convert csv to mindrecord

This commit is contained in:
liyong 2020-06-17 15:47:04 +08:00
parent 518e955260
commit 7369950a93
5 changed files with 322 additions and 5 deletions

View File

@ -29,10 +29,11 @@ from .common.exceptions import *
from .shardutils import SUCCESS, FAILED
from .tools.cifar10_to_mr import Cifar10ToMR
from .tools.cifar100_to_mr import Cifar100ToMR
from .tools.csv_to_mr import CsvToMR
from .tools.imagenet_to_mr import ImageNetToMR
from .tools.mnist_to_mr import MnistToMR
from .tools.tfrecord_to_mr import TFRecordToMR
__all__ = ['FileWriter', 'FileReader', 'MindPage',
'Cifar10ToMR', 'Cifar100ToMR', 'ImageNetToMR', 'MnistToMR', 'TFRecordToMR',
'Cifar10ToMR', 'Cifar100ToMR', 'CsvToMR', 'ImageNetToMR', 'MnistToMR', 'TFRecordToMR',
'SUCCESS', 'FAILED']

View File

@ -0,0 +1,168 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Csv format convert tool for MindRecord.
"""
from importlib import import_module
import os
from mindspore import log as logger
from ..filewriter import FileWriter
from ..shardutils import check_filename
try:
pd = import_module("pandas")
except ModuleNotFoundError:
pd = None
__all__ = ['CsvToMR']
class CsvToMR:
"""
Class is for transformation from csv to MindRecord.
Args:
source (str): the file path of csv.
destination (str): the MindRecord file path to transform into.
columns_list(list[str], optional): List of columns to be read(default=None).
partition_number (int, optional): partition size (default=1).
Raises:
ValueError: If source, destination, partition_number is invalid.
RuntimeError: If columns_list is invalid.
"""
def __init__(self, source, destination, columns_list=None, partition_number=1):
if not pd:
raise Exception("Module pandas is not found, please use pip install it.")
if isinstance(source, str):
check_filename(source)
self.source = source
else:
raise ValueError("The parameter source must be str.")
self._check_columns(columns_list, "columns_list")
self.columns_list = columns_list
if isinstance(destination, str):
check_filename(destination)
self.destination = destination
else:
raise ValueError("The parameter destination must be str.")
if partition_number is not None:
if not isinstance(partition_number, int):
raise ValueError("The parameter partition_number must be int")
self.partition_number = partition_number
else:
raise ValueError("The parameter partition_number must be int")
self.writer = FileWriter(self.destination, self.partition_number)
def _check_columns(self, columns, columns_name):
if columns:
if isinstance(columns, list):
for col in columns:
if not isinstance(col, str):
raise ValueError("The parameter {} must be list of str.".format(columns_name))
else:
raise ValueError("The parameter {} must be list of str.".format(columns_name))
def _get_schema(self, df):
"""
Construct schema from df columns
"""
if self.columns_list:
for col in self.columns_list:
if col not in df.columns:
raise RuntimeError("The parameter columns_list is illegal, column {} does not exist.".format(col))
else:
self.columns_list = df.columns
schema = {}
for col in self.columns_list:
if str(df[col].dtype) == 'int64':
schema[col] = {"type": "int64"}
elif str(df[col].dtype) == 'float64':
schema[col] = {"type": "float64"}
elif str(df[col].dtype) == 'bool':
schema[col] = {"type": "int32"}
else:
schema[col] = {"type": "string"}
if not schema:
raise RuntimeError("Failed to generate schema from csv file.")
return schema
def _get_row_of_csv(self, df):
"""Get row data from csv file."""
for _, r in df.iterrows():
row = {}
for col in self.columns_list:
if str(df[col].dtype) == 'bool':
row[col] = int(r[col])
else:
row[col] = r[col]
yield row
def transform(self):
"""
Executes transformation from csv to MindRecord.
Returns:
SUCCESS/FAILED, whether successfully written into MindRecord.
"""
if not os.path.exists(self.source):
raise IOError("Csv file {} do not exist.".format(self.source))
pd.set_option('display.max_columns', None)
df = pd.read_csv(self.source)
csv_schema = self._get_schema(df)
logger.info("transformed MindRecord schema is: {}".format(csv_schema))
# set the header size
self.writer.set_header_size(1 << 24)
# set the page size
self.writer.set_page_size(1 << 26)
# create the schema
self.writer.add_schema(csv_schema, "csv_schema")
# add the index
self.writer.add_index(list(self.columns_list))
csv_iter = self._get_row_of_csv(df)
batch_size = 256
transform_count = 0
while True:
data_list = []
try:
for _ in range(batch_size):
data_list.append(csv_iter.__next__())
transform_count += 1
self.writer.write_raw_data(data_list)
logger.info("transformed {} record...".format(transform_count))
except StopIteration:
if data_list:
self.writer.write_raw_data(data_list)
logger.info(
"transformed {} record...".format(transform_count))
break
ret = self.writer.commit()
return ret

View File

@ -115,10 +115,8 @@ class TFRecordToMR:
"sequence": {"zzzz": tf.io.FixedLenSequenceFeature([], tf.float32)}}
bytes_fields (list): the bytes fields which are in feature_dict.
Rasies:
ValueError: the following condition will cause ValueError, 1) parameter TFRecord is not string, 2) parameter
MindRecord is not string, 3) feature_dict is not FixedLenFeature, 4) parameter bytes_field is not list(str)
or not in feature_dict.
Raises:
ValueError: If parameter is invalid.
Exception: when tensorflow module not found or version is not correct.
"""
def __init__(self, source, destination, feature_dict, bytes_fields=None):

View File

@ -0,0 +1,7 @@
Age,EmployNumber,Name,Sales,Over18
21, 10023,john, 123.45,True
41, 10223,tom, 12111,True
51, 10231,bob, 8779.0,True
86, 10053,alice, 7777,True
26, 1053,carol, 12345.8,False
1 Age EmployNumber Name Sales Over18
2 21 10023 john 123.45 True
3 41 10223 tom 12111 True
4 51 10231 bob 8779.0 True
5 86 10053 alice 7777 True
6 26 1053 carol 12345.8 False

View File

@ -0,0 +1,143 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test csv to mindrecord tool"""
import os
from importlib import import_module
import pytest
from mindspore import log as logger
from mindspore.mindrecord import FileReader
from mindspore.mindrecord import CsvToMR
try:
pd = import_module('pandas')
except ModuleNotFoundError:
pd = None
CSV_FILE = "../data/mindrecord/testCsv/data.csv"
MINDRECORD_FILE = "../data/mindrecord/testCsv/csv.mindrecord"
PARTITION_NUMBER = 4
@pytest.fixture(name="remove_mindrecord_file")
def fixture_remove():
"""add/remove file"""
def remove_one_file(x):
if os.path.exists(x):
os.remove(x)
def remove_file():
x = MINDRECORD_FILE
remove_one_file(x)
x = MINDRECORD_FILE + ".db"
remove_one_file(x)
for i in range(PARTITION_NUMBER):
x = MINDRECORD_FILE + str(i)
remove_one_file(x)
x = MINDRECORD_FILE + str(i) + ".db"
remove_one_file(x)
remove_file()
yield "yield_fixture_data"
remove_file()
def read(filename, columns, row_num):
"""test file reade"""
if not pd:
raise Exception("Module pandas is not found, please use pip install it.")
df = pd.read_csv(CSV_FILE)
count = 0
reader = FileReader(filename)
for _, x in enumerate(reader.get_next()):
for col in columns:
assert x[col] == df[col].iloc[count]
assert len(x) == len(columns)
count = count + 1
if count == 1:
logger.info("data: {}".format(x))
assert count == row_num
reader.close()
def test_csv_to_mindrecord(remove_mindrecord_file):
"""test transform csv to mindrecord."""
csv_trans = CsvToMR(CSV_FILE, MINDRECORD_FILE, partition_number=PARTITION_NUMBER)
csv_trans.transform()
for i in range(PARTITION_NUMBER):
assert os.path.exists(MINDRECORD_FILE + str(i))
assert os.path.exists(MINDRECORD_FILE + str(i) + ".db")
read(MINDRECORD_FILE + "0", ["Age", "EmployNumber", "Name", "Sales", "Over18"], 5)
def test_csv_to_mindrecord_with_columns(remove_mindrecord_file):
"""test transform csv to mindrecord."""
csv_trans = CsvToMR(CSV_FILE, MINDRECORD_FILE, columns_list=['Age', 'Sales'], partition_number=PARTITION_NUMBER)
csv_trans.transform()
for i in range(PARTITION_NUMBER):
assert os.path.exists(MINDRECORD_FILE + str(i))
assert os.path.exists(MINDRECORD_FILE + str(i) + ".db")
read(MINDRECORD_FILE + "0", ["Age", "Sales"], 5)
def test_csv_to_mindrecord_with_no_exist_columns(remove_mindrecord_file):
"""test transform csv to mindrecord."""
with pytest.raises(Exception, match="The parameter columns_list is illegal, column ssales does not exist."):
csv_trans = CsvToMR(CSV_FILE, MINDRECORD_FILE, columns_list=['Age', 'ssales'],
partition_number=PARTITION_NUMBER)
csv_trans.transform()
def test_csv_partition_number_with_illegal_columns(remove_mindrecord_file):
"""
test transform csv to mindrecord
"""
with pytest.raises(Exception, match="The parameter columns_list must be list of str."):
csv_trans = CsvToMR(CSV_FILE, MINDRECORD_FILE, ["Sales", 2])
csv_trans.transform()
def test_csv_to_mindrecord_default_partition_number(remove_mindrecord_file):
"""
test transform csv to mindrecord
when partition number is default.
"""
csv_trans = CsvToMR(CSV_FILE, MINDRECORD_FILE)
csv_trans.transform()
assert os.path.exists(MINDRECORD_FILE)
assert os.path.exists(MINDRECORD_FILE + ".db")
read(MINDRECORD_FILE, ["Age", "EmployNumber", "Name", "Sales", "Over18"], 5)
def test_csv_partition_number_0(remove_mindrecord_file):
"""
test transform csv to mindrecord
when partition number is 0.
"""
with pytest.raises(Exception, match="Invalid parameter value"):
csv_trans = CsvToMR(CSV_FILE, MINDRECORD_FILE, None, 0)
csv_trans.transform()
def test_csv_to_mindrecord_partition_number_none(remove_mindrecord_file):
"""
test transform csv to mindrecord
when partition number is none.
"""
with pytest.raises(Exception,
match="The parameter partition_number must be int"):
csv_trans = CsvToMR(CSV_FILE, MINDRECORD_FILE, None, None)
csv_trans.transform()
def test_csv_to_mindrecord_illegal_filename(remove_mindrecord_file):
"""
test transform csv to mindrecord
when file name contains illegal character.
"""
filename = "not_*ok"
with pytest.raises(Exception, match="File name should not contains"):
csv_trans = CsvToMR(CSV_FILE, filename)
csv_trans.transform()