!2418 add pretrain for lstm & vgg16 and remove lstm/vgg16/googlenet from directory 'mindspore/model_zoo'

Merge pull request !2418 from caojian05/ms_master_dev
This commit is contained in:
mindspore-ci-bot 2020-06-22 22:51:19 +08:00 committed by Gitee
commit 73f440a54d
8 changed files with 18 additions and 343 deletions

View File

@ -1,143 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GoogleNet"""
import mindspore.nn as nn
from mindspore.common.initializer import TruncatedNormal
from mindspore.ops import operations as P
def weight_variable():
"""Weight variable."""
return TruncatedNormal(0.02)
class Conv2dBlock(nn.Cell):
"""
Basic convolutional block
Args:
in_channles (int): Input channel.
out_channels (int): Output channel.
kernel_size (int): Input kernel size. Default: 1
stride (int): Stride size for the first convolutional layer. Default: 1.
padding (int): Implicit paddings on both sides of the input. Default: 0.
pad_mode (str): Padding mode. Optional values are "same", "valid", "pad". Default: "same".
Returns:
Tensor, output tensor.
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode="same"):
super(Conv2dBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, pad_mode=pad_mode, weight_init=weight_variable(),
bias_init=False)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
self.relu = nn.ReLU()
def construct(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Inception(nn.Cell):
"""
Inception Block
"""
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
super(Inception, self).__init__()
self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1)
self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1),
Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)])
self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1),
Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)])
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1)
self.concat = P.Concat(axis=1)
def construct(self, x):
branch1 = self.b1(x)
branch2 = self.b2(x)
branch3 = self.b3(x)
cell, argmax = self.maxpool(x)
branch4 = self.b4(cell)
_ = argmax
return self.concat((branch1, branch2, branch3, branch4))
class GooGLeNet(nn.Cell):
"""
Googlenet architecture
"""
def __init__(self, num_classes):
super(GooGLeNet, self).__init__()
self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0)
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
self.conv2 = Conv2dBlock(64, 64, kernel_size=1)
self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0)
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128)
self.mean = P.ReduceMean(keep_dims=True)
self.dropout = nn.Dropout(keep_prob=0.8)
self.flatten = nn.Flatten()
self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(),
bias_init=weight_variable())
def construct(self, x):
x = self.conv1(x)
x, argmax = self.maxpool1(x)
x = self.conv2(x)
x = self.conv3(x)
x, argmax = self.maxpool2(x)
x = self.block3a(x)
x = self.block3b(x)
x, argmax = self.maxpool3(x)
x = self.block4a(x)
x = self.block4b(x)
x = self.block4c(x)
x = self.block4d(x)
x = self.block4e(x)
x, argmax = self.maxpool4(x)
x = self.block5a(x)
x = self.block5b(x)
x = self.mean(x, (2, 3))
x = self.flatten(x)
x = self.classifier(x)
_ = argmax
return x

View File

@ -1,93 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LSTM."""
import numpy as np
from mindspore import Tensor, nn, context
from mindspore.ops import operations as P
# Initialize short-term memory (h) and long-term memory (c) to 0
def lstm_default_state(batch_size, hidden_size, num_layers, bidirectional):
"""init default input."""
num_directions = 1
if bidirectional:
num_directions = 2
if context.get_context("device_target") == "CPU":
h_list = []
c_list = []
i = 0
while i < num_layers:
hi = Tensor(np.zeros((num_directions, batch_size, hidden_size)).astype(np.float32))
h_list.append(hi)
ci = Tensor(np.zeros((num_directions, batch_size, hidden_size)).astype(np.float32))
c_list.append(ci)
i = i + 1
h = tuple(h_list)
c = tuple(c_list)
return h, c
h = Tensor(
np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
c = Tensor(
np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
return h, c
class SentimentNet(nn.Cell):
"""Sentiment network structure."""
def __init__(self,
vocab_size,
embed_size,
num_hiddens,
num_layers,
bidirectional,
num_classes,
weight,
batch_size):
super(SentimentNet, self).__init__()
# Mapp words to vectors
self.embedding = nn.Embedding(vocab_size,
embed_size,
embedding_table=weight)
self.embedding.embedding_table.requires_grad = False
self.trans = P.Transpose()
self.perm = (1, 0, 2)
self.encoder = nn.LSTM(input_size=embed_size,
hidden_size=num_hiddens,
num_layers=num_layers,
has_bias=True,
bidirectional=bidirectional,
dropout=0.0)
self.h, self.c = lstm_default_state(batch_size, num_hiddens, num_layers, bidirectional)
self.concat = P.Concat(1)
if bidirectional:
self.decoder = nn.Dense(num_hiddens * 4, num_classes)
else:
self.decoder = nn.Dense(num_hiddens * 2, num_classes)
def construct(self, inputs):
# input(64,500,300)
embeddings = self.embedding(inputs)
embeddings = self.trans(embeddings, self.perm)
output, _ = self.encoder(embeddings, (self.h, self.c))
# states[i] size(64,200) -> encoding.size(64,400)
encoding = self.concat((output[0], output[499]))
outputs = self.decoder(encoding)
return outputs

