forked from mindspore-Ecosystem/mindspore
!2418 add pretrain for lstm & vgg16 and remove lstm/vgg16/googlenet from directory 'mindspore/model_zoo'
Merge pull request !2418 from caojian05/ms_master_dev
This commit is contained in:
commit
73f440a54d
|
@ -1,143 +0,0 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ============================================================================
|
|
||||||
"""GoogleNet"""
|
|
||||||
import mindspore.nn as nn
|
|
||||||
from mindspore.common.initializer import TruncatedNormal
|
|
||||||
from mindspore.ops import operations as P
|
|
||||||
|
|
||||||
|
|
||||||
def weight_variable():
|
|
||||||
"""Weight variable."""
|
|
||||||
return TruncatedNormal(0.02)
|
|
||||||
|
|
||||||
|
|
||||||
class Conv2dBlock(nn.Cell):
|
|
||||||
"""
|
|
||||||
Basic convolutional block
|
|
||||||
Args:
|
|
||||||
in_channles (int): Input channel.
|
|
||||||
out_channels (int): Output channel.
|
|
||||||
kernel_size (int): Input kernel size. Default: 1
|
|
||||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
||||||
padding (int): Implicit paddings on both sides of the input. Default: 0.
|
|
||||||
pad_mode (str): Padding mode. Optional values are "same", "valid", "pad". Default: "same".
|
|
||||||
Returns:
|
|
||||||
Tensor, output tensor.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode="same"):
|
|
||||||
super(Conv2dBlock, self).__init__()
|
|
||||||
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
|
|
||||||
padding=padding, pad_mode=pad_mode, weight_init=weight_variable(),
|
|
||||||
bias_init=False)
|
|
||||||
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
|
|
||||||
self.relu = nn.ReLU()
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
x = self.conv(x)
|
|
||||||
x = self.bn(x)
|
|
||||||
x = self.relu(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Inception(nn.Cell):
|
|
||||||
"""
|
|
||||||
Inception Block
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
|
|
||||||
super(Inception, self).__init__()
|
|
||||||
self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1)
|
|
||||||
self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1),
|
|
||||||
Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)])
|
|
||||||
self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1),
|
|
||||||
Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)])
|
|
||||||
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
|
|
||||||
self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1)
|
|
||||||
self.concat = P.Concat(axis=1)
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
branch1 = self.b1(x)
|
|
||||||
branch2 = self.b2(x)
|
|
||||||
branch3 = self.b3(x)
|
|
||||||
cell, argmax = self.maxpool(x)
|
|
||||||
branch4 = self.b4(cell)
|
|
||||||
_ = argmax
|
|
||||||
return self.concat((branch1, branch2, branch3, branch4))
|
|
||||||
|
|
||||||
|
|
||||||
class GooGLeNet(nn.Cell):
|
|
||||||
"""
|
|
||||||
Googlenet architecture
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, num_classes):
|
|
||||||
super(GooGLeNet, self).__init__()
|
|
||||||
self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0)
|
|
||||||
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
|
||||||
|
|
||||||
self.conv2 = Conv2dBlock(64, 64, kernel_size=1)
|
|
||||||
self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0)
|
|
||||||
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
|
||||||
|
|
||||||
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32)
|
|
||||||
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64)
|
|
||||||
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
|
||||||
|
|
||||||
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64)
|
|
||||||
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64)
|
|
||||||
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64)
|
|
||||||
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64)
|
|
||||||
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128)
|
|
||||||
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
|
|
||||||
|
|
||||||
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128)
|
|
||||||
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128)
|
|
||||||
|
|
||||||
self.mean = P.ReduceMean(keep_dims=True)
|
|
||||||
self.dropout = nn.Dropout(keep_prob=0.8)
|
|
||||||
self.flatten = nn.Flatten()
|
|
||||||
self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(),
|
|
||||||
bias_init=weight_variable())
|
|
||||||
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
x = self.conv1(x)
|
|
||||||
x, argmax = self.maxpool1(x)
|
|
||||||
|
|
||||||
x = self.conv2(x)
|
|
||||||
x = self.conv3(x)
|
|
||||||
x, argmax = self.maxpool2(x)
|
|
||||||
|
|
||||||
x = self.block3a(x)
|
|
||||||
x = self.block3b(x)
|
|
||||||
x, argmax = self.maxpool3(x)
|
|
||||||
|
|
||||||
x = self.block4a(x)
|
|
||||||
x = self.block4b(x)
|
|
||||||
x = self.block4c(x)
|
|
||||||
x = self.block4d(x)
|
|
||||||
x = self.block4e(x)
|
|
||||||
x, argmax = self.maxpool4(x)
|
|
||||||
|
|
||||||
x = self.block5a(x)
|
|
||||||
x = self.block5b(x)
|
|
||||||
|
|
||||||
x = self.mean(x, (2, 3))
|
|
||||||
x = self.flatten(x)
|
|
||||||
x = self.classifier(x)
|
|
||||||
|
|
||||||
_ = argmax
|
|
||||||
return x
|
|
|
@ -1,93 +0,0 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ============================================================================
|
|
||||||
"""LSTM."""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from mindspore import Tensor, nn, context
|
|
||||||
from mindspore.ops import operations as P
|
|
||||||
|
|
||||||
# Initialize short-term memory (h) and long-term memory (c) to 0
|
|
||||||
def lstm_default_state(batch_size, hidden_size, num_layers, bidirectional):
|
|
||||||
"""init default input."""
