add test cases for explainer

This commit is contained in:
lixiaohui 2021-03-26 09:50:13 +08:00
parent b82c4cba32
commit 7769be81ad
12 changed files with 813 additions and 0 deletions

View File

@ -0,0 +1,15 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initialization of tests of explanation related classes."""

View File

@ -0,0 +1,15 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initialization of tests of mindspore.explainer.benchmark."""

View File

@ -0,0 +1,15 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initialization of tests of in mindspore.explainer.benchmark."""

View File

@ -0,0 +1,134 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests of Localization of mindspore.explainer.benchmark."""
from unittest.mock import patch
import numpy as np
import pytest
import mindspore as ms
from mindspore import context
from mindspore import nn
from mindspore.explainer.benchmark import Localization
from mindspore.explainer.explanation import Gradient
context.set_context(mode=context.PYNATIVE_MODE)
H, W = 4, 4
SALIENCY = ms.Tensor(np.random.rand(1, 1, H, W), ms.float32)
class CustomNet(nn.Cell):
"""Simple net for unit test."""
def __init__(self):
super().__init__()
def construct(self, _):
return ms.Tensor([[0.1, 0.9]], ms.float32)
def mock_gradient_call(_, inputs, targets):
del inputs, targets
return SALIENCY
class TestLocalization:
"""Test on Localization."""
def setup_method(self):
self.net = CustomNet()
self.data = ms.Tensor(np.random.rand(1, 1, H, W), ms.float32)
self.target = 1
masks_np = np.zeros((1, 1, H, W))
masks_np[:, :, 1:3, 1:3] = 1
self.masks_np = masks_np
self.masks = ms.Tensor(masks_np, ms.float32)
self.explainer = Gradient(self.net)
self.saliency_gt = mock_gradient_call(self.explainer, self.data, self.target)
self.num_class = 2
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_pointing_game(self):
"""Test case for `metric="PointingGame"` without input saliency."""
with patch.object(Gradient, "__call__", mock_gradient_call):
max_pos = np.argmax(abs(self.saliency_gt.asnumpy().flatten()))
x_gt, y_gt = max_pos // W, max_pos % W
res_gt = self.masks_np[0, 0, x_gt, y_gt]
pg = Localization(self.num_class, metric="PointingGame")
pg._metric_arg = 1 # make the tolerance smaller to simplify the test
res = pg.evaluate(self.explainer, self.data, targets=self.target, mask=self.masks)
assert np.max(np.abs(np.array([res_gt]) - res)) < 1e-5
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_iosr(self):
"""Test case for `metric="IoSR"` without input saliency."""
with patch.object(Gradient, "__call__", mock_gradient_call):
threshold = 0.5
max_val = np.max(self.saliency_gt.asnumpy())
sr = (self.saliency_gt.asnumpy() > (max_val * threshold)).astype(int)
res_gt = np.sum(sr * self.masks_np) / (np.sum(sr).clip(1e-10))
iosr = Localization(self.num_class, metric="IoSR")
iosr._metric_arg = threshold
res = iosr.evaluate(self.explainer, self.data, targets=self.target, mask=self.masks)
assert np.allclose(np.array([res_gt]), res)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_pointing_game_with_saliency(self):
"""Test metric PointingGame with input saliency."""
max_pos = np.argmax(abs(self.saliency_gt.asnumpy().flatten()))
x_gt, y_gt = max_pos // W, max_pos % W
res_gt = self.masks_np[0, 0, x_gt, y_gt]
pg = Localization(self.num_class, metric="PointingGame")
pg._metric_arg = 1 # make the tolerance smaller to simplify the test
res = pg.evaluate(self.explainer, self.data, targets=self.target, mask=self.masks, saliency=self.saliency_gt)
assert np.allclose(np.array([res_gt]), res)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_iosr_with_saliency(self):
"""Test metric IoSR with input saliency map."""
threshold = 0.5
max_val = np.max(self.saliency_gt.asnumpy())
sr = (self.saliency_gt.asnumpy() > (max_val * threshold)).astype(int)
res_gt = np.sum(sr * self.masks_np) / (np.sum(sr).clip(1e-10))
iosr = Localization(self.num_class, metric="IoSR")
res = iosr.evaluate(self.explainer, self.data, targets=self.target, mask=self.masks, saliency=self.saliency_gt)
assert np.allclose(np.array([res_gt]), res)

View File

@ -0,0 +1,15 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initialization of tests of mindspore.explainer.explanation."""