View File

@ -1,104 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""VGG."""
import mindspore.nn as nn
from mindspore.common.initializer import initializer
import mindspore.common.dtype as mstype
def _make_layer(base, batch_norm):
"""Make stage network of VGG."""
layers = []
in_channels = 3
for v in base:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
weight_shape = (v, in_channels, 3, 3)
weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()
conv2d = nn.Conv2d(in_channels=in_channels,
out_channels=v,
kernel_size=3,
padding=0,
pad_mode='same',
weight_init=weight)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
else:
layers += [conv2d, nn.ReLU()]
in_channels = v
return nn.SequentialCell(layers)
class Vgg(nn.Cell):
"""
VGG network definition.
Args:
base (list): Configuration for different layers, mainly the channel number of Conv layer.
num_classes (int): Class numbers. Default: 1000.
batch_norm (bool): Whether to do the batchnorm. Default: False.
batch_size (int): Batch size. Default: 1.
Returns:
Tensor, infer output tensor.
Examples:
>>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
>>> num_classes=1000, batch_norm=False, batch_size=1)
"""
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1):
super(Vgg, self).__init__()
_ = batch_size
self.layers = _make_layer(base, batch_norm=batch_norm)
self.flatten = nn.Flatten()
self.classifier = nn.SequentialCell([
nn.Dense(512 * 7 * 7, 4096),
nn.ReLU(),
nn.Dense(4096, 4096),
nn.ReLU(),
nn.Dense(4096, num_classes)])
def construct(self, x):
x = self.layers(x)
x = self.flatten(x)
x = self.classifier(x)
return x
cfg = {
'11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg16(num_classes=1000):
"""
Get Vgg16 neural network with batch normalization.
Args:
num_classes (int): Class numbers. Default: 1000.
Returns:
Cell, cell instance of Vgg16 neural network with batch normalization.
Examples:
>>> vgg16(num_classes=1000)
"""
net = Vgg(cfg['16'], num_classes=num_classes, batch_norm=True)
return net

View File

@ -72,7 +72,8 @@ result: {'acc': 0.83}
``` ```
usage: train.py [--preprocess {true,false}] [--aclimdb_path ACLIMDB_PATH] usage: train.py [--preprocess {true,false}] [--aclimdb_path ACLIMDB_PATH]
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH] [--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
[--ckpt_path CKPT_PATH] [--device_target {GPU,CPU}] [--ckpt_path CKPT_PATH] [--pre_trained PRE_TRAINED]
[--device_target {GPU,CPU}]
parameters/options: parameters/options:
--preprocess whether to preprocess data. --preprocess whether to preprocess data.
@ -80,6 +81,7 @@ parameters/options:
--glove_path path where the GloVe is stored. --glove_path path where the GloVe is stored.
--preprocess_path path where the pre-process data is stored. --preprocess_path path where the pre-process data is stored.
--ckpt_path the path to save the checkpoint file. --ckpt_path the path to save the checkpoint file.
--pre_trained the pretrained checkpoint file path.
--device_target the target device to run, support "GPU", "CPU". --device_target the target device to run, support "GPU", "CPU".
``` ```

View File

@ -28,6 +28,7 @@ from mindspore import Tensor, nn, Model, context
from mindspore.model_zoo.lstm import SentimentNet from mindspore.model_zoo.lstm import SentimentNet
from mindspore.nn import Accuracy from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor, CheckpointConfig, ModelCheckpoint, TimeMonitor from mindspore.train.callback import LossMonitor, CheckpointConfig, ModelCheckpoint, TimeMonitor
from mindspore.train.serialization import load_param_into_net, load_checkpoint
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MindSpore LSTM Example') parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
@ -41,6 +42,8 @@ if __name__ == '__main__':
help='path where the pre-process data is stored.') help='path where the pre-process data is stored.')
parser.add_argument('--ckpt_path', type=str, default="./", parser.add_argument('--ckpt_path', type=str, default="./",
help='the path to save the checkpoint file.') help='the path to save the checkpoint file.')
parser.add_argument('--pre_trained', type=str, default=None,
help='the pretrained checkpoint file path.')
parser.add_argument('--device_target', type=str, default="GPU", choices=['GPU', 'CPU'], parser.add_argument('--device_target', type=str, default="GPU", choices=['GPU', 'CPU'],
help='the target device to run, support "GPU", "CPU". Default: "GPU".') help='the target device to run, support "GPU", "CPU". Default: "GPU".')
args = parser.parse_args() args = parser.parse_args()
@ -63,6 +66,9 @@ if __name__ == '__main__':
num_classes=cfg.num_classes, num_classes=cfg.num_classes,
weight=Tensor(embedding_table), weight=Tensor(embedding_table),
batch_size=cfg.batch_size) batch_size=cfg.batch_size)
# pre_trained
if args.pre_trained:
load_param_into_net(network, load_checkpoint(args.pre_trained))
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum) opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)

View File

@ -73,12 +73,13 @@ train_parallel1/log:epcoh: 2 step: 97, loss is 1.7133579
### Training ### Training
``` ```
usage: train.py [--device_target TARGET][--data_path DATA_PATH] usage: train.py [--device_target TARGET][--data_path DATA_PATH]
[--device_id DEVICE_ID] [--device_id DEVICE_ID][--pre_trained PRE_TRAINED]
parameters/options: parameters/options:
--device_target the training backend type, default is Ascend. --device_target the training backend type, default is Ascend.
--data_path the storage path of dataset --data_path the storage path of dataset
--device_id the device which used to train model. --device_id the device which used to train model.
--pre_trained the pretrained checkpoint file path.
``` ```

View File

@ -29,6 +29,7 @@ from mindspore.communication.management import init
from mindspore.nn.optim.momentum import Momentum from mindspore.nn.optim.momentum import Momentum
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model, ParallelMode from mindspore.train.model import Model, ParallelMode
from mindspore.train.serialization import load_param_into_net, load_checkpoint
from src.config import cifar_cfg as cfg from src.config import cifar_cfg as cfg
from src.dataset import vgg_create_dataset from src.dataset import vgg_create_dataset
from src.vgg import vgg16 from src.vgg import vgg16
@ -64,6 +65,7 @@ if __name__ == '__main__':
help='device where the code will be implemented. (Default: Ascend)') help='device where the code will be implemented. (Default: Ascend)')
parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved') parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)') parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
parser.add_argument('--pre_trained', type=str, default=None, help='the pretrained checkpoint file path.')
args_opt = parser.parse_args() args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
@ -80,6 +82,10 @@ if __name__ == '__main__':
batch_num = dataset.get_dataset_size() batch_num = dataset.get_dataset_size()
net = vgg16(num_classes=cfg.num_classes) net = vgg16(num_classes=cfg.num_classes)
# pre_trained
if args_opt.pre_trained:
load_param_into_net(net, load_checkpoint(args_opt.pre_trained))
lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num) lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum, opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
weight_decay=cfg.weight_decay) weight_decay=cfg.weight_decay)

View File

@ -17,7 +17,7 @@ import numpy as np
import pytest import pytest
from mindspore import Tensor from mindspore import Tensor
from mindspore.model_zoo.vgg import vgg16 from model_zoo.vgg16.src.vgg import vgg16
from ..ut_filter import non_graph_engine from ..ut_filter import non_graph_engine