|
|
||||||
num_directions = 1
|
|
||||||
if bidirectional:
|
|
||||||
num_directions = 2
|
|
||||||
|
|
||||||
if context.get_context("device_target") == "CPU":
|
|
||||||
h_list = []
|
|
||||||
c_list = []
|
|
||||||
i = 0
|
|
||||||
while i < num_layers:
|
|
||||||
hi = Tensor(np.zeros((num_directions, batch_size, hidden_size)).astype(np.float32))
|
|
||||||
h_list.append(hi)
|
|
||||||
ci = Tensor(np.zeros((num_directions, batch_size, hidden_size)).astype(np.float32))
|
|
||||||
c_list.append(ci)
|
|
||||||
i = i + 1
|
|
||||||
h = tuple(h_list)
|
|
||||||
c = tuple(c_list)
|
|
||||||
return h, c
|
|
||||||
|
|
||||||
h = Tensor(
|
|
||||||
np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
|
|
||||||
c = Tensor(
|
|
||||||
np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
|
|
||||||
return h, c
|
|
||||||
|
|
||||||
|
|
||||||
class SentimentNet(nn.Cell):
|
|
||||||
"""Sentiment network structure."""
|
|
||||||
|
|
||||||
def __init__(self,
|
|
||||||
vocab_size,
|
|
||||||
embed_size,
|
|
||||||
num_hiddens,
|
|
||||||
num_layers,
|
|
||||||
bidirectional,
|
|
||||||
num_classes,
|
|
||||||
weight,
|
|
||||||
batch_size):
|
|
||||||
super(SentimentNet, self).__init__()
|
|
||||||
# Mapp words to vectors
|
|
||||||
self.embedding = nn.Embedding(vocab_size,
|
|
||||||
embed_size,
|
|
||||||
embedding_table=weight)
|
|
||||||
self.embedding.embedding_table.requires_grad = False
|
|
||||||
self.trans = P.Transpose()
|
|
||||||
self.perm = (1, 0, 2)
|
|
||||||
self.encoder = nn.LSTM(input_size=embed_size,
|
|
||||||
hidden_size=num_hiddens,
|
|
||||||
num_layers=num_layers,
|
|
||||||
has_bias=True,
|
|
||||||
bidirectional=bidirectional,
|
|
||||||
dropout=0.0)
|
|
||||||
|
|
||||||
self.h, self.c = lstm_default_state(batch_size, num_hiddens, num_layers, bidirectional)
|
|
||||||
|
|
||||||
self.concat = P.Concat(1)
|
|
||||||
if bidirectional:
|
|
||||||
self.decoder = nn.Dense(num_hiddens * 4, num_classes)
|
|
||||||
else:
|
|
||||||
self.decoder = nn.Dense(num_hiddens * 2, num_classes)
|
|
||||||
|
|
||||||
def construct(self, inputs):
|
|
||||||
# input:(64,500,300)
|
|
||||||
embeddings = self.embedding(inputs)
|
|
||||||
embeddings = self.trans(embeddings, self.perm)
|
|
||||||
output, _ = self.encoder(embeddings, (self.h, self.c))
|
|
||||||
# states[i] size(64,200) -> encoding.size(64,400)
|
|
||||||
encoding = self.concat((output[0], output[499]))
|
|
||||||
outputs = self.decoder(encoding)
|
|
||||||
return outputs
|
|
|
@ -1,104 +0,0 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ============================================================================
|
|
||||||
"""VGG."""
|
|
||||||
import mindspore.nn as nn
|
|
||||||
from mindspore.common.initializer import initializer
|
|
||||||
import mindspore.common.dtype as mstype
|
|
||||||
|
|
||||||
def _make_layer(base, batch_norm):
|
|
||||||
"""Make stage network of VGG."""
