forked from mindspore-Ecosystem/mindspore
modify if xxx is True to if xxx and modify if xxx is not True to if not xxx
This commit is contained in:
parent
a743cc8d88
commit
718862fd6f
|
@ -388,7 +388,7 @@ class FileWriter:
|
|||
if not self._writer.get_shard_header():
|
||||
self._writer.set_shard_header(self._header)
|
||||
ret = self._writer.commit()
|
||||
if self._index_generator is True:
|
||||
if self._index_generator:
|
||||
if self._append:
|
||||
self._generator = ShardIndexGenerator(self._file_name, self._append)
|
||||
elif len(self._paths) >= 1:
|
||||
|
@ -470,7 +470,7 @@ class FileWriter:
|
|||
return False, error
|
||||
elif len(v) == 2 and 'type' in v:
|
||||
res_1, res_2 = self._validate_array(k, v)
|
||||
if res_1 is not True:
|
||||
if not res_1:
|
||||
return res_1, res_2
|
||||
else:
|
||||
error = "Field '{}' contains illegal attributes.".format(v)
|
||||
|
|
|
@ -483,7 +483,7 @@ class Cell(Cell_):
|
|||
item.init_data()
|
||||
elif isinstance(item, numpy.ndarray):
|
||||
raise TypeError("For 'Cell', inputs should not be numpy array.")
|
||||
if self.requires_grad is True:
|
||||
if self.requires_grad:
|
||||
_pynative_executor.set_grad_flag(True)
|
||||
_pynative_executor.new_graph(self, *args, **kwargs)
|
||||
cast_inputs = self.auto_cast_inputs(args)
|
||||
|
@ -1518,7 +1518,7 @@ class Cell(Cell_):
|
|||
|
||||
def _set_recompute_scope(self, mode):
|
||||
prefix = 'recompute_'
|
||||
if mode is True:
|
||||
if mode:
|
||||
if self._scope is None:
|
||||
self._scope = prefix
|
||||
elif not self._scope.startswith(prefix):
|
||||
|
|
|
@ -221,7 +221,7 @@ class _BatchNorm(Cell):
|
|||
self.moving_mean,
|
||||
self.moving_variance)[0]
|
||||
|
||||
if self.use_batch_statistics is True:
|
||||
if self.use_batch_statistics:
|
||||
return self.bn_train(x,
|
||||
self.gamma,
|
||||
self.beta,
|
||||
|
|
|
@ -239,7 +239,7 @@ class ConfusionMatrixMetric(Metric):
|
|||
y_pred = self._convert_data(inputs[0])
|
||||
y = self._convert_data(inputs[1])
|
||||
|
||||
if self.calculation_method is True:
|
||||
if self.calculation_method:
|
||||
score, not_nans = self.confusion_matrix(y_pred, y)
|
||||
not_nans = int(not_nans.item())
|
||||
self._total_num += score.item() * not_nans
|
||||
|
@ -260,7 +260,7 @@ class ConfusionMatrixMetric(Metric):
|
|||
ndarray, the computed result.
|
||||
"""
|
||||
|
||||
if self.calculation_method is True:
|
||||
if self.calculation_method:
|
||||
if self._class_num == 0:
|
||||
raise RuntimeError("The 'ConfusionMatrixMetric' can not be calculated, because the number of samples "
|
||||
"is 0, please check whether your inputs(predicted value, true value) are empty, or "
|
||||
|
|
|
@ -376,7 +376,7 @@ class _Linear(Cell):
|
|||
def construct(self, x):
|
||||
out_shape = P.Shape()(x)[:-1] + (self.out_channels,)
|
||||
x = P.Reshape()(x, (-1, self.in_channels))
|
||||
if self.expert_flag is True:
|
||||
if self.expert_flag:
|
||||
x = P.Reshape()(x, (self.expert_num, -1, self.in_channels))
|
||||
weight = self.cast(self.weight, self.dtype)
|
||||
x = self.matmul(x, weight)
|
||||
|
|
|
@ -270,7 +270,7 @@ class Router(Cell):
|
|||
|
||||
def construct(self, input_tensor):
|
||||
input_tensor = self.cast(input_tensor, mstype.float32)
|
||||
if self.noisy_policy == "jitter" and self.training is True:
|
||||
if self.noisy_policy == "jitter" and self.training:
