diff --git a/model_zoo/official/nlp/bert/export.py b/model_zoo/official/nlp/bert/export.py index 6d74c97c691..84a71344ea2 100644 --- a/model_zoo/official/nlp/bert/export.py +++ b/model_zoo/official/nlp/bert/export.py @@ -21,23 +21,26 @@ import mindspore.common.dtype as mstype from mindspore.train.serialization import load_checkpoint, export from src.finetune_eval_model import BertCLSModel, BertSquadModel, BertNERModel -from src.finetune_eval_config import optimizer_cfg, bert_net_cfg +from src.finetune_eval_config import bert_net_cfg from src.bert_for_finetune import BertNER from src.utils import convert_labels_to_index -context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") parser = argparse.ArgumentParser(description='Bert export') +parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument('--use_crf', type=str, default="false", help='Use cfg, default is false.') parser.add_argument('--downstream_task', type=str, choices=["NER", "CLS", "SQUAD"], default="NER", help='at present,support NER only') parser.add_argument('--num_class', type=int, default=41, help='The number of class, default is 41.') +parser.add_argument("--batch_size", type=int, default=16, help="batch size") parser.add_argument('--label_file_path', type=str, default="", help='label file path, used in clue benchmark.') parser.add_argument('--ckpt_file', type=str, required=True, help='Bert ckpt file.') parser.add_argument('--output_file', type=str, default='Bert', help='bert output air name.') parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') args = parser.parse_args() +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) + label_list = [] with open(args.label_file_path) as f: for label in f: @@ -57,7 +60,7 @@ else: if __name__ == '__main__': if args.downstream_task == "NER": if args.use_crf.lower() == "true": - net = BertNER(bert_net_cfg, optimizer_cfg.batch_size, False, num_labels=number_labels, + net = BertNER(bert_net_cfg, args.batch_size, False, num_labels=number_labels, use_crf=True, tag_to_index=tag_to_index) else: net = BertNERModel(bert_net_cfg, False, number_labels, use_crf=(args.use_crf.lower() == "true")) @@ -71,10 +74,10 @@ if __name__ == '__main__': load_checkpoint(args.ckpt_file, net=net) net.set_train(False) - input_ids = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32) - input_mask = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32) - token_type_id = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32) - label_ids = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32) + input_ids = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) + input_mask = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) + token_type_id = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) + label_ids = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) if args.downstream_task == "NER" and args.use_crf.lower() == "true": input_data = [input_ids, input_mask, token_type_id, label_ids]