|
|
||||||
layers = []
|
|
||||||
in_channels = 3
|
|
||||||
for v in base:
|
|
||||||
if v == 'M':
|
|
||||||
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
|
|
||||||
else:
|
|
||||||
weight_shape = (v, in_channels, 3, 3)
|
|
||||||
weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()
|
|
||||||
conv2d = nn.Conv2d(in_channels=in_channels,
|
|
||||||
out_channels=v,
|
|
||||||
kernel_size=3,
|
|
||||||
padding=0,
|
|
||||||
pad_mode='same',
|
|
||||||
weight_init=weight)
|
|
||||||
if batch_norm:
|
|
||||||
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
|
|
||||||
else:
|
|
||||||
layers += [conv2d, nn.ReLU()]
|
|
||||||
in_channels = v
|
|
||||||
return nn.SequentialCell(layers)
|
|
||||||
|
|
||||||
|
|
||||||
class Vgg(nn.Cell):
|
|
||||||
"""
|
|
||||||
VGG network definition.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
base (list): Configuration for different layers, mainly the channel number of Conv layer.
|
|
||||||
num_classes (int): Class numbers. Default: 1000.
|
|
||||||
batch_norm (bool): Whether to do the batchnorm. Default: False.
|
|
||||||
batch_size (int): Batch size. Default: 1.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor, infer output tensor.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
|
||||||
>>> num_classes=1000, batch_norm=False, batch_size=1)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1):
|
|
||||||
super(Vgg, self).__init__()
|
|
||||||
_ = batch_size
|
|
||||||
self.layers = _make_layer(base, batch_norm=batch_norm)
|
|
||||||
self.flatten = nn.Flatten()
|
|
||||||
self.classifier = nn.SequentialCell([
|
|
||||||
nn.Dense(512 * 7 * 7, 4096),
|
|
||||||
nn.ReLU(),
|
|
||||||
nn.Dense(4096, 4096),
|
|
||||||
nn.ReLU(),
|
|
||||||
nn.Dense(4096, num_classes)])
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
x = self.layers(x)
|
|
||||||
x = self.flatten(x)
|
|
||||||
x = self.classifier(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
cfg = {
|
|
||||||
'11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
|
||||||
'13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
|
||||||
'16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
|
||||||
'19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def vgg16(num_classes=1000):
|
|
||||||
"""
|
|
||||||
Get Vgg16 neural network with batch normalization.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
num_classes (int): Class numbers. Default: 1000.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Cell, cell instance of Vgg16 neural network with batch normalization.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> vgg16(num_classes=1000)
|
|
||||||
"""
|
|
||||||
|
|
||||||
net = Vgg(cfg['16'], num_classes=num_classes, batch_norm=True)
|
|
||||||
return net
|
|
|
@ -72,7 +72,8 @@ result: {'acc': 0.83}
|
||||||
```
|
```
|
||||||
usage: train.py [--preprocess {true,false}] [--aclimdb_path ACLIMDB_PATH]
|
usage: train.py [--preprocess {true,false}] [--aclimdb_path ACLIMDB_PATH]
|
||||||
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
|
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
|
||||||
[--ckpt_path CKPT_PATH] [--device_target {GPU,CPU}]
|
[--ckpt_path CKPT_PATH] [--pre_trained PRE_TRAINED]
|
||||||
|
[--device_target {GPU,CPU}]
|
||||||
|
|
||||||
parameters/options:
|
parameters/options:
|
||||||
--preprocess whether to preprocess data.
|
--preprocess whether to preprocess data.
|
||||||
|
@ -80,6 +81,7 @@ parameters/options:
|
||||||
--glove_path path where the GloVe is stored.
|
--glove_path path where the GloVe is stored.
|
||||||
--preprocess_path path where the pre-process data is stored.
|
--preprocess_path path where the pre-process data is stored.
|
||||||
--ckpt_path the path to save the checkpoint file.
|
--ckpt_path the path to save the checkpoint file.
|
||||||
|
--pre_trained the pretrained checkpoint file path.
|
||||||
--device_target the target device to run, support "GPU", "CPU".
|
--device_target the target device to run, support "GPU", "CPU".
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
|
@ -28,6 +28,7 @@ from mindspore import Tensor, nn, Model, context
|
||||||
from mindspore.model_zoo.lstm import SentimentNet
|
from mindspore.model_zoo.lstm import SentimentNet
|
||||||
from mindspore.nn import Accuracy
|
from mindspore.nn import Accuracy
|
||||||
from mindspore.train.callback import LossMonitor, CheckpointConfig, ModelCheckpoint, TimeMonitor
|
from mindspore.train.callback import LossMonitor, CheckpointConfig, ModelCheckpoint, TimeMonitor
|
||||||
|
from mindspore.train.serialization import load_param_into_net, load_checkpoint
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
|
parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
|
||||||
|
@ -41,6 +42,8 @@ if __name__ == '__main__':
|
||||||
help='path where the pre-process data is stored.')