View File

@ -0,0 +1,15 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initialization of tests of explainers of mindspore.explainer.explanation."""

View File

@ -0,0 +1,15 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initialization of tests of back-propagation based explainers."""

View File

@ -0,0 +1,104 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests of GradCAM of mindspore.explainer.explanation."""
from unittest.mock import patch
import numpy as np
import pytest
import mindspore as ms
from mindspore import context
import mindspore.ops.operations as op
from mindspore import nn
from mindspore.explainer.explanation import GradCAM
from mindspore.explainer.explanation._attribution._backprop.gradcam import _gradcam_aggregation as aggregation
context.set_context(mode=context.PYNATIVE_MODE)
class SimpleAvgLinear(nn.Cell):
"""Simple linear model for the unit test."""
def __init__(self):
super().__init__()
self.avgpool = nn.AvgPool2d(2, 2)
self.flatten = nn.Flatten()
self.fc2 = nn.Dense(4, 3)
def construct(self, x):
x = self.avgpool(x)
x = self.flatten(x)
return self.fc2(x)
def resize_fn(attributions, inputs, mode):
"""Mocked resize function for test."""
del inputs, mode
return attributions
class TestGradCAM:
"""Test GradCAM."""
def setup_method(self):
self.net = SimpleAvgLinear()
self.data = ms.Tensor(np.random.random(size=(1, 1, 4, 4)), ms.float32)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_gradcam_attribution(self):
"""Test __call__ method in GradCAM."""
with patch.object(GradCAM, "_resize_fn", side_effect=resize_fn):
layer = "avgpool"
gradcam = GradCAM(self.net, layer=layer)
data = ms.Tensor(np.random.random(size=(1, 1, 4, 4)), ms.float32)
num_classes = 3
activation = self.net.avgpool(data)
reshape = op.Reshape()
for x in range(num_classes):
target = ms.Tensor([x], ms.int32)
attribution = gradcam(data, target)
# intermediate grad should be reshape of weight of fc2
intermediate_grad = self.net.fc2.weight.data[x]
reshaped = reshape(intermediate_grad, (1, 1, 2, 2))
gap_grad = self.net.avgpool(reshaped)
res = aggregation(gap_grad * activation)
assert np.allclose(res.asnumpy(), attribution.asnumpy(), atol=1e-5, rtol=1e-3)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_layer_default(self):
"""Test layer argument of GradCAM."""
with patch.object(GradCAM, "_resize_fn", side_effect=resize_fn):
gradcam = GradCAM(self.net)
num_classes = 3
sum_ = op.ReduceSum()
for x in range(num_classes):
target = ms.Tensor([x], ms.int32)
attribution = gradcam(self.data, target)
# intermediate_grad should be reshape of weight of fc2
intermediate_grad = self.net.fc2.weight.data[x]
avggrad = float(sum_(intermediate_grad).asnumpy() / 16)
res = aggregation(avggrad * self.data)
assert np.allclose(res.asnumpy(), attribution.asnumpy(), atol=1e-5, rtol=1e-3)

View File

@ -0,0 +1,74 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests of Gradient of mindspore.explainer.explanation."""
import numpy as np
import pytest
import mindspore as ms
from mindspore import context
import mindspore.ops.operations as P
from mindspore import nn
from mindspore.explainer.explanation import Gradient
context.set_context(mode=context.PYNATIVE_MODE)
class SimpleLinear(nn.Cell):
"""Simple linear model for the unit test."""
def __init__(self):
super().__init__()
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.fc2 = nn.Dense(16, 3)
def construct(self, x):
x = self.relu(x)
x = self.flatten(x)
return self.fc2(x)
class TestGradient:
"""Test Gradient."""
def setup_method(self):
"""Setup the test case."""
self.net = SimpleLinear()
self.relu = P.ReLU()
self.abs_ = P.Abs()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_gradient(self):
"""Test gradient __call__ function."""
data = (ms.Tensor(np.random.random(size=(1, 1, 4, 4)),
ms.float32) - 0.5) * 2
explainer = Gradient(self.net)
num_classes = 3
reshape = P.Reshape()
for x in range(num_classes):
target = ms.Tensor([x], ms.int32)
attribution = explainer(data, target)
# intermediate_grad should be reshape of weight of fc2
grad = self.net.fc2.weight.data[x]
grad = self.abs_(reshape(grad, (1, 1, 4, 4)) * (self.abs_(self.relu(data) / data)))
assert np.allclose(grad.asnumpy(), attribution.asnumpy())

View File

@ -0,0 +1,92 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests of Deconvolution and GuidedBackprop of mindspore.explainer.explanation."""
import numpy as np
import pytest
import mindspore as ms
import mindspore.ops.operations as P
from mindspore import context
from mindspore import nn
from mindspore.explainer.explanation import Deconvolution, GuidedBackprop
context.set_context(mode=context.PYNATIVE_MODE)
class SimpleLinear(nn.Cell):
"""Simple linear model for the unit test."""
def __init__(self):
super().__init__()
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.fc2 = nn.Dense(16, 3)
def construct(self, x):
x = self.relu(x)
x = self.flatten(x)
return self.fc2(x)
class TestModifiedReLU:
"""Test on modified_relu module, Deconvolution and GuidedBackprop specifically."""
def setup_method(self):
"""Setup the test case."""
self.net = SimpleLinear()
self.relu = P.ReLU()
self.abs_ = P.Abs()
self.reshape = P.Reshape()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_deconvolution(self):
"""Test deconvolution attribution."""
data = (ms.Tensor(np.random.random(size=(1, 1, 4, 4)),
ms.float32) - 0.5) * 2
deconv = Deconvolution(self.net)
num_classes = 3
for x in range(num_classes):
target = ms.Tensor([x], ms.int32)
attribution = deconv(data, target)
# intermediate_grad should be reshape of weight of fc2
grad = self.net.fc2.weight.data[x]
grad = self.abs_(self.relu(self.reshape(grad, (1, 1, 4, 4))))
assert np.allclose(attribution.asnumpy(), grad.asnumpy())
def test_guided_backprop(self):
"""Test deconvolution attribution."""
data = (ms.Tensor(np.random.random(size=(1, 1, 4, 4)),
ms.float32) - 0.5) * 2
explainer = GuidedBackprop(self.net)
num_classes = 3
for x in range(num_classes):
target = ms.Tensor([x], ms.int32)
attribution = explainer(data, target)
# intermediate_grad should be reshape of weight of fc2
grad = self.net.fc2.weight.data[x]
grad = self.reshape(grad, (1, 1, 4, 4))
guided_grad = self.abs_(self.relu(grad * (self.abs_(self.relu(data) / data))))
assert np.allclose(guided_grad.asnumpy(), attribution.asnumpy())

View File

@ -0,0 +1,200 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests on mindspore.explainer.ImageClassificationRunner."""
import os
import shutil
from random import random
from unittest.mock import patch
import numpy as np
import pytest
from PIL import Image
from mindspore import context
import mindspore as ms
import mindspore.nn as nn
from mindspore.dataset import GeneratorDataset
from mindspore.explainer import ImageClassificationRunner
from mindspore.explainer._image_classification_runner import _normalize
from mindspore.explainer.benchmark import Faithfulness
from mindspore.explainer.explanation import Gradient
from mindspore.train.summary import SummaryRecord
CONST = random()
NUMDATA = 2
context.set_context(mode=context.PYNATIVE_MODE)
def image_label_bbox_generator():
for i in range(NUMDATA):
image = np.arange(i, i + 16 * 3).reshape((3, 4, 4)) / 50
label = np.array(i)
bbox = np.array([1, 1, 2, 2])
yield (image, label, bbox)
class SimpleNet(nn.Cell):
"""
Simple model for the unit test.
"""
def __init__(self):
super(SimpleNet, self).__init__()
self.reshape = ms.ops.operations.Reshape()
def construct(self, x):
prob = ms.Tensor([0.1, 0.9], ms.float32)
prob = self.reshape(prob, (1, 2))
return prob
class ActivationFn(nn.Cell):
"""
Simple activation function for unit test.
"""
def __init__(self):
super(ActivationFn, self).__init__()
def construct(self, x):
return x
def mock_gradient_call(_, inputs, targets):
return inputs[:, 0:1, :, :]
def mock_faithfulness_evaluate(_, explainer, inputs, targets, saliency):
return CONST * targets
def mock_make_rgba(array):
return array.asnumpy()
class TestRunner:
"""Test on Runner."""
def setup_method(self):
self.dataset = GeneratorDataset(image_label_bbox_generator, ["image", "label", "bbox"])
self.labels = ["label_{}".format(i) for i in range(2)]
self.network = SimpleNet()
self.summary_dir = "summary_test_temp"
self.explainer = [Gradient(self.network)]
self.activation_fn = ActivationFn()
self.benchmarkers = [Faithfulness(num_labels=len(self.labels),
metric="NaiveFaithfulness",
activation_fn=self.activation_fn)]
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_run_saliency_no_benchmark(self):
"""Test case when argument benchmarkers is not parsed."""
res = []
runner = ImageClassificationRunner(summary_dir=self.summary_dir, data=(self.dataset, self.labels),
network=self.network, activation_fn=self.activation_fn)
def mock_summary_add_value(_, plugin, name, value):
res.append((plugin, name, value))
with patch.object(SummaryRecord, "add_value", mock_summary_add_value), \
patch.object(Gradient, "__call__", mock_gradient_call):
runner.register_saliency(self.explainer)
runner.run()
# test on meta data
idx = 0
assert res[idx][0] == "explainer"
assert res[idx][1] == "metadata"
assert res[idx][2].metadata.label == self.labels
assert res[idx][2].metadata.explain_method == ["Gradient"]
# test on inference data
for i in range(NUMDATA):
idx += 1
data_np = np.arange(i, i + 3 * 16).reshape((3, 4, 4)) / 50
assert res[idx][0] == "explainer"
assert res[idx][1] == "sample"
assert res[idx][2].sample_id == i
original_path = os.path.join(self.summary_dir, res[idx][2].image_path)
with open(original_path, "rb") as f:
image_data = np.asarray(Image.open(f)) / 255.0
original_image = _normalize(np.transpose(data_np, [1, 2, 0]))
assert np.allclose(image_data, original_image, rtol=3e-2, atol=3e-2)
idx += 1
assert res[idx][0] == "explainer"
assert res[idx][1] == "inference"
assert res[idx][2].sample_id == i
assert res[idx][2].ground_truth_label == [i]
diff = np.array(res[idx][2].inference.ground_truth_prob) - np.array([[0.1, 0.9][i]])
assert np.max(np.abs(diff)) < 1e-6
assert res[idx][2].inference.predicted_label == [1]
diff = np.array(res[idx][2].inference.predicted_prob) - np.array([0.9])
assert np.max(np.abs(diff)) < 1e-6
# test on explanation data
for i in range(NUMDATA):
idx += 1
data_np = np.arange(i, i + 3 * 16).reshape((3, 4, 4)) / 50
saliency_np = data_np[0, :, :]
assert res[idx][0] == "explainer"
assert res[idx][1] == "explanation"
assert res[idx][2].sample_id == i
assert res[idx][2].explanation[0].explain_method == "Gradient"
assert res[idx][2].explanation[0].label in [i, 1]
heatmap_path = os.path.join(self.summary_dir, res[idx][2].explanation[0].heatmap_path)
assert os.path.exists(heatmap_path)
with open(heatmap_path, "rb") as f:
heatmap_data = np.asarray(Image.open(f)) / 255.0
heatmap_image = _normalize(saliency_np)
assert np.allclose(heatmap_data, heatmap_image, atol=3e-2, rtol=3e-2)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_run_saliency_with_benchmark(self):
"""Test case when argument benchmarkers is parsed."""
res = []
def mock_summary_add_value(_, plugin, name, value):
res.append((plugin, name, value))
runner = ImageClassificationRunner(summary_dir=self.summary_dir, data=(self.dataset, self.labels),
network=self.network, activation_fn=self.activation_fn)
with patch.object(SummaryRecord, "add_value", mock_summary_add_value), \
patch.object(Gradient, "__call__", mock_gradient_call), \
patch.object(Faithfulness, "evaluate", mock_faithfulness_evaluate):
runner.register_saliency(self.explainer, self.benchmarkers)
runner.run()
idx = 3 * NUMDATA + 1 # start index of benchmark data
assert res[idx][0] == "explainer"
assert res[idx][1] == "benchmark"
assert abs(res[idx][2].benchmark[0].total_score - 2 / 3 * CONST) < 1e-6
diff = np.array(res[idx][2].benchmark[0].label_score) - np.array([i * CONST for i in range(NUMDATA)])
assert np.max(np.abs(diff)) < 1e-6
def teardown_method(self):
shutil.rmtree(self.summary_dir)

View File

@ -0,0 +1,119 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Unit test on mindspore.explainer._utils."""
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore.explainer._utils import (
ForwardProbe,
rank_pixels,
retrieve_layer,
retrieve_layer_by_name)
from mindspore.explainer.explanation._attribution._backprop.backprop_utils import GradNet, get_bp_weights
class CustomNet(nn.Cell):
"""Simple net for test."""
def __init__(self):
super(CustomNet, self).__init__()
self.fc1 = nn.Dense(10, 10)
self.fc2 = nn.Dense(10, 10)
self.fc3 = nn.Dense(10, 10)
self.fc4 = nn.Dense(10, 10)
def construct(self, inputs):
out = self.fc1(inputs)
out = self.fc2(out)
out = self.fc3(out)
out = self.fc4(out)
return out
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_rank_pixels():
"""Test on rank_pixels."""
saliency = np.array([[4., 3., 1.], [5., 9., 1.]])
descending_target = np.array([[0, 1, 2], [1, 0, 2]])
ascending_target = np.array([[2, 1, 0], [1, 2, 0]])
descending_rank = rank_pixels(saliency)
ascending_rank = rank_pixels(saliency, descending=False)
assert (descending_rank - descending_target).any() == 0
assert (ascending_rank - ascending_target).any() == 0
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_retrieve_layer_by_name():
"""Test on rank_pixels."""
model = CustomNet()
target_layer_name = 'fc3'
target_layer = retrieve_layer_by_name(model, target_layer_name)
assert target_layer is model.fc3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_retrieve_layer_by_name_no_name():
"""Test on retrieve layer."""
model = CustomNet()
target_layer = retrieve_layer_by_name(model, '')
assert target_layer is model
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_forward_probe():
"""Test case for ForwardProbe."""
model = CustomNet()
model.set_grad()
inputs = np.random.random((1, 10))
inputs = ms.Tensor(inputs, ms.float32)
gt_activation = model.fc3(model.fc2(model.fc1(inputs))).asnumpy()
targets = 1
weights = get_bp_weights(model, inputs, targets=targets)
gradnet = GradNet(model)
grad_before_probe = gradnet(inputs, weights).asnumpy()
# Probe forward tensor
saliency_layer = retrieve_layer(model, 'fc3')
with ForwardProbe(saliency_layer) as probe:
grad_after_probe = gradnet(inputs, weights).asnumpy()
activation = probe.value.asnumpy()
grad_after_unprobe = gradnet(inputs, weights).asnumpy()
assert np.array_equal(gt_activation, activation)
assert np.array_equal(grad_before_probe, grad_after_probe)
assert np.array_equal(grad_before_probe, grad_after_unprobe)
assert probe.value is None