|
||||
# Here, we temporarily implement the multiplicative jitter this way,
|
||||
# for the lack of UniforReal parallel operator.
|
||||
input_tensor = self.mul(input_tensor, self.noise)
|
||||
|
|
|
@ -1309,7 +1309,7 @@ class TransformerEncoderLayer(Cell):
|
|||
parallel_config=parallel_config)
|
||||
_check_moe_config(moe_config, parallel_config)
|
||||
self.use_moe = (moe_config.expert_num > 1)
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
self.output = MoE(hidden_size=hidden_size,
|
||||
dropout_rate=hidden_dropout_rate,
|
||||
ffn_hidden_size=ffn_hidden_size,
|
||||
|
@ -1378,7 +1378,7 @@ class TransformerEncoderLayer(Cell):
|
|||
output_x = self.layernorm2(x)
|
||||
output_x = F.cast(output_x, self.dtype)
|
||||
aux_loss = None
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
mlp_logit, aux_loss = self.output(output_x)
|
||||
else:
|
||||
mlp_logit = self.output(output_x)
|
||||
|
@ -1416,7 +1416,7 @@ class TransformerEncoderLayer(Cell):
|
|||
output = self.add(x, mlp_logit)
|
||||
output = F.reshape(output, x_shape)
|
||||
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
return output, layer_present, aux_loss
|
||||
return output, layer_present
|
||||
|
||||
|
@ -1588,7 +1588,7 @@ class TransformerDecoderLayer(Cell):
|
|||
"divisibled by 'parallel_config.model_parallel', but got the ffn_hidden_size is {} "
|
||||
"and parallel_config.model_parallel is {}."
|
||||
.format(ffn_hidden_size, parallel_config.model_parallel))
|
||||
if use_past is True:
|
||||
if use_past:
|
||||
raise ValueError(f"The {self.cls_name} does not support use_past=True.")
|
||||
self.batch_size = batch_size
|
||||
self.use_past = use_past
|
||||
|
@ -1632,7 +1632,7 @@ class TransformerDecoderLayer(Cell):
|
|||
self.cross_attention_layernorm.shard(((parallel_config.data_parallel, 1),))
|
||||
_check_moe_config(moe_config, parallel_config)
|
||||
self.use_moe = (moe_config.expert_num > 1)
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
self.output = MoE(hidden_size=hidden_size,
|
||||
dropout_rate=hidden_dropout_rate,
|
||||
ffn_hidden_size=ffn_hidden_size,
|
||||
|
@ -1718,7 +1718,7 @@ class TransformerDecoderLayer(Cell):
|
|||
output_x = self.layernorm2(x)
|
||||
output_x = F.cast(output_x, self.dtype)
|
||||
aux_loss = None
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
mlp_logit, aux_loss = self.output(output_x)
|
||||
else:
|
||||
mlp_logit = self.output(output_x)
|
||||
|
@ -1756,7 +1756,7 @@ class TransformerDecoderLayer(Cell):
|
|||
output = self.add(x, mlp_logit)
|
||||
output = F.reshape(output, hidden_shape)
|
||||
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
return output, layer_present, aux_loss
|
||||
return output, layer_present
|
||||
|
||||
|
@ -2044,7 +2044,7 @@ class TransformerEncoder(Cell):
|
|||
|
||||
def construct(self, hidden_states, attention_mask, init_reset=True, batch_valid_length=None):
|
||||
present_layer = ()
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
accum_loss = self.aux_loss
|
||||
for i in range(self.num_layers):
|
||||
hidden_states, present, aux_loss = self.blocks[i](hidden_states,
|
||||
|
@ -2242,7 +2242,7 @@ class TransformerDecoder(Cell):
|
|||
def construct(self, hidden_states, attention_mask, encoder_output=None, memory_mask=None,
|
||||
init_reset=True, batch_valid_length=None):
|
||||
present_layer = ()
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
accum_loss = self.aux_loss
|
||||
for i in range(self.num_layers):
|
||||
hidden_states, present, aux_loss = self.blocks[i](hidden_states,
|
||||
|
@ -2433,7 +2433,7 @@ class Transformer(Cell):
|
|||
if encoder_layers <= 0 < decoder_layers:
|
||||
raise ValueError(f"Transformer doest support encoder layer {encoder_layers} and decoder"
|
||||
f"layer {decoder_layers}, please use TransformerDecoder")
|
||||
if encoder_layers > 0 and decoder_layers > 0 and use_past is True:
|
||||
if encoder_layers > 0 and decoder_layers > 0 and use_past:
|
||||
raise ValueError(f"The {self.cls_name} with encoder and decoder does not support use_past=True.")
|
||||
if _get_parallel_mode() in (ParallelMode.AUTO_PARALLEL,):
|
||||
raise RuntimeError(f"The {self.cls_name} does not support auto parallel mode now.")
|
||||
|
@ -2503,7 +2503,7 @@ class Transformer(Cell):
|
|||
decoder_layer_present = None
|
||||
accum_loss = self.aux_loss
|
||||
if self.encoder is not None:
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
encoder_output, encoder_layer_present, encoder_aux_loss = self.encoder(encoder_inputs, encoder_masks,
|
||||
init_reset, batch_valid_length)
|
||||
accum_loss = self.add(accum_loss, encoder_aux_loss)
|
||||
|
@ -2514,7 +2514,7 @@ class Transformer(Cell):
|
|||
|
||||
if self.decoder is not None:
|
||||
# decoder mask should be created outside of the model
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
decoder_output, decoder_layer_present, decoder_aux_loss = self.decoder(decoder_inputs, decoder_masks,
|
||||
encoder_output, memory_mask,
|
||||
init_reset, batch_valid_length)
|
||||
|
@ -2526,6 +2526,6 @@ class Transformer(Cell):
|
|||
memory_mask, init_reset,
|
||||
batch_valid_length)
|
||||
output = decoder_output
|
||||
if self.use_moe is True:
|
||||
if self.use_moe:
|
||||
return output, encoder_layer_present, decoder_layer_present, accum_loss
|
||||
return output, encoder_layer_present, decoder_layer_present
|
||||
|
|
|
@ -37,7 +37,7 @@ def get_bprop_masked_select(self):
|
|||
dinput, dvalue = binop_grad_common(input_data, mask, dinput, dvalue)
|
||||
dvalue = sum_op(dvalue)
|
||||
dinput = F.cast(dinput, F.dtype(input_data))
|
||||
if is_instance_op(value, mstype.number) is True:
|
||||
if is_instance_op(value, mstype.number):
|
||||
dvalue = 0
|
||||
else:
|
||||
dvalue = F.cast(dvalue, F.dtype(value))
|
||||
|
|
|
@ -70,7 +70,7 @@ def get_bprop_index_lerp(self):
|
|||
dend = mul_op(dout, weight)
|
||||
dweight = mul_op(dout, sub_op(end, start))
|
||||
dstart, dend = binop_grad_common(start, end, dstart, dend)
|
||||
if is_instance_op(weight, mstype.number) is True:
|
||||
if is_instance_op(weight, mstype.number):
|
||||
dweight = 0
|
||||
else:
|
||||
_, dweight = binop_grad_common(start, weight, dstart, dweight)
|
||||
|
|
|
@ -66,7 +66,7 @@ if __name__ == "__main__":
|
|||
# If the specified bprop source directory is not on the mindspore installed path,
|
||||
# copy the bprop source files to the installed path.
|
||||
backup_suffix = "_generate_bak"
|
||||
if copy_flag is True:
|
||||
if copy_flag:
|
||||
shutil.rmtree(bprop_installed_dir + backup_suffix, ignore_errors=True)
|
||||
os.rename(bprop_installed_dir, bprop_installed_dir + backup_suffix)
|
||||
os.mkdir(bprop_installed_dir)
|
||||
|
@ -81,7 +81,7 @@ if __name__ == "__main__":
|
|||
|
||||
# If the specified bprop source directory is not on the mindspore installed path,
|
||||
# copy the generated mindir files to the mindir directory relative to the specified path.
|
||||
if copy_flag is True:
|
||||
if copy_flag:
|
||||
shutil.rmtree(bprop_installed_dir)
|
||||
os.rename(bprop_installed_dir + backup_suffix, bprop_installed_dir)
|
||||
ls = os.listdir(bprop_mindir_export_dir)
|
||||
|
|
|
@ -5683,7 +5683,7 @@ class IsClose(Primitive):
|
|||
validator.check_value_type('rtol', rtol, [float], self.name)
|
||||
validator.check_value_type('atol', atol, [float], self.name)
|
||||
validator.check_value_type('equal_nan', equal_nan, [bool], self.name)
|
||||
if equal_nan is not True:
|
||||
if not equal_nan:
|
||||
raise ValueError("For IsClose, the `equal_nan` must be True, but got False.")
|
||||
validator.check_non_negative_float(rtol, 'rtol', self.name)
|
||||
validator.check_non_negative_float(atol, 'atol', self.name)
|
||||
|
|
|
@ -55,7 +55,7 @@ def fwrite_format(output_data_path, data_source=None, is_print=False, is_start=F
|
|||
is_start (bool): Whether is the first line of the output file, will remove the old file if True."
|
||||
"""
|
||||
|
||||
if is_start is True and os.path.exists(output_data_path):
|
||||
if is_start and os.path.exists(output_data_path):
|
||||
os.remove(output_data_path)
|
||||
|
||||
if isinstance(data_source, str) and data_source.startswith("title:"):
|
||||
|
|
|
@ -446,7 +446,7 @@ class ModelCheckpoint(Callback):
|
|||
return True
|
||||
elif self._config.save_checkpoint_seconds and self._config.save_checkpoint_seconds > 0:
|
||||
self._cur_time = time.time()
|
||||
if (self._cur_time - self._last_time) > self._config.save_checkpoint_seconds or force_to_save is True:
|
||||
if (self._cur_time - self._last_time) > self._config.save_checkpoint_seconds or force_to_save:
|
||||
self._last_time = self._cur_time
|
||||
return True
|
||||
|
||||
|
|
|
@ -756,7 +756,7 @@ class Model:
|
|||
>>> model.train(2, dataset)
|
||||
"""
|
||||
dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
|
||||
if isinstance(self._train_network, nn.GraphCell) and dataset_sink_mode is True:
|
||||
if isinstance(self._train_network, nn.GraphCell) and dataset_sink_mode:
|
||||
raise ValueError("Dataset sink mode is currently not supported when training with a GraphCell.")
|
||||
|
||||
if hasattr(train_dataset, '_warmup_epoch') and train_dataset._warmup_epoch != epoch:
|
||||
|
@ -942,7 +942,7 @@ class Model:
|
|||
if not self._metric_fns:
|
||||
raise ValueError("The model argument 'metrics' can not be None or empty, "
|
||||
"you should set the argument 'metrics' for model.")
|
||||
if isinstance(self._eval_network, nn.GraphCell) and dataset_sink_mode is True:
|
||||
if isinstance(self._eval_network, nn.GraphCell) and dataset_sink_mode:
|
||||
raise ValueError("Sink mode is currently not supported when evaluating with a GraphCell.")
|
||||
|
||||
cb_params = _InternalCallbackParam()
|
||||
|
@ -1019,7 +1019,7 @@ class Model:
|
|||
dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
|
||||
if not dataset_sink_mode:
|
||||
raise ValueError("Only dataset sink mode is supported for now.")
|
||||
if isinstance(self._train_network, nn.GraphCell) and dataset_sink_mode is True:
|
||||
if isinstance(self._train_network, nn.GraphCell) and dataset_sink_mode:
|
||||
raise ValueError("Dataset sink mode is currently not supported when training with a GraphCell.")
|
||||
Validator.check_is_int(sink_size)
|
||||
dataset_size = train_dataset.get_dataset_size()
|
||||
|
|
|
@ -97,7 +97,7 @@ class FakeData:
|
|||
self.is_onehot = True
|
||||
self.fakedata_mode = fakedata_mode
|
||||
|
||||
if use_parallel is True:
|
||||
if use_parallel:
|
||||
init(backend_name='nccl')
|
||||
self.rank_size = get_group_size()
|
||||
self.rank_id = get_rank()
|
||||
|
|
|
@ -99,7 +99,7 @@ class FakeData:
|
|||
self.is_onehot = True
|
||||
self.fakedata_mode = fakedata_mode
|
||||
|
||||
if use_parallel is True:
|
||||
if use_parallel:
|
||||
init(backend_name='hccl')
|
||||
self.rank_size = get_group_size()
|
||||
self.rank_id = get_rank()
|
||||
|
|
|
@ -102,7 +102,7 @@ class FakeData:
|
|||
self.is_onehot = True
|
||||
self.fakedata_mode = fakedata_mode
|
||||
|
||||
if use_parallel is True:
|
||||
if use_parallel:
|
||||
init(backend_name='hccl')
|
||||
self.rank_size = get_group_size()
|
||||
self.rank_id = get_rank()
|
||||
|
|
|
@ -81,7 +81,7 @@ class FakeData:
|
|||
self.is_onehot = True
|
||||
self.fakedata_mode = fakedata_mode
|
||||
|
||||
if use_parallel is True:
|
||||
if use_parallel:
|
||||
init()
|
||||
self.rank_size = get_group_size()
|
||||
self.rank_id = get_rank()
|
||||
|
|
|
@ -574,7 +574,7 @@ class Model:
|
|||
>>> model.train(2, dataset)
|
||||
"""
|
||||
repeat_count = train_dataset.get_repeat_count()
|
||||
if epoch != repeat_count and dataset_sink_mode is True:
|
||||
if epoch != repeat_count and dataset_sink_mode:
|
||||
logger.warning(f"The epoch_size {epoch} is not the same with dataset repeat_count {repeat_count}")
|
||||
dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
|
||||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
|
|
|
@ -346,7 +346,7 @@ def vm_impl_momentum(self):
|
|||
learning_rate = np.full(shape, learning_rate.asnumpy())
|
||||
momentum = np.full(shape, momentum.asnumpy())
|
||||
accumulation = accumulation * momentum + gradient
|
||||
if use_nesterov is True:
|
||||
if use_nesterov:
|
||||
variable -= gradient * learning_rate + accumulation * momentum * learning_rate
|
||||
else:
|
||||
variable -= accumulation * learning_rate
|
||||
|
|
Loading…
Reference in New Issue