|
help='path where the pre-process data is stored.')
|
||||||
parser.add_argument('--ckpt_path', type=str, default="./",
|
parser.add_argument('--ckpt_path', type=str, default="./",
|
||||||
help='the path to save the checkpoint file.')
|
help='the path to save the checkpoint file.')
|
||||||
|
parser.add_argument('--pre_trained', type=str, default=None,
|
||||||
|
help='the pretrained checkpoint file path.')
|
||||||
parser.add_argument('--device_target', type=str, default="GPU", choices=['GPU', 'CPU'],
|
parser.add_argument('--device_target', type=str, default="GPU", choices=['GPU', 'CPU'],
|
||||||
help='the target device to run, support "GPU", "CPU". Default: "GPU".')
|
help='the target device to run, support "GPU", "CPU". Default: "GPU".')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
@ -63,6 +66,9 @@ if __name__ == '__main__':
|
||||||
num_classes=cfg.num_classes,
|
num_classes=cfg.num_classes,
|
||||||
weight=Tensor(embedding_table),
|
weight=Tensor(embedding_table),
|
||||||
batch_size=cfg.batch_size)
|
batch_size=cfg.batch_size)
|
||||||
|
# pre_trained
|
||||||
|
if args.pre_trained:
|
||||||
|
load_param_into_net(network, load_checkpoint(args.pre_trained))
|
||||||
|
|
||||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||||
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
|
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
|
||||||
|
|
|
@ -73,12 +73,13 @@ train_parallel1/log:epcoh: 2 step: 97, loss is 1.7133579
|
||||||
### Training
|
### Training
|
||||||
```
|
```
|
||||||
usage: train.py [--device_target TARGET][--data_path DATA_PATH]
|
usage: train.py [--device_target TARGET][--data_path DATA_PATH]
|
||||||
[--device_id DEVICE_ID]
|
[--device_id DEVICE_ID][--pre_trained PRE_TRAINED]
|
||||||
|
|
||||||
parameters/options:
|
parameters/options:
|
||||||
--device_target the training backend type, default is Ascend.
|
--device_target the training backend type, default is Ascend.
|
||||||
--data_path the storage path of dataset
|
--data_path the storage path of dataset
|
||||||
--device_id the device which used to train model.
|
--device_id the device which used to train model.
|
||||||
|
--pre_trained the pretrained checkpoint file path.
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
|
@ -29,6 +29,7 @@ from mindspore.communication.management import init
|
||||||
from mindspore.nn.optim.momentum import Momentum
|
from mindspore.nn.optim.momentum import Momentum
|
||||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||||
from mindspore.train.model import Model, ParallelMode
|
from mindspore.train.model import Model, ParallelMode
|
||||||
|
from mindspore.train.serialization import load_param_into_net, load_checkpoint
|
||||||
from src.config import cifar_cfg as cfg
|
from src.config import cifar_cfg as cfg
|
||||||
from src.dataset import vgg_create_dataset
|
from src.dataset import vgg_create_dataset
|
||||||
from src.vgg import vgg16
|
from src.vgg import vgg16
|
||||||
|
@ -64,6 +65,7 @@ if __name__ == '__main__':
|
||||||
help='device where the code will be implemented. (Default: Ascend)')
|
help='device where the code will be implemented. (Default: Ascend)')
|
||||||
parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
|
parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
|
||||||
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
|
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
|
||||||
|
parser.add_argument('--pre_trained', type=str, default=None, help='the pretrained checkpoint file path.')
|
||||||
args_opt = parser.parse_args()
|
args_opt = parser.parse_args()
|
||||||
|
|
||||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
|
||||||
|
@ -80,6 +82,10 @@ if __name__ == '__main__':
|
||||||
batch_num = dataset.get_dataset_size()
|
batch_num = dataset.get_dataset_size()
|
||||||
|
|
||||||
net = vgg16(num_classes=cfg.num_classes)
|
net = vgg16(num_classes=cfg.num_classes)
|
||||||
|
# pre_trained
|
||||||
|
if args_opt.pre_trained:
|
||||||
|
load_param_into_net(net, load_checkpoint(args_opt.pre_trained))
|
||||||
|
|
||||||
lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
|
lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
|
||||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
|
||||||
weight_decay=cfg.weight_decay)
|
weight_decay=cfg.weight_decay)
|
||||||
|
|
|
@ -17,7 +17,7 @@ import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from mindspore import Tensor
|
from mindspore import Tensor
|
||||||
from mindspore.model_zoo.vgg import vgg16
|
from model_zoo.vgg16.src.vgg import vgg16
|
||||||
from ..ut_filter import non_graph_engine
|
from ..ut_filter import non_graph_engine
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue