imagenet_config.yaml +++ /dev/null @@ -1,62 +0,0 @@ -# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing) -enable_modelarts: False -# Url for modelarts -data_url: "" -train_url: "" -checkpoint_url: "" -# Path for local -run_distribute: False -enable_profiling: False -data_path: "/cache/data" -output_path: "/cache/train" -load_path: "/cache/checkpoint_path/" -device_num: 1 -device_id: 0 -device_target: 'Ascend' -checkpoint_path: './checkpoint/' -checkpoint_file_path: 'suqeezenet_residual_imagenet-300_5004.ckpt' - -# ============================================================================== -# Training options -net_name: "" -dataset : "imagenet" -class_num: 1000 -batch_size: 32 -loss_scale: 1024 -momentum: 0.9 -weight_decay: 0.00007 -epoch_size: 300 -pretrain_epoch_size: 0 -save_checkpoint: True -save_checkpoint_epochs: 1 -keep_checkpoint_max: 10 -warmup_epochs: 0 -lr_decay_mode: "cosine" -use_label_smooth: True -label_smooth_factor: 0.1 -lr_init: 0 -lr_end: 0 -lr_max: 0.01 -pre_trained: "" - -#export -file_name: "squeezenet" -file_format: "AIR" - ---- -# Help description for each configuration -enable_modelarts: 'Whether training on modelarts, default: False' -data_url: 'Dataset url for obs' -train_url: 'Training output url for obs' -checkpoint_url: 'The location of checkpoint for obs' -data_path: 'Dataset path for local' -output_path: 'Training output path for local' -load_path: 'The location of checkpoint for obs' -device_target: 'Target device type, available: [Ascend, GPU, CPU]' -enable_profiling: 'Whether enable profiling while training, default: False' -num_classes: 'Class for dataset' -batch_size: "Batch size for training and evaluation" -epoch_size: "Total training epochs." -keep_checkpoint_max: "keep the last keep_checkpoint_max checkpoint" -checkpoint_path: "The location of the checkpoint file." -checkpoint_file_path: "The location of the checkpoint file." diff --git a/model_zoo/research/cv/squeezenet/src/config.py b/model_zoo/research/cv/squeezenet/src/config.py new file mode 100755 index 00000000000..40d119c5bde --- /dev/null +++ b/model_zoo/research/cv/squeezenet/src/config.py @@ -0,0 +1,102 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +network config setting, will be used in train.py and eval.py +""" +from easydict import EasyDict as ed + +# config for squeezenet, cifar10 +config1 = ed({ + "class_num": 10, + "batch_size": 32, + "loss_scale": 1024, + "momentum": 0.9, + "weight_decay": 1e-4, + "epoch_size": 120, + "pretrain_epoch_size": 0, + "save_checkpoint": True, + "save_checkpoint_epochs": 1, + "keep_checkpoint_max": 10, + "save_checkpoint_path": "./", + "warmup_epochs": 5, + "lr_decay_mode": "poly", + "lr_init": 0, + "lr_end": 0, + "lr_max": 0.01 +}) + +# config for squeezenet, imagenet +config2 = ed({ + "class_num": 1000, + "batch_size": 32, + "loss_scale": 1024, + "momentum": 0.9, + "weight_decay": 7e-5, + "epoch_size": 200, + "pretrain_epoch_size": 0, + "save_checkpoint": True, + "save_checkpoint_epochs": 1, + "keep_checkpoint_max": 10, + "save_checkpoint_path": "./", + "warmup_epochs": 0, + "lr_decay_mode": "poly", + "use_label_smooth": True, + "label_smooth_factor": 0.1, + "lr_init": 0, + "lr_end": 0, + "lr_max": 0.01 +}) + +# config for squeezenet_residual, cifar10 +config3 = ed({ + "class_num": 10, + "batch_size": 32, + "loss_scale": 1024, + "momentum": 0.9, + "weight_decay": 1e-4, + "epoch_size": 150, + "pretrain_epoch_size": 0, + "save_checkpoint": True, + "save_checkpoint_epochs": 1, + "keep_checkpoint_max": 10, + "save_checkpoint_path": "./", + "warmup_epochs": 5, + "lr_decay_mode": "linear", + "lr_init": 0, + "lr_end": 0, + "lr_max": 0.01 +}) + +# config for squeezenet_residual, imagenet +config4 = ed({ + "class_num": 1000, + "batch_size": 32, + "loss_scale": 1024, + "momentum": 0.9, + "weight_decay": 7e-5, + "epoch_size": 300, + "pretrain_epoch_size": 0, + "save_checkpoint": True, + "save_checkpoint_epochs": 1, + "keep_checkpoint_max": 10, + "save_checkpoint_path": "./", + "warmup_epochs": 0, + "lr_decay_mode": "cosine", + "use_label_smooth": True, + "label_smooth_factor": 0.1, + "lr_init": 0, + "lr_end": 0, + "lr_max": 0.01 +}) diff --git a/model_zoo/research/cv/squeezenet/train.py b/model_zoo/research/cv/squeezenet/train.py index 195d5706e9d..d35529faff5 100755 --- a/model_zoo/research/cv/squeezenet/train.py +++ b/model_zoo/research/cv/squeezenet/train.py @@ -14,6 +14,7 @@ # ============================================================================ """train squeezenet.""" import os +import argparse from mindspore import context from mindspore import Tensor from mindspore.nn.optim.momentum import Momentum @@ -23,45 +24,55 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMoni from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.serialization import load_checkpoint, load_param_into_net -from mindspore.communication.management import init, get_rank +from mindspore.communication.management import init, get_rank, get_group_size from mindspore.common import set_seed -from model_utils.config import config -from model_utils.device_adapter import get_device_num -from model_utils.moxing_adapter import moxing_wrapper from src.lr_generator import get_lr from src.CrossEntropySmooth import CrossEntropySmooth +parser = argparse.ArgumentParser(description='Image classification') +parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], + help='Model.') +parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') +parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') +parser.add_argument('--device_num', type=int, default=1, help='Device num.') +parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') +parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') +parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') +args_opt = parser.parse_args() + set_seed(1) -if config.net_name == "squeezenet": +if args_opt.net == "squeezenet": from src.squeezenet import SqueezeNet as squeezenet - if config.dataset == "cifar10": + if args_opt.dataset == "cifar10": + from src.config import config1 as config from src.dataset import create_dataset_cifar as create_dataset else: + from src.config import config2 as config from src.dataset import create_dataset_imagenet as create_dataset else: from src.squeezenet import SqueezeNet_Residual as squeezenet - if config.dataset == "cifar10": + if args_opt.dataset == "cifar10": + from src.config import config3 as config from src.dataset import create_dataset_cifar as create_dataset else: + from src.config import config4 as config from src.dataset import create_dataset_imagenet as create_dataset -@moxing_wrapper() -def train_net(): - """train net""" - target = config.device_target - ckpt_save_dir = config.output_path +if __name__ == '__main__': + target = args_opt.device_target + ckpt_save_dir = config.save_checkpoint_path # init context context.set_context(mode=context.GRAPH_MODE, device_target=target) - if config.run_distribute: + if args_opt.run_distribute: if target == "Ascend": device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id, enable_auto_mixed_precision=True) context.set_auto_parallel_context( - device_num=config.device_num, + device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) init() @@ -69,13 +80,14 @@ def train_net(): else: init() context.set_auto_parallel_context( - device_num=get_device_num(), + device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) - ckpt_save_dir = ckpt_save_dir + "/ckpt_" + str(get_rank()) + "/" + ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str( + get_rank()) + "/" # create dataset - dataset = create_dataset(dataset_path=config.data_path, + dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1, batch_size=config.batch_size, @@ -86,8 +98,8 @@ def train_net(): net = squeezenet(num_classes=config.class_num) # load checkpoint - if config.pre_trained: - param_dict = load_checkpoint(config.pre_trained) + if args_opt.pre_trained: + param_dict = load_checkpoint(args_opt.pre_trained) load_param_into_net(net, param_dict) # init lr @@ -102,7 +114,7 @@ def train_net(): lr = Tensor(lr) # define loss - if config.dataset == "imagenet": + if args_opt.dataset == "imagenet": if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropySmooth(sparse=True, @@ -146,7 +158,7 @@ def train_net(): config_ck = CheckpointConfig( save_checkpoint_steps=config.save_checkpoint_epochs * step_size, keep_checkpoint_max=config.keep_checkpoint_max) - ckpt_cb = ModelCheckpoint(prefix=config.net_name + '_' + config.dataset, + ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset, directory=ckpt_save_dir, config=config_ck) cb += [ckpt_cb] @@ -155,6 +167,3 @@ def train_net(): model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb) - -if __name__ == '__main__': - train_net()