forked from mindspore-Ecosystem/mindspore
Rectification of operator ease of use part 3
This commit is contained in:
parent
72702588bb
commit
737963459b
|
@ -1182,7 +1182,7 @@ class FocalLoss(Loss):
|
|||
The loss function proposed by Kaiming team in their paper ``Focal Loss for Dense Object Detection`` improves the
|
||||
effect of image object detection. It is a loss function to solve the imbalance of categories and the difference of
|
||||
classification difficulty. If you want to learn more, please refer to the paper.
|
||||
`Focal Loss for Dense Object Detection https://arxiv.org/pdf/1708.02002.pdf`_. The function is shown as follows:
|
||||
`Focal Loss for Dense Object Detection <https://arxiv.org/pdf/1708.02002.pdf>`_. The function is shown as follows:
|
||||
|
||||
.. math::
|
||||
FL(p_t) = -(1-p_t)^\gamma log(p_t)
|
||||
|
|
|
@ -171,9 +171,9 @@ class AllGather(PrimitiveWithInfer):
|
|||
... def construct(self, x):
|
||||
... return self.allgather(x)
|
||||
...
|
||||
>>> input_ = Tensor(np.ones([2, 8]).astype(np.float32))
|
||||
>>> input_x = Tensor(np.ones([2, 8]).astype(np.float32))
|
||||
>>> net = Net()
|
||||
>>> output = net(input_)
|
||||
>>> output = net(input_x)
|
||||
>>> print(output)
|
||||
[[1. 1. 1. 1. 1. 1. 1. 1.]
|
||||
[1. 1. 1. 1. 1. 1. 1. 1.]
|
||||
|
@ -462,9 +462,9 @@ class Broadcast(PrimitiveWithInfer):
|
|||
... def construct(self, x):
|
||||
... return self.broadcast((x,))
|
||||
...
|
||||
>>> input_ = Tensor(np.ones([2, 4]).astype(np.int32))
|
||||
>>> input_x = Tensor(np.ones([2, 4]).astype(np.int32))
|
||||
>>> net = Net()
|
||||
>>> output = net(input_)
|
||||
>>> output = net(input_x)
|
||||
>>> print(output)
|
||||
(Tensor(shape[2,4], dtype=Int32, value=
|
||||
[[1, 1, 1, 1],
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -34,10 +34,11 @@ class Assign(Primitive):
|
|||
|
||||
Inputs:
|
||||
- **variable** (Parameter) - The `Parameter`.
|
||||
- **value** (Tensor) - The value to be assigned.
|
||||
:math:`(N,*)` where :math:`*` means ,any number of additional dimensions, its rank should less than 8.
|
||||
- **value** (Tensor) - The value to be assigned, has the same shape with `variable`.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same type as original `variable`.
|
||||
Tensor, has the same data type and shape as original `variable`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `variable` is not a Parameter.
|
||||
|
|
Loading…
Reference in